Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1440 lines
50 KiB
1440 lines
50 KiB
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] |
|
*/ |
|
/* ==================================================================== |
|
* Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* openssl-core@openssl.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). */ |
|
|
|
#ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H |
|
#define OPENSSL_HEADER_CRYPTO_INTERNAL_H |
|
|
|
#include <openssl/arm_arch.h> |
|
#include <openssl/crypto.h> |
|
#include <openssl/ex_data.h> |
|
#include <openssl/stack.h> |
|
#include <openssl/thread.h> |
|
|
|
#include <assert.h> |
|
#include <string.h> |
|
|
|
#if defined(BORINGSSL_CONSTANT_TIME_VALIDATION) |
|
#include <valgrind/memcheck.h> |
|
#endif |
|
|
|
#if defined(BORINGSSL_FIPS_BREAK_TESTS) |
|
#include <stdlib.h> |
|
#endif |
|
|
|
#if !defined(__cplusplus) |
|
#if !defined(__STDC_VERSION__) || __STDC_VERSION__ < 201112L |
|
// BoringSSL requires C11 to build the library. The most likely cause of |
|
// pre-C11 modes is stale -std=c99 or -std=gnu99 flags in build configuration. |
|
// Such flags can be removed. If building with MSVC, build with /std:c11. |
|
#error "BoringSSL must be built in C11 mode or higher." |
|
#endif |
|
#include <stdalign.h> |
|
#endif |
|
|
|
#if defined(OPENSSL_THREADS) && \ |
|
(!defined(OPENSSL_WINDOWS) || defined(__MINGW32__)) |
|
#include <pthread.h> |
|
#define OPENSSL_PTHREADS |
|
#endif |
|
|
|
#if defined(OPENSSL_THREADS) && !defined(OPENSSL_PTHREADS) && \ |
|
defined(OPENSSL_WINDOWS) |
|
#define OPENSSL_WINDOWS_THREADS |
|
#endif |
|
|
|
// Determine the atomics implementation to use with C. |
|
#if !defined(__cplusplus) |
|
#if !defined(OPENSSL_C11_ATOMIC) && defined(OPENSSL_THREADS) && \ |
|
!defined(__STDC_NO_ATOMICS__) |
|
#define OPENSSL_C11_ATOMIC |
|
#endif |
|
|
|
#if defined(OPENSSL_C11_ATOMIC) |
|
#include <stdatomic.h> |
|
#endif |
|
|
|
// Older MSVC does not support C11 atomics, so we fallback to the Windows APIs. |
|
// When both are available (e.g. clang-cl), we prefer the C11 ones. The Windows |
|
// APIs don't allow some operations to be implemented as efficiently. This can |
|
// be removed once we can rely on |
|
// https://devblogs.microsoft.com/cppblog/c11-atomics-in-visual-studio-2022-version-17-5-preview-2/ |
|
#if !defined(OPENSSL_C11_ATOMIC) && defined(OPENSSL_THREADS) && \ |
|
defined(OPENSSL_WINDOWS) |
|
#define OPENSSL_WINDOWS_ATOMIC |
|
#endif |
|
#endif // !__cplusplus |
|
|
|
#if defined(OPENSSL_WINDOWS_THREADS) || defined(OPENSSL_WINDOWS_ATOMIC) |
|
OPENSSL_MSVC_PRAGMA(warning(push, 3)) |
|
#include <windows.h> |
|
OPENSSL_MSVC_PRAGMA(warning(pop)) |
|
#endif |
|
|
|
#if defined(__cplusplus) |
|
extern "C" { |
|
#endif |
|
|
|
|
|
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \ |
|
defined(OPENSSL_AARCH64) |
|
// OPENSSL_cpuid_setup initializes the platform-specific feature cache. |
|
void OPENSSL_cpuid_setup(void); |
|
#endif |
|
|
|
#if (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \ |
|
!defined(OPENSSL_STATIC_ARMCAP) |
|
// OPENSSL_get_armcap_pointer_for_test returns a pointer to |OPENSSL_armcap_P| |
|
// for unit tests. Any modifications to the value must be made after |
|
// |CRYPTO_library_init| but before any other function call in BoringSSL. |
|
OPENSSL_EXPORT uint32_t *OPENSSL_get_armcap_pointer_for_test(void); |
|
#endif |
|
|
|
|
|
// On non-MSVC 64-bit targets, we expect __uint128_t support. This includes |
|
// clang-cl, which defines both __clang__ and _MSC_VER. |
|
#if (!defined(_MSC_VER) || defined(__clang__)) && defined(OPENSSL_64_BIT) |
|
#define BORINGSSL_HAS_UINT128 |
|
typedef __int128_t int128_t; |
|
typedef __uint128_t uint128_t; |
|
|
|
// __uint128_t division depends on intrinsics in the compiler runtime. Those |
|
// intrinsics are missing in clang-cl (https://crbug.com/787617) and nanolibc. |
|
// These may be bugs in the toolchain definition, but just disable it for now. |
|
#if !defined(_MSC_VER) && !defined(OPENSSL_NANOLIBC) |
|
#define BORINGSSL_CAN_DIVIDE_UINT128 |
|
#endif |
|
#endif |
|
|
|
#define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0])) |
|
|
|
// Have a generic fall-through for different versions of C/C++. |
|
#if defined(__cplusplus) && __cplusplus >= 201703L |
|
#define OPENSSL_FALLTHROUGH [[fallthrough]] |
|
#elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__clang__) |
|
#define OPENSSL_FALLTHROUGH [[clang::fallthrough]] |
|
#elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__GNUC__) && \ |
|
__GNUC__ >= 7 |
|
#define OPENSSL_FALLTHROUGH [[gnu::fallthrough]] |
|
#elif defined(__GNUC__) && __GNUC__ >= 7 // gcc 7 |
|
#define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough)) |
|
#elif defined(__clang__) |
|
#if __has_attribute(fallthrough) && __clang_major__ >= 5 |
|
// Clang 3.5, at least, complains about "error: declaration does not declare |
|
// anything", possibily because we put a semicolon after this macro in |
|
// practice. Thus limit it to >= Clang 5, which does work. |
|
#define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough)) |
|
#else // clang versions that do not support fallthrough. |
|
#define OPENSSL_FALLTHROUGH |
|
#endif |
|
#else // C++11 on gcc 6, and all other cases |
|
#define OPENSSL_FALLTHROUGH |
|
#endif |
|
|
|
// For convenience in testing 64-bit generic code, we allow disabling SSE2 |
|
// intrinsics via |OPENSSL_NO_SSE2_FOR_TESTING|. x86_64 always has SSE2 |
|
// available, so we would otherwise need to test such code on a non-x86_64 |
|
// platform. |
|
#if defined(__SSE2__) && !defined(OPENSSL_NO_SSE2_FOR_TESTING) |
|
#define OPENSSL_SSE2 |
|
#endif |
|
|
|
#if defined(__GNUC__) || defined(__clang__) |
|
#define OPENSSL_ATTR_PURE __attribute__((pure)) |
|
#else |
|
#define OPENSSL_ATTR_PURE |
|
#endif |
|
|
|
#if defined(BORINGSSL_MALLOC_FAILURE_TESTING) |
|
// OPENSSL_reset_malloc_counter_for_testing, when malloc testing is enabled, |
|
// resets the internal malloc counter, to simulate further malloc failures. This |
|
// should be called in between independent tests, at a point where failure from |
|
// a previous test will not impact subsequent ones. |
|
OPENSSL_EXPORT void OPENSSL_reset_malloc_counter_for_testing(void); |
|
#else |
|
OPENSSL_INLINE void OPENSSL_reset_malloc_counter_for_testing(void) {} |
|
#endif |
|
|
|
|
|
// Pointer utility functions. |
|
|
|
// buffers_alias returns one if |a| and |b| alias and zero otherwise. |
|
static inline int buffers_alias(const void *a, size_t a_bytes, |
|
const void *b, size_t b_bytes) { |
|
// Cast |a| and |b| to integers. In C, pointer comparisons between unrelated |
|
// objects are undefined whereas pointer to integer conversions are merely |
|
// implementation-defined. We assume the implementation defined it in a sane |
|
// way. |
|
uintptr_t a_u = (uintptr_t)a; |
|
uintptr_t b_u = (uintptr_t)b; |
|
return a_u + a_bytes > b_u && b_u + b_bytes > a_u; |
|
} |
|
|
|
// align_pointer returns |ptr|, advanced to |alignment|. |alignment| must be a |
|
// power of two, and |ptr| must have at least |alignment - 1| bytes of scratch |
|
// space. |
|
static inline void *align_pointer(void *ptr, size_t alignment) { |
|
// |alignment| must be a power of two. |
|
assert(alignment != 0 && (alignment & (alignment - 1)) == 0); |
|
// Instead of aligning |ptr| as a |uintptr_t| and casting back, compute the |
|
// offset and advance in pointer space. C guarantees that casting from pointer |
|
// to |uintptr_t| and back gives the same pointer, but general |
|
// integer-to-pointer conversions are implementation-defined. GCC does define |
|
// it in the useful way, but this makes fewer assumptions. |
|
uintptr_t offset = (0u - (uintptr_t)ptr) & (alignment - 1); |
|
ptr = (char *)ptr + offset; |
|
assert(((uintptr_t)ptr & (alignment - 1)) == 0); |
|
return ptr; |
|
} |
|
|
|
|
|
// Constant-time utility functions. |
|
// |
|
// The following methods return a bitmask of all ones (0xff...f) for true and 0 |
|
// for false. This is useful for choosing a value based on the result of a |
|
// conditional in constant time. For example, |
|
// |
|
// if (a < b) { |
|
// c = a; |
|
// } else { |
|
// c = b; |
|
// } |
|
// |
|
// can be written as |
|
// |
|
// crypto_word_t lt = constant_time_lt_w(a, b); |
|
// c = constant_time_select_w(lt, a, b); |
|
|
|
// crypto_word_t is the type that most constant-time functions use. Ideally we |
|
// would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit |
|
// pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64 |
|
// bits. Since we want to be able to do constant-time operations on a |
|
// |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native |
|
// word length. |
|
#if defined(OPENSSL_64_BIT) |
|
typedef uint64_t crypto_word_t; |
|
#elif defined(OPENSSL_32_BIT) |
|
typedef uint32_t crypto_word_t; |
|
#else |
|
#error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT" |
|
#endif |
|
|
|
#define CONSTTIME_TRUE_W ~((crypto_word_t)0) |
|
#define CONSTTIME_FALSE_W ((crypto_word_t)0) |
|
#define CONSTTIME_TRUE_8 ((uint8_t)0xff) |
|
#define CONSTTIME_FALSE_8 ((uint8_t)0) |
|
|
|
// value_barrier_w returns |a|, but prevents GCC and Clang from reasoning about |
|
// the returned value. This is used to mitigate compilers undoing constant-time |
|
// code, until we can express our requirements directly in the language. |
|
// |
|
// Note the compiler is aware that |value_barrier_w| has no side effects and |
|
// always has the same output for a given input. This allows it to eliminate |
|
// dead code, move computations across loops, and vectorize. |
|
static inline crypto_word_t value_barrier_w(crypto_word_t a) { |
|
#if defined(__GNUC__) || defined(__clang__) |
|
__asm__("" : "+r"(a) : /* no inputs */); |
|
#endif |
|
return a; |
|
} |
|
|
|
// value_barrier_u32 behaves like |value_barrier_w| but takes a |uint32_t|. |
|
static inline uint32_t value_barrier_u32(uint32_t a) { |
|
#if defined(__GNUC__) || defined(__clang__) |
|
__asm__("" : "+r"(a) : /* no inputs */); |
|
#endif |
|
return a; |
|
} |
|
|
|
// value_barrier_u64 behaves like |value_barrier_w| but takes a |uint64_t|. |
|
static inline uint64_t value_barrier_u64(uint64_t a) { |
|
#if defined(__GNUC__) || defined(__clang__) |
|
__asm__("" : "+r"(a) : /* no inputs */); |
|
#endif |
|
return a; |
|
} |
|
|
|
// |value_barrier_u8| could be defined as above, but compilers other than |
|
// clang seem to still materialize 0x00..00MM instead of reusing 0x??..??MM. |
|
|
|
// constant_time_msb_w returns the given value with the MSB copied to all the |
|
// other bits. |
|
static inline crypto_word_t constant_time_msb_w(crypto_word_t a) { |
|
return 0u - (a >> (sizeof(a) * 8 - 1)); |
|
} |
|
|
|
// constant_time_lt_w returns 0xff..f if a < b and 0 otherwise. |
|
static inline crypto_word_t constant_time_lt_w(crypto_word_t a, |
|
crypto_word_t b) { |
|
// Consider the two cases of the problem: |
|
// msb(a) == msb(b): a < b iff the MSB of a - b is set. |
|
// msb(a) != msb(b): a < b iff the MSB of b is set. |
|
// |
|
// If msb(a) == msb(b) then the following evaluates as: |
|
// msb(a^((a^b)|((a-b)^a))) == |
|
// msb(a^((a-b) ^ a)) == (because msb(a^b) == 0) |
|
// msb(a^a^(a-b)) == (rearranging) |
|
// msb(a-b) (because ∀x. x^x == 0) |
|
// |
|
// Else, if msb(a) != msb(b) then the following evaluates as: |
|
// msb(a^((a^b)|((a-b)^a))) == |
|
// msb(a^(𝟙 | ((a-b)^a))) == (because msb(a^b) == 1 and 𝟙 |
|
// represents a value s.t. msb(𝟙) = 1) |
|
// msb(a^𝟙) == (because ORing with 1 results in 1) |
|
// msb(b) |
|
// |
|
// |
|
// Here is an SMT-LIB verification of this formula: |
|
// |
|
// (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32) |
|
// (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a))) |
|
// ) |
|
// |
|
// (declare-fun a () (_ BitVec 32)) |
|
// (declare-fun b () (_ BitVec 32)) |
|
// |
|
// (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b)))) |
|
// (check-sat) |
|
// (get-model) |
|
return constant_time_msb_w(a^((a^b)|((a-b)^a))); |
|
} |
|
|
|
// constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit |
|
// mask. |
|
static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) { |
|
return (uint8_t)(constant_time_lt_w(a, b)); |
|
} |
|
|
|
// constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise. |
|
static inline crypto_word_t constant_time_ge_w(crypto_word_t a, |
|
crypto_word_t b) { |
|
return ~constant_time_lt_w(a, b); |
|
} |
|
|
|
// constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit |
|
// mask. |
|
static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) { |
|
return (uint8_t)(constant_time_ge_w(a, b)); |
|
} |
|
|
|
// constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise. |
|
static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) { |
|
// Here is an SMT-LIB verification of this formula: |
|
// |
|
// (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32) |
|
// (bvand (bvnot a) (bvsub a #x00000001)) |
|
// ) |
|
// |
|
// (declare-fun a () (_ BitVec 32)) |
|
// |
|
// (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000)))) |
|
// (check-sat) |
|
// (get-model) |
|
return constant_time_msb_w(~a & (a - 1)); |
|
} |
|
|
|
// constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an |
|
// 8-bit mask. |
|
static inline uint8_t constant_time_is_zero_8(crypto_word_t a) { |
|
return (uint8_t)(constant_time_is_zero_w(a)); |
|
} |
|
|
|
// constant_time_eq_w returns 0xff..f if a == b and 0 otherwise. |
|
static inline crypto_word_t constant_time_eq_w(crypto_word_t a, |
|
crypto_word_t b) { |
|
return constant_time_is_zero_w(a ^ b); |
|
} |
|
|
|
// constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit |
|
// mask. |
|
static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) { |
|
return (uint8_t)(constant_time_eq_w(a, b)); |
|
} |
|
|
|
// constant_time_eq_int acts like |constant_time_eq_w| but works on int |
|
// values. |
|
static inline crypto_word_t constant_time_eq_int(int a, int b) { |
|
return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b)); |
|
} |
|
|
|
// constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit |
|
// mask. |
|
static inline uint8_t constant_time_eq_int_8(int a, int b) { |
|
return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b)); |
|
} |
|
|
|
// constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all |
|
// 1s or all 0s (as returned by the methods above), the select methods return |
|
// either |a| (if |mask| is nonzero) or |b| (if |mask| is zero). |
|
static inline crypto_word_t constant_time_select_w(crypto_word_t mask, |
|
crypto_word_t a, |
|
crypto_word_t b) { |
|
// Clang recognizes this pattern as a select. While it usually transforms it |
|
// to a cmov, it sometimes further transforms it into a branch, which we do |
|
// not want. |
|
// |
|
// Hiding the value of the mask from the compiler evades this transformation. |
|
mask = value_barrier_w(mask); |
|
return (mask & a) | (~mask & b); |
|
} |
|
|
|
// constant_time_select_8 acts like |constant_time_select| but operates on |
|
// 8-bit values. |
|
static inline uint8_t constant_time_select_8(crypto_word_t mask, uint8_t a, |
|
uint8_t b) { |
|
// |mask| is a word instead of |uint8_t| to avoid materializing 0x000..0MM |
|
// Making both |mask| and its value barrier |uint8_t| would allow the compiler |
|
// to materialize 0x????..?MM instead, but only clang is that clever. |
|
// However, vectorization of bitwise operations seems to work better on |
|
// |uint8_t| than a mix of |uint64_t| and |uint8_t|, so |m| is cast to |
|
// |uint8_t| after the value barrier but before the bitwise operations. |
|
uint8_t m = value_barrier_w(mask); |
|
return (m & a) | (~m & b); |
|
} |
|
|
|
// constant_time_select_int acts like |constant_time_select| but operates on |
|
// ints. |
|
static inline int constant_time_select_int(crypto_word_t mask, int a, int b) { |
|
return (int)(constant_time_select_w(mask, (crypto_word_t)(a), |
|
(crypto_word_t)(b))); |
|
} |
|
|
|
// constant_time_conditional_memcpy copies |n| bytes from |src| to |dst| if |
|
// |mask| is 0xff..ff and does nothing if |mask| is 0. The |n|-byte memory |
|
// ranges at |dst| and |src| must not overlap, as when calling |memcpy|. |
|
static inline void constant_time_conditional_memcpy(void *dst, const void *src, |
|
const size_t n, |
|
const crypto_word_t mask) { |
|
assert(!buffers_alias(dst, n, src, n)); |
|
uint8_t *out = (uint8_t *)dst; |
|
const uint8_t *in = (const uint8_t *)src; |
|
for (size_t i = 0; i < n; i++) { |
|
out[i] = constant_time_select_8(mask, in[i], out[i]); |
|
} |
|
} |
|
|
|
// constant_time_conditional_memxor xors |n| bytes from |src| to |dst| if |
|
// |mask| is 0xff..ff and does nothing if |mask| is 0. The |n|-byte memory |
|
// ranges at |dst| and |src| must not overlap, as when calling |memcpy|. |
|
static inline void constant_time_conditional_memxor(void *dst, const void *src, |
|
const size_t n, |
|
const crypto_word_t mask) { |
|
assert(!buffers_alias(dst, n, src, n)); |
|
uint8_t *out = (uint8_t *)dst; |
|
const uint8_t *in = (const uint8_t *)src; |
|
for (size_t i = 0; i < n; i++) { |
|
out[i] ^= value_barrier_w(mask) & in[i]; |
|
} |
|
} |
|
|
|
#if defined(BORINGSSL_CONSTANT_TIME_VALIDATION) |
|
|
|
// CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region |
|
// of memory as secret. Secret data is tracked as it flows to registers and |
|
// other parts of a memory. If secret data is used as a condition for a branch, |
|
// or as a memory index, it will trigger warnings in valgrind. |
|
#define CONSTTIME_SECRET(ptr, len) VALGRIND_MAKE_MEM_UNDEFINED(ptr, len) |
|
|
|
// CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that |
|
// region of memory as public. Public data is not subject to constant-time |
|
// rules. |
|
#define CONSTTIME_DECLASSIFY(ptr, len) VALGRIND_MAKE_MEM_DEFINED(ptr, len) |
|
|
|
#else |
|
|
|
#define CONSTTIME_SECRET(ptr, len) |
|
#define CONSTTIME_DECLASSIFY(ptr, len) |
|
|
|
#endif // BORINGSSL_CONSTANT_TIME_VALIDATION |
|
|
|
static inline crypto_word_t constant_time_declassify_w(crypto_word_t v) { |
|
// Return |v| through a value barrier to be safe. Valgrind-based constant-time |
|
// validation is partly to check the compiler has not undone any constant-time |
|
// work. Any place |BORINGSSL_CONSTANT_TIME_VALIDATION| influences |
|
// optimizations, this validation is inaccurate. |
|
// |
|
// However, by sending pointers through valgrind, we likely inhibit escape |
|
// analysis. On local variables, particularly booleans, we likely |
|
// significantly impact optimizations. |
|
// |
|
// Thus, to be safe, stick a value barrier, in hopes of comparably inhibiting |
|
// compiler analysis. |
|
CONSTTIME_DECLASSIFY(&v, sizeof(v)); |
|
return value_barrier_w(v); |
|
} |
|
|
|
static inline int constant_time_declassify_int(int v) { |
|
static_assert(sizeof(uint32_t) == sizeof(int), |
|
"int is not the same size as uint32_t"); |
|
// See comment above. |
|
CONSTTIME_DECLASSIFY(&v, sizeof(v)); |
|
return value_barrier_u32(v); |
|
} |
|
|
|
|
|
// Thread-safe initialisation. |
|
|
|
#if !defined(OPENSSL_THREADS) |
|
typedef uint32_t CRYPTO_once_t; |
|
#define CRYPTO_ONCE_INIT 0 |
|
#elif defined(OPENSSL_WINDOWS_THREADS) |
|
typedef INIT_ONCE CRYPTO_once_t; |
|
#define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT |
|
#elif defined(OPENSSL_PTHREADS) |
|
typedef pthread_once_t CRYPTO_once_t; |
|
#define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT |
|
#else |
|
#error "Unknown threading library" |
|
#endif |
|
|
|
// CRYPTO_once calls |init| exactly once per process. This is thread-safe: if |
|
// concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument |
|
// then they will block until |init| completes, but |init| will have only been |
|
// called once. |
|
// |
|
// The |once| argument must be a |CRYPTO_once_t| that has been initialised with |
|
// the value |CRYPTO_ONCE_INIT|. |
|
OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void)); |
|
|
|
|
|
// Atomics. |
|
// |
|
// The following functions provide an API analogous to <stdatomic.h> from C11 |
|
// and abstract between a few variations on atomics we need to support. |
|
|
|
#if defined(__cplusplus) |
|
|
|
// In C++, we can't easily detect whether C will use |OPENSSL_C11_ATOMIC| or |
|
// |OPENSSL_WINDOWS_ATOMIC|. Instead, we define a layout-compatible type without |
|
// the corresponding functions. When we can rely on C11 atomics in MSVC, that |
|
// will no longer be a concern. |
|
typedef uint32_t CRYPTO_atomic_u32; |
|
|
|
#elif defined(OPENSSL_C11_ATOMIC) |
|
|
|
typedef _Atomic uint32_t CRYPTO_atomic_u32; |
|
|
|
// This should be const, but the |OPENSSL_WINDOWS_ATOMIC| implementation is not |
|
// const due to Windows limitations. When we can rely on C11 atomics, make this |
|
// const-correct. |
|
OPENSSL_INLINE uint32_t CRYPTO_atomic_load_u32(CRYPTO_atomic_u32 *val) { |
|
return atomic_load(val); |
|
} |
|
|
|
OPENSSL_INLINE int CRYPTO_atomic_compare_exchange_weak_u32( |
|
CRYPTO_atomic_u32 *val, uint32_t *expected, uint32_t desired) { |
|
return atomic_compare_exchange_weak(val, expected, desired); |
|
} |
|
|
|
OPENSSL_INLINE void CRYPTO_atomic_store_u32(CRYPTO_atomic_u32 *val, |
|
uint32_t desired) { |
|
atomic_store(val, desired); |
|
} |
|
|
|
#elif defined(OPENSSL_WINDOWS_ATOMIC) |
|
|
|
typedef LONG CRYPTO_atomic_u32; |
|
|
|
OPENSSL_INLINE uint32_t CRYPTO_atomic_load_u32(volatile CRYPTO_atomic_u32 *val) { |
|
// This is not ideal because it still writes to a cacheline. MSVC is not able |
|
// to optimize this to a true atomic read, and Windows does not provide an |
|
// InterlockedLoad function. |
|
// |
|
// The Windows documentation [1] does say "Simple reads and writes to |
|
// properly-aligned 32-bit variables are atomic operations", but this is not |
|
// phrased in terms of the C11 and C++11 memory models, and indeed a read or |
|
// write seems to produce slightly different code on MSVC than a sequentially |
|
// consistent std::atomic::load in C++. Moreover, it is unclear if non-MSVC |
|
// compilers on Windows provide the same guarantees. Thus we avoid relying on |
|
// this and instead still use an interlocked function. This is still |
|
// preferable a global mutex, and eventually this code will be replaced by |
|
// [2]. Additionally, on clang-cl, we'll use the |OPENSSL_C11_ATOMIC| path. |
|
// |
|
// [1] https://learn.microsoft.com/en-us/windows/win32/sync/interlocked-variable-access |
|
// [2] https://devblogs.microsoft.com/cppblog/c11-atomics-in-visual-studio-2022-version-17-5-preview-2/ |
|
return (uint32_t)InterlockedCompareExchange(val, 0, 0); |
|
} |
|
|
|
OPENSSL_INLINE int CRYPTO_atomic_compare_exchange_weak_u32( |
|
volatile CRYPTO_atomic_u32 *val, uint32_t *expected32, uint32_t desired) { |
|
LONG expected = (LONG)*expected32; |
|
LONG actual = InterlockedCompareExchange(val, (LONG)desired, expected); |
|
*expected32 = (uint32_t)actual; |
|
return actual == expected; |
|
} |
|
|
|
OPENSSL_INLINE void CRYPTO_atomic_store_u32(volatile CRYPTO_atomic_u32 *val, |
|
uint32_t desired) { |
|
InterlockedExchange(val, (LONG)desired); |
|
} |
|
|
|
#elif !defined(OPENSSL_THREADS) |
|
|
|
typedef uint32_t CRYPTO_atomic_u32; |
|
|
|
OPENSSL_INLINE uint32_t CRYPTO_atomic_load_u32(CRYPTO_atomic_u32 *val) { |
|
return *val; |
|
} |
|
|
|
OPENSSL_INLINE int CRYPTO_atomic_compare_exchange_weak_u32( |
|
CRYPTO_atomic_u32 *val, uint32_t *expected, uint32_t desired) { |
|
if (*val != *expected) { |
|
*expected = *val; |
|
return 0; |
|
} |
|
*val = desired; |
|
return 1; |
|
} |
|
|
|
OPENSSL_INLINE void CRYPTO_atomic_store_u32(CRYPTO_atomic_u32 *val, |
|
uint32_t desired) { |
|
*val = desired; |
|
} |
|
|
|
#else |
|
|
|
// Require some atomics implementation. Contact BoringSSL maintainers if you |
|
// have a platform with fails this check. |
|
#error "Thread-compatible configurations require atomics" |
|
|
|
#endif |
|
|
|
// See the comment in the |__cplusplus| section above. |
|
static_assert(sizeof(CRYPTO_atomic_u32) == sizeof(uint32_t), |
|
"CRYPTO_atomic_u32 does not match uint32_t size"); |
|
static_assert(alignof(CRYPTO_atomic_u32) == alignof(uint32_t), |
|
"CRYPTO_atomic_u32 does not match uint32_t alignment"); |
|
|
|
|
|
// Reference counting. |
|
|
|
// CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates. |
|
#define CRYPTO_REFCOUNT_MAX 0xffffffff |
|
|
|
// CRYPTO_refcount_inc atomically increments the value at |*count| unless the |
|
// value would overflow. It's safe for multiple threads to concurrently call |
|
// this or |CRYPTO_refcount_dec_and_test_zero| on the same |
|
// |CRYPTO_refcount_t|. |
|
OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count); |
|
|
|
// CRYPTO_refcount_dec_and_test_zero tests the value at |*count|: |
|
// if it's zero, it crashes the address space. |
|
// if it's the maximum value, it returns zero. |
|
// otherwise, it atomically decrements it and returns one iff the resulting |
|
// value is zero. |
|
// |
|
// It's safe for multiple threads to concurrently call this or |
|
// |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|. |
|
OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count); |
|
|
|
|
|
// Locks. |
|
|
|
#if !defined(OPENSSL_THREADS) |
|
typedef struct crypto_mutex_st { |
|
char padding; // Empty structs have different sizes in C and C++. |
|
} CRYPTO_MUTEX; |
|
#define CRYPTO_MUTEX_INIT { 0 } |
|
#elif defined(OPENSSL_WINDOWS_THREADS) |
|
typedef SRWLOCK CRYPTO_MUTEX; |
|
#define CRYPTO_MUTEX_INIT SRWLOCK_INIT |
|
#elif defined(OPENSSL_PTHREADS) |
|
typedef pthread_rwlock_t CRYPTO_MUTEX; |
|
#define CRYPTO_MUTEX_INIT PTHREAD_RWLOCK_INITIALIZER |
|
#else |
|
#error "Unknown threading library" |
|
#endif |
|
|
|
// CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a |
|
// |CRYPTO_MUTEX_INIT|. |
|
OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock); |
|
|
|
// CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a |
|
// read lock, but none may have a write lock. |
|
OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock); |
|
|
|
// CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type |
|
// of lock on it. |
|
OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock); |
|
|
|
// CRYPTO_MUTEX_unlock_read unlocks |lock| for reading. |
|
OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock); |
|
|
|
// CRYPTO_MUTEX_unlock_write unlocks |lock| for writing. |
|
OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock); |
|
|
|
// CRYPTO_MUTEX_cleanup releases all resources held by |lock|. |
|
OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock); |
|
|
|
#if defined(__cplusplus) |
|
extern "C++" { |
|
|
|
BSSL_NAMESPACE_BEGIN |
|
|
|
namespace internal { |
|
|
|
// MutexLockBase is a RAII helper for CRYPTO_MUTEX locking. |
|
template <void (*LockFunc)(CRYPTO_MUTEX *), void (*ReleaseFunc)(CRYPTO_MUTEX *)> |
|
class MutexLockBase { |
|
public: |
|
explicit MutexLockBase(CRYPTO_MUTEX *mu) : mu_(mu) { |
|
assert(mu_ != nullptr); |
|
LockFunc(mu_); |
|
} |
|
~MutexLockBase() { ReleaseFunc(mu_); } |
|
MutexLockBase(const MutexLockBase<LockFunc, ReleaseFunc> &) = delete; |
|
MutexLockBase &operator=(const MutexLockBase<LockFunc, ReleaseFunc> &) = |
|
delete; |
|
|
|
private: |
|
CRYPTO_MUTEX *const mu_; |
|
}; |
|
|
|
} // namespace internal |
|
|
|
using MutexWriteLock = |
|
internal::MutexLockBase<CRYPTO_MUTEX_lock_write, CRYPTO_MUTEX_unlock_write>; |
|
using MutexReadLock = |
|
internal::MutexLockBase<CRYPTO_MUTEX_lock_read, CRYPTO_MUTEX_unlock_read>; |
|
|
|
BSSL_NAMESPACE_END |
|
|
|
} // extern "C++" |
|
#endif // defined(__cplusplus) |
|
|
|
|
|
// Thread local storage. |
|
|
|
// thread_local_data_t enumerates the types of thread-local data that can be |
|
// stored. |
|
typedef enum { |
|
OPENSSL_THREAD_LOCAL_ERR = 0, |
|
OPENSSL_THREAD_LOCAL_RAND, |
|
OPENSSL_THREAD_LOCAL_FIPS_COUNTERS, |
|
OPENSSL_THREAD_LOCAL_FIPS_SERVICE_INDICATOR_STATE, |
|
OPENSSL_THREAD_LOCAL_TEST, |
|
NUM_OPENSSL_THREAD_LOCALS, |
|
} thread_local_data_t; |
|
|
|
// thread_local_destructor_t is the type of a destructor function that will be |
|
// called when a thread exits and its thread-local storage needs to be freed. |
|
typedef void (*thread_local_destructor_t)(void *); |
|
|
|
// CRYPTO_get_thread_local gets the pointer value that is stored for the |
|
// current thread for the given index, or NULL if none has been set. |
|
OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value); |
|
|
|
// CRYPTO_set_thread_local sets a pointer value for the current thread at the |
|
// given index. This function should only be called once per thread for a given |
|
// |index|: rather than update the pointer value itself, update the data that |
|
// is pointed to. |
|
// |
|
// The destructor function will be called when a thread exits to free this |
|
// thread-local data. All calls to |CRYPTO_set_thread_local| with the same |
|
// |index| should have the same |destructor| argument. The destructor may be |
|
// called with a NULL argument if a thread that never set a thread-local |
|
// pointer for |index|, exits. The destructor may be called concurrently with |
|
// different arguments. |
|
// |
|
// This function returns one on success or zero on error. If it returns zero |
|
// then |destructor| has been called with |value| already. |
|
OPENSSL_EXPORT int CRYPTO_set_thread_local( |
|
thread_local_data_t index, void *value, |
|
thread_local_destructor_t destructor); |
|
|
|
|
|
// ex_data |
|
|
|
typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS; |
|
|
|
// CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which |
|
// supports ex_data. It should defined as a static global within the module |
|
// which defines that type. |
|
typedef struct { |
|
CRYPTO_MUTEX lock; |
|
// funcs is a linked list of |CRYPTO_EX_DATA_FUNCS| structures. It may be |
|
// traversed without serialization only up to |num_funcs|. last points to the |
|
// final entry of |funcs|, or NULL if empty. |
|
CRYPTO_EX_DATA_FUNCS *funcs, *last; |
|
// num_funcs is the number of entries in |funcs|. |
|
CRYPTO_atomic_u32 num_funcs; |
|
// num_reserved is one if the ex_data index zero is reserved for legacy |
|
// |TYPE_get_app_data| functions. |
|
uint8_t num_reserved; |
|
} CRYPTO_EX_DATA_CLASS; |
|
|
|
#define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_MUTEX_INIT, NULL, NULL, 0, 0} |
|
#define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \ |
|
{CRYPTO_MUTEX_INIT, NULL, NULL, 0, 1} |
|
|
|
// CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes |
|
// it to |*out_index|. Each class of object should provide a wrapper function |
|
// that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and |
|
// zero otherwise. |
|
OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class, |
|
int *out_index, long argl, |
|
void *argp, |
|
CRYPTO_EX_free *free_func); |
|
|
|
// CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class |
|
// of object should provide a wrapper function. |
|
OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val); |
|
|
|
// CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL |
|
// if no such index exists. Each class of object should provide a wrapper |
|
// function. |
|
OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index); |
|
|
|
// CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|. |
|
OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad); |
|
|
|
// CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an |
|
// object of the given class. |
|
OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class, |
|
void *obj, CRYPTO_EX_DATA *ad); |
|
|
|
|
|
// Endianness conversions. |
|
|
|
#if defined(__GNUC__) && __GNUC__ >= 2 |
|
static inline uint16_t CRYPTO_bswap2(uint16_t x) { |
|
return __builtin_bswap16(x); |
|
} |
|
|
|
static inline uint32_t CRYPTO_bswap4(uint32_t x) { |
|
return __builtin_bswap32(x); |
|
} |
|
|
|
static inline uint64_t CRYPTO_bswap8(uint64_t x) { |
|
return __builtin_bswap64(x); |
|
} |
|
#elif defined(_MSC_VER) |
|
OPENSSL_MSVC_PRAGMA(warning(push, 3)) |
|
#include <stdlib.h> |
|
OPENSSL_MSVC_PRAGMA(warning(pop)) |
|
#pragma intrinsic(_byteswap_uint64, _byteswap_ulong, _byteswap_ushort) |
|
static inline uint16_t CRYPTO_bswap2(uint16_t x) { |
|
return _byteswap_ushort(x); |
|
} |
|
|
|
static inline uint32_t CRYPTO_bswap4(uint32_t x) { |
|
return _byteswap_ulong(x); |
|
} |
|
|
|
static inline uint64_t CRYPTO_bswap8(uint64_t x) { |
|
return _byteswap_uint64(x); |
|
} |
|
#else |
|
static inline uint16_t CRYPTO_bswap2(uint16_t x) { |
|
return (x >> 8) | (x << 8); |
|
} |
|
|
|
static inline uint32_t CRYPTO_bswap4(uint32_t x) { |
|
x = (x >> 16) | (x << 16); |
|
x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8); |
|
return x; |
|
} |
|
|
|
static inline uint64_t CRYPTO_bswap8(uint64_t x) { |
|
return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32); |
|
} |
|
#endif |
|
|
|
|
|
// Language bug workarounds. |
|
// |
|
// Most C standard library functions are undefined if passed NULL, even when the |
|
// corresponding length is zero. This gives them (and, in turn, all functions |
|
// which call them) surprising behavior on empty arrays. Some compilers will |
|
// miscompile code due to this rule. See also |
|
// https://www.imperialviolet.org/2016/06/26/nonnull.html |
|
// |
|
// These wrapper functions behave the same as the corresponding C standard |
|
// functions, but behave as expected when passed NULL if the length is zero. |
|
// |
|
// Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|. |
|
|
|
// C++ defines |memchr| as a const-correct overload. |
|
#if defined(__cplusplus) |
|
extern "C++" { |
|
|
|
static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) { |
|
if (n == 0) { |
|
return NULL; |
|
} |
|
|
|
return memchr(s, c, n); |
|
} |
|
|
|
static inline void *OPENSSL_memchr(void *s, int c, size_t n) { |
|
if (n == 0) { |
|
return NULL; |
|
} |
|
|
|
return memchr(s, c, n); |
|
} |
|
|
|
} // extern "C++" |
|
#else // __cplusplus |
|
|
|
static inline void *OPENSSL_memchr(const void *s, int c, size_t n) { |
|
if (n == 0) { |
|
return NULL; |
|
} |
|
|
|
return memchr(s, c, n); |
|
} |
|
|
|
#endif // __cplusplus |
|
|
|
static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) { |
|
if (n == 0) { |
|
return 0; |
|
} |
|
|
|
return memcmp(s1, s2, n); |
|
} |
|
|
|
static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) { |
|
if (n == 0) { |
|
return dst; |
|
} |
|
|
|
return memcpy(dst, src, n); |
|
} |
|
|
|
static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) { |
|
if (n == 0) { |
|
return dst; |
|
} |
|
|
|
return memmove(dst, src, n); |
|
} |
|
|
|
static inline void *OPENSSL_memset(void *dst, int c, size_t n) { |
|
if (n == 0) { |
|
return dst; |
|
} |
|
|
|
return memset(dst, c, n); |
|
} |
|
|
|
|
|
// Loads and stores. |
|
// |
|
// The following functions load and store sized integers with the specified |
|
// endianness. They use |memcpy|, and so avoid alignment or strict aliasing |
|
// requirements on the input and output pointers. |
|
|
|
static inline uint32_t CRYPTO_load_u32_le(const void *in) { |
|
uint32_t v; |
|
OPENSSL_memcpy(&v, in, sizeof(v)); |
|
return v; |
|
} |
|
|
|
static inline void CRYPTO_store_u32_le(void *out, uint32_t v) { |
|
OPENSSL_memcpy(out, &v, sizeof(v)); |
|
} |
|
|
|
static inline uint32_t CRYPTO_load_u32_be(const void *in) { |
|
uint32_t v; |
|
OPENSSL_memcpy(&v, in, sizeof(v)); |
|
return CRYPTO_bswap4(v); |
|
} |
|
|
|
static inline void CRYPTO_store_u32_be(void *out, uint32_t v) { |
|
v = CRYPTO_bswap4(v); |
|
OPENSSL_memcpy(out, &v, sizeof(v)); |
|
} |
|
|
|
static inline uint64_t CRYPTO_load_u64_le(const void *in) { |
|
uint64_t v; |
|
OPENSSL_memcpy(&v, in, sizeof(v)); |
|
return v; |
|
} |
|
|
|
static inline void CRYPTO_store_u64_le(void *out, uint64_t v) { |
|
OPENSSL_memcpy(out, &v, sizeof(v)); |
|
} |
|
|
|
static inline uint64_t CRYPTO_load_u64_be(const void *ptr) { |
|
uint64_t ret; |
|
OPENSSL_memcpy(&ret, ptr, sizeof(ret)); |
|
return CRYPTO_bswap8(ret); |
|
} |
|
|
|
static inline void CRYPTO_store_u64_be(void *out, uint64_t v) { |
|
v = CRYPTO_bswap8(v); |
|
OPENSSL_memcpy(out, &v, sizeof(v)); |
|
} |
|
|
|
static inline crypto_word_t CRYPTO_load_word_le(const void *in) { |
|
crypto_word_t v; |
|
OPENSSL_memcpy(&v, in, sizeof(v)); |
|
return v; |
|
} |
|
|
|
static inline void CRYPTO_store_word_le(void *out, crypto_word_t v) { |
|
OPENSSL_memcpy(out, &v, sizeof(v)); |
|
} |
|
|
|
static inline crypto_word_t CRYPTO_load_word_be(const void *in) { |
|
crypto_word_t v; |
|
OPENSSL_memcpy(&v, in, sizeof(v)); |
|
#if defined(OPENSSL_64_BIT) |
|
static_assert(sizeof(v) == 8, "crypto_word_t has unexpected size"); |
|
return CRYPTO_bswap8(v); |
|
#else |
|
static_assert(sizeof(v) == 4, "crypto_word_t has unexpected size"); |
|
return CRYPTO_bswap4(v); |
|
#endif |
|
} |
|
|
|
|
|
// Bit rotation functions. |
|
// |
|
// Note these functions use |(-shift) & 31|, etc., because shifting by the bit |
|
// width is undefined. Both Clang and GCC recognize this pattern as a rotation, |
|
// but MSVC does not. Instead, we call MSVC's built-in functions. |
|
|
|
static inline uint32_t CRYPTO_rotl_u32(uint32_t value, int shift) { |
|
#if defined(_MSC_VER) |
|
return _rotl(value, shift); |
|
#else |
|
return (value << shift) | (value >> ((-shift) & 31)); |
|
#endif |
|
} |
|
|
|
static inline uint32_t CRYPTO_rotr_u32(uint32_t value, int shift) { |
|
#if defined(_MSC_VER) |
|
return _rotr(value, shift); |
|
#else |
|
return (value >> shift) | (value << ((-shift) & 31)); |
|
#endif |
|
} |
|
|
|
static inline uint64_t CRYPTO_rotl_u64(uint64_t value, int shift) { |
|
#if defined(_MSC_VER) |
|
return _rotl64(value, shift); |
|
#else |
|
return (value << shift) | (value >> ((-shift) & 63)); |
|
#endif |
|
} |
|
|
|
static inline uint64_t CRYPTO_rotr_u64(uint64_t value, int shift) { |
|
#if defined(_MSC_VER) |
|
return _rotr64(value, shift); |
|
#else |
|
return (value >> shift) | (value << ((-shift) & 63)); |
|
#endif |
|
} |
|
|
|
|
|
// FIPS functions. |
|
|
|
#if defined(BORINGSSL_FIPS) |
|
|
|
// BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test |
|
// fails. It prevents any further cryptographic operations by the current |
|
// process. |
|
void BORINGSSL_FIPS_abort(void) __attribute__((noreturn)); |
|
|
|
// boringssl_self_test_startup runs all startup self tests and returns one on |
|
// success or zero on error. Startup self tests do not include lazy tests. |
|
// Call |BORINGSSL_self_test| to run every self test. |
|
int boringssl_self_test_startup(void); |
|
|
|
// boringssl_ensure_rsa_self_test checks whether the RSA self-test has been run |
|
// in this address space. If not, it runs it and crashes the address space if |
|
// unsuccessful. |
|
void boringssl_ensure_rsa_self_test(void); |
|
|
|
// boringssl_ensure_ecc_self_test checks whether the ECDSA and ECDH self-test |
|
// has been run in this address space. If not, it runs it and crashes the |
|
// address space if unsuccessful. |
|
void boringssl_ensure_ecc_self_test(void); |
|
|
|
// boringssl_ensure_ffdh_self_test checks whether the FFDH self-test has been |
|
// run in this address space. If not, it runs it and crashes the address space |
|
// if unsuccessful. |
|
void boringssl_ensure_ffdh_self_test(void); |
|
|
|
#else |
|
|
|
// Outside of FIPS mode, the lazy tests are no-ops. |
|
|
|
OPENSSL_INLINE void boringssl_ensure_rsa_self_test(void) {} |
|
OPENSSL_INLINE void boringssl_ensure_ecc_self_test(void) {} |
|
OPENSSL_INLINE void boringssl_ensure_ffdh_self_test(void) {} |
|
|
|
#endif // FIPS |
|
|
|
// boringssl_self_test_sha256 performs a SHA-256 KAT. |
|
int boringssl_self_test_sha256(void); |
|
|
|
// boringssl_self_test_sha512 performs a SHA-512 KAT. |
|
int boringssl_self_test_sha512(void); |
|
|
|
// boringssl_self_test_hmac_sha256 performs an HMAC-SHA-256 KAT. |
|
int boringssl_self_test_hmac_sha256(void); |
|
|
|
#if defined(BORINGSSL_FIPS_COUNTERS) |
|
void boringssl_fips_inc_counter(enum fips_counter_t counter); |
|
#else |
|
OPENSSL_INLINE void boringssl_fips_inc_counter(enum fips_counter_t counter) {} |
|
#endif |
|
|
|
#if defined(BORINGSSL_FIPS_BREAK_TESTS) |
|
OPENSSL_INLINE int boringssl_fips_break_test(const char *test) { |
|
const char *const value = getenv("BORINGSSL_FIPS_BREAK_TEST"); |
|
return value != NULL && strcmp(value, test) == 0; |
|
} |
|
#else |
|
OPENSSL_INLINE int boringssl_fips_break_test(const char *test) { |
|
return 0; |
|
} |
|
#endif // BORINGSSL_FIPS_BREAK_TESTS |
|
|
|
|
|
// Runtime CPU feature support |
|
|
|
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
|
// OPENSSL_ia32cap_P contains the Intel CPUID bits when running on an x86 or |
|
// x86-64 system. |
|
// |
|
// Index 0: |
|
// EDX for CPUID where EAX = 1 |
|
// Bit 20 is always zero |
|
// Bit 28 is adjusted to reflect whether the data cache is shared between |
|
// multiple logical cores |
|
// Bit 30 is used to indicate an Intel CPU |
|
// Index 1: |
|
// ECX for CPUID where EAX = 1 |
|
// Bit 11 is used to indicate AMD XOP support, not SDBG |
|
// Index 2: |
|
// EBX for CPUID where EAX = 7 |
|
// Index 3: |
|
// ECX for CPUID where EAX = 7 |
|
// |
|
// Note: the CPUID bits are pre-adjusted for the OSXSAVE bit and the YMM and XMM |
|
// bits in XCR0, so it is not necessary to check those. |
|
// |
|
// From C, this symbol should only be accessed with |OPENSSL_get_ia32cap|. |
|
extern uint32_t OPENSSL_ia32cap_P[4]; |
|
|
|
// OPENSSL_get_ia32cap initializes the library if needed and returns the |idx|th |
|
// entry of |OPENSSL_ia32cap_P|. It is marked as a pure function so duplicate |
|
// calls can be merged by the compiler, at least when indices match. |
|
OPENSSL_ATTR_PURE uint32_t OPENSSL_get_ia32cap(int idx); |
|
|
|
// See Intel manual, volume 2A, table 3-11. |
|
|
|
OPENSSL_INLINE int CRYPTO_is_FXSR_capable(void) { |
|
#if defined(__FXSR__) |
|
return 1; |
|
#else |
|
return (OPENSSL_get_ia32cap(0) & (1u << 24)) != 0; |
|
#endif |
|
} |
|
|
|
OPENSSL_INLINE int CRYPTO_is_intel_cpu(void) { |
|
// The reserved bit 30 is used to indicate an Intel CPU. |
|
return (OPENSSL_get_ia32cap(0) & (1u << 30)) != 0; |
|
} |
|
|
|
// See Intel manual, volume 2A, table 3-10. |
|
|
|
OPENSSL_INLINE int CRYPTO_is_PCLMUL_capable(void) { |
|
#if defined(__PCLMUL__) |
|
return 1; |
|
#else |
|
return (OPENSSL_get_ia32cap(1) & (1u << 1)) != 0; |
|
#endif |
|
} |
|
|
|
OPENSSL_INLINE int CRYPTO_is_SSSE3_capable(void) { |
|
#if defined(__SSSE3__) |
|
return 1; |
|
#else |
|
return (OPENSSL_get_ia32cap(1) & (1u << 9)) != 0; |
|
#endif |
|
} |
|
|
|
OPENSSL_INLINE int CRYPTO_is_SSE4_1_capable(void) { |
|
#if defined(__SSE4_1__) |
|
return 1; |
|
#else |
|
return (OPENSSL_get_ia32cap(1) & (1u << 19)) != 0; |
|
#endif |
|
} |
|
|
|
OPENSSL_INLINE int CRYPTO_is_MOVBE_capable(void) { |
|
#if defined(__MOVBE__) |
|
return 1; |
|
#else |
|
return (OPENSSL_get_ia32cap(1) & (1u << 22)) != 0; |
|
#endif |
|
} |
|
|
|
OPENSSL_INLINE int CRYPTO_is_AESNI_capable(void) { |
|
#if defined(__AES__) |
|
return 1; |
|
#else |
|
return (OPENSSL_get_ia32cap(1) & (1u << 25)) != 0; |
|
#endif |
|
} |
|
|
|
OPENSSL_INLINE int CRYPTO_is_AVX_capable(void) { |
|
#if defined(__AVX__) |
|
return 1; |
|
#else |
|
return (OPENSSL_get_ia32cap(1) & (1u << 28)) != 0; |
|
#endif |
|
} |
|
|
|
OPENSSL_INLINE int CRYPTO_is_RDRAND_capable(void) { |
|
// The GCC/Clang feature name and preprocessor symbol for RDRAND are "rdrnd" |
|
// and |__RDRND__|, respectively. |
|
#if defined(__RDRND__) |
|
return 1; |
|
#else |
|
return (OPENSSL_get_ia32cap(1) & (1u << 30)) != 0; |
|
#endif |
|
} |
|
|
|
// See Intel manual, volume 2A, table 3-8. |
|
|
|
OPENSSL_INLINE int CRYPTO_is_BMI1_capable(void) { |
|
#if defined(__BMI1__) |
|
return 1; |
|
#else |
|
return (OPENSSL_get_ia32cap(2) & (1u << 3)) != 0; |
|
#endif |
|
} |
|
|
|
OPENSSL_INLINE int CRYPTO_is_AVX2_capable(void) { |
|
#if defined(__AVX2__) |
|
return 1; |
|
#else |
|
return (OPENSSL_get_ia32cap(2) & (1u << 5)) != 0; |
|
#endif |
|
} |
|
|
|
OPENSSL_INLINE int CRYPTO_is_BMI2_capable(void) { |
|
#if defined(__BMI2__) |
|
return 1; |
|
#else |
|
return (OPENSSL_get_ia32cap(2) & (1u << 8)) != 0; |
|
#endif |
|
} |
|
|
|
OPENSSL_INLINE int CRYPTO_is_ADX_capable(void) { |
|
#if defined(__ADX__) |
|
return 1; |
|
#else |
|
return (OPENSSL_get_ia32cap(2) & (1u << 19)) != 0; |
|
#endif |
|
} |
|
|
|
#endif // OPENSSL_X86 || OPENSSL_X86_64 |
|
|
|
#if defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) |
|
|
|
// OPENSSL_armcap_P contains ARM CPU capabilities. From C, this should only be |
|
// accessed with |OPENSSL_get_armcap|. |
|
extern uint32_t OPENSSL_armcap_P; |
|
|
|
// OPENSSL_get_armcap initializes the library if needed and returns ARM CPU |
|
// capabilities. It is marked as a pure function so duplicate calls can be |
|
// merged by the compiler, at least when indices match. |
|
OPENSSL_ATTR_PURE uint32_t OPENSSL_get_armcap(void); |
|
|
|
// We do not detect any features at runtime on several 32-bit Arm platforms. |
|
// Apple platforms and OpenBSD require NEON and moved to 64-bit to pick up Armv8 |
|
// extensions. Android baremetal does not aim to support 32-bit Arm at all, but |
|
// it simplifies things to make it build. |
|
#if defined(OPENSSL_ARM) && !defined(OPENSSL_STATIC_ARMCAP) && \ |
|
(defined(OPENSSL_APPLE) || defined(OPENSSL_OPENBSD) || \ |
|
defined(ANDROID_BAREMETAL)) |
|
#define OPENSSL_STATIC_ARMCAP |
|
#endif |
|
|
|
// Normalize some older feature flags to their modern ACLE values. |
|
// https://developer.arm.com/architectures/system-architectures/software-standards/acle |
|
#if defined(__ARM_NEON__) && !defined(__ARM_NEON) |
|
#define __ARM_NEON 1 |
|
#endif |
|
#if defined(__ARM_FEATURE_CRYPTO) |
|
#if !defined(__ARM_FEATURE_AES) |
|
#define __ARM_FEATURE_AES 1 |
|
#endif |
|
#if !defined(__ARM_FEATURE_SHA2) |
|
#define __ARM_FEATURE_SHA2 1 |
|
#endif |
|
#endif |
|
|
|
// CRYPTO_is_NEON_capable returns true if the current CPU has a NEON unit. If |
|
// this is known statically, it is a constant inline function. |
|
OPENSSL_INLINE int CRYPTO_is_NEON_capable(void) { |
|
#if defined(OPENSSL_STATIC_ARMCAP_NEON) || defined(__ARM_NEON) |
|
return 1; |
|
#elif defined(OPENSSL_STATIC_ARMCAP) |
|
return 0; |
|
#else |
|
return (OPENSSL_get_armcap() & ARMV7_NEON) != 0; |
|
#endif |
|
} |
|
|
|
OPENSSL_INLINE int CRYPTO_is_ARMv8_AES_capable(void) { |
|
#if defined(OPENSSL_STATIC_ARMCAP_AES) || defined(__ARM_FEATURE_AES) |
|
return 1; |
|
#elif defined(OPENSSL_STATIC_ARMCAP) |
|
return 0; |
|
#else |
|
return (OPENSSL_get_armcap() & ARMV8_AES) != 0; |
|
#endif |
|
} |
|
|
|
OPENSSL_INLINE int CRYPTO_is_ARMv8_PMULL_capable(void) { |
|
#if defined(OPENSSL_STATIC_ARMCAP_PMULL) || defined(__ARM_FEATURE_AES) |
|
return 1; |
|
#elif defined(OPENSSL_STATIC_ARMCAP) |
|
return 0; |
|
#else |
|
return (OPENSSL_get_armcap() & ARMV8_PMULL) != 0; |
|
#endif |
|
} |
|
|
|
#endif // OPENSSL_ARM || OPENSSL_AARCH64 |
|
|
|
#if defined(BORINGSSL_DISPATCH_TEST) |
|
// Runtime CPU dispatch testing support |
|
|
|
// BORINGSSL_function_hit is an array of flags. The following functions will |
|
// set these flags if BORINGSSL_DISPATCH_TEST is defined. |
|
// 0: aes_hw_ctr32_encrypt_blocks |
|
// 1: aes_hw_encrypt |
|
// 2: aesni_gcm_encrypt |
|
// 3: aes_hw_set_encrypt_key |
|
// 4: vpaes_encrypt |
|
// 5: vpaes_set_encrypt_key |
|
extern uint8_t BORINGSSL_function_hit[7]; |
|
#endif // BORINGSSL_DISPATCH_TEST |
|
|
|
// OPENSSL_vasprintf_internal is just like |vasprintf(3)|. If |system_malloc| is |
|
// 0, memory will be allocated with |OPENSSL_malloc| and must be freed with |
|
// |OPENSSL_free|. Otherwise the system |malloc| function is used and the memory |
|
// must be freed with the system |free| function. |
|
OPENSSL_EXPORT int OPENSSL_vasprintf_internal(char **str, const char *format, |
|
va_list args, int system_malloc) |
|
OPENSSL_PRINTF_FORMAT_FUNC(2, 0); |
|
|
|
#if defined(__cplusplus) |
|
} // extern C |
|
#endif |
|
|
|
#endif // OPENSSL_HEADER_CRYPTO_INTERNAL_H
|
|
|