Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
691 lines
25 KiB
691 lines
25 KiB
/* |
|
* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
|
* project. |
|
*/ |
|
/* ==================================================================== |
|
* Copyright (c) 2015 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* licensing@OpenSSL.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
*/ |
|
|
|
#include <limits.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
#include <algorithm> |
|
#include <string> |
|
#include <vector> |
|
|
|
#include <gtest/gtest.h> |
|
|
|
#include <openssl/aes.h> |
|
#include <openssl/cipher.h> |
|
#include <openssl/err.h> |
|
#include <openssl/nid.h> |
|
#include <openssl/rand.h> |
|
#include <openssl/sha.h> |
|
#include <openssl/span.h> |
|
|
|
#include "../test/file_test.h" |
|
#include "../test/test_util.h" |
|
#include "../test/wycheproof_util.h" |
|
#include "./internal.h" |
|
|
|
|
|
static const EVP_CIPHER *GetCipher(const std::string &name) { |
|
if (name == "DES-CBC") { |
|
return EVP_des_cbc(); |
|
} else if (name == "DES-ECB") { |
|
return EVP_des_ecb(); |
|
} else if (name == "DES-EDE") { |
|
return EVP_des_ede(); |
|
} else if (name == "DES-EDE3") { |
|
return EVP_des_ede3(); |
|
} else if (name == "DES-EDE-CBC") { |
|
return EVP_des_ede_cbc(); |
|
} else if (name == "DES-EDE3-CBC") { |
|
return EVP_des_ede3_cbc(); |
|
} else if (name == "RC4") { |
|
return EVP_rc4(); |
|
} else if (name == "AES-128-ECB") { |
|
return EVP_aes_128_ecb(); |
|
} else if (name == "AES-256-ECB") { |
|
return EVP_aes_256_ecb(); |
|
} else if (name == "AES-128-CBC") { |
|
return EVP_aes_128_cbc(); |
|
} else if (name == "AES-128-GCM") { |
|
return EVP_aes_128_gcm(); |
|
} else if (name == "AES-128-OFB") { |
|
return EVP_aes_128_ofb(); |
|
} else if (name == "AES-192-CBC") { |
|
return EVP_aes_192_cbc(); |
|
} else if (name == "AES-192-CTR") { |
|
return EVP_aes_192_ctr(); |
|
} else if (name == "AES-192-ECB") { |
|
return EVP_aes_192_ecb(); |
|
} else if (name == "AES-192-GCM") { |
|
return EVP_aes_192_gcm(); |
|
} else if (name == "AES-192-OFB") { |
|
return EVP_aes_192_ofb(); |
|
} else if (name == "AES-256-CBC") { |
|
return EVP_aes_256_cbc(); |
|
} else if (name == "AES-128-CTR") { |
|
return EVP_aes_128_ctr(); |
|
} else if (name == "AES-256-CTR") { |
|
return EVP_aes_256_ctr(); |
|
} else if (name == "AES-256-GCM") { |
|
return EVP_aes_256_gcm(); |
|
} else if (name == "AES-256-OFB") { |
|
return EVP_aes_256_ofb(); |
|
} |
|
return nullptr; |
|
} |
|
|
|
enum class Operation { |
|
// kBoth tests both encryption and decryption. |
|
kBoth, |
|
// kEncrypt tests encryption. The result of encryption should always |
|
// successfully decrypt, so this should only be used if the test file has a |
|
// matching decrypt-only vector. |
|
kEncrypt, |
|
// kDecrypt tests decryption. This should only be used if the test file has a |
|
// matching encrypt-only input, or if multiple ciphertexts are valid for |
|
// a given plaintext and this is a non-canonical ciphertext. |
|
kDecrypt, |
|
// kInvalidDecrypt tests decryption and expects it to fail, e.g. due to |
|
// invalid tag or padding. |
|
kInvalidDecrypt, |
|
}; |
|
|
|
static const char *OperationToString(Operation op) { |
|
switch (op) { |
|
case Operation::kBoth: |
|
return "Both"; |
|
case Operation::kEncrypt: |
|
return "Encrypt"; |
|
case Operation::kDecrypt: |
|
return "Decrypt"; |
|
case Operation::kInvalidDecrypt: |
|
return "InvalidDecrypt"; |
|
} |
|
abort(); |
|
} |
|
|
|
// MaybeCopyCipherContext, if |copy| is true, replaces |*ctx| with a, hopefully |
|
// equivalent, copy of it. |
|
static bool MaybeCopyCipherContext(bool copy, |
|
bssl::UniquePtr<EVP_CIPHER_CTX> *ctx) { |
|
if (!copy) { |
|
return true; |
|
} |
|
bssl::UniquePtr<EVP_CIPHER_CTX> ctx2(EVP_CIPHER_CTX_new()); |
|
if (!ctx2 || !EVP_CIPHER_CTX_copy(ctx2.get(), ctx->get())) { |
|
return false; |
|
} |
|
*ctx = std::move(ctx2); |
|
return true; |
|
} |
|
|
|
static void TestCipherAPI(const EVP_CIPHER *cipher, Operation op, bool padding, |
|
bool copy, bool in_place, bool use_evp_cipher, |
|
size_t chunk_size, bssl::Span<const uint8_t> key, |
|
bssl::Span<const uint8_t> iv, |
|
bssl::Span<const uint8_t> plaintext, |
|
bssl::Span<const uint8_t> ciphertext, |
|
bssl::Span<const uint8_t> aad, |
|
bssl::Span<const uint8_t> tag) { |
|
bool encrypt = op == Operation::kEncrypt; |
|
bool is_custom_cipher = |
|
EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_CUSTOM_CIPHER; |
|
bssl::Span<const uint8_t> in = encrypt ? plaintext : ciphertext; |
|
bssl::Span<const uint8_t> expected = encrypt ? ciphertext : plaintext; |
|
bool is_aead = EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE; |
|
|
|
// Some |EVP_CIPHER|s take a variable-length key, and need to first be |
|
// configured with the key length, which requires configuring the cipher. |
|
bssl::UniquePtr<EVP_CIPHER_CTX> ctx(EVP_CIPHER_CTX_new()); |
|
ASSERT_TRUE(ctx); |
|
ASSERT_TRUE(EVP_CipherInit_ex(ctx.get(), cipher, /*engine=*/nullptr, |
|
/*key=*/nullptr, /*iv=*/nullptr, |
|
encrypt ? 1 : 0)); |
|
ASSERT_TRUE(EVP_CIPHER_CTX_set_key_length(ctx.get(), key.size())); |
|
if (!padding) { |
|
ASSERT_TRUE(EVP_CIPHER_CTX_set_padding(ctx.get(), 0)); |
|
} |
|
|
|
// Configure the key. |
|
ASSERT_TRUE(MaybeCopyCipherContext(copy, &ctx)); |
|
ASSERT_TRUE(EVP_CipherInit_ex(ctx.get(), /*cipher=*/nullptr, |
|
/*engine=*/nullptr, key.data(), /*iv=*/nullptr, |
|
/*enc=*/-1)); |
|
|
|
// Configure the IV to run the actual operation. Callers that wish to use a |
|
// key for multiple, potentially concurrent, operations will likely copy at |
|
// this point. The |EVP_CIPHER_CTX| API uses the same type to represent a |
|
// pre-computed key schedule and a streaming operation. |
|
ASSERT_TRUE(MaybeCopyCipherContext(copy, &ctx)); |
|
if (is_aead) { |
|
ASSERT_LE(iv.size(), size_t{INT_MAX}); |
|
ASSERT_TRUE(EVP_CIPHER_CTX_ctrl(ctx.get(), EVP_CTRL_AEAD_SET_IVLEN, |
|
static_cast<int>(iv.size()), 0)); |
|
ASSERT_EQ(EVP_CIPHER_CTX_iv_length(ctx.get()), iv.size()); |
|
} else { |
|
ASSERT_EQ(iv.size(), EVP_CIPHER_CTX_iv_length(ctx.get())); |
|
} |
|
ASSERT_TRUE(EVP_CipherInit_ex(ctx.get(), /*cipher=*/nullptr, |
|
/*engine=*/nullptr, |
|
/*key=*/nullptr, iv.data(), /*enc=*/-1)); |
|
|
|
if (is_aead && !encrypt) { |
|
ASSERT_TRUE(EVP_CIPHER_CTX_ctrl(ctx.get(), EVP_CTRL_AEAD_SET_TAG, |
|
tag.size(), |
|
const_cast<uint8_t *>(tag.data()))); |
|
} |
|
|
|
// Note: the deprecated |EVP_CIPHER|-based AEAD API is sensitive to whether |
|
// parameters are NULL, so it is important to skip the |in| and |aad| |
|
// |EVP_CipherUpdate| calls when empty. |
|
while (!aad.empty()) { |
|
size_t todo = |
|
chunk_size == 0 ? aad.size() : std::min(aad.size(), chunk_size); |
|
if (use_evp_cipher) { |
|
// AEADs always use the "custom cipher" return value convention. Passing a |
|
// null output pointer triggers the AAD logic. |
|
ASSERT_TRUE(is_custom_cipher); |
|
ASSERT_EQ(static_cast<int>(todo), |
|
EVP_Cipher(ctx.get(), nullptr, aad.data(), todo)); |
|
} else { |
|
int len; |
|
ASSERT_TRUE(EVP_CipherUpdate(ctx.get(), nullptr, &len, aad.data(), todo)); |
|
// Although it doesn't output anything, |EVP_CipherUpdate| should claim to |
|
// output the input length. |
|
EXPECT_EQ(len, static_cast<int>(todo)); |
|
} |
|
aad = aad.subspan(todo); |
|
} |
|
|
|
// Set up the output buffer. |
|
size_t max_out = in.size(); |
|
size_t block_size = EVP_CIPHER_CTX_block_size(ctx.get()); |
|
if (block_size > 1 && |
|
(EVP_CIPHER_CTX_flags(ctx.get()) & EVP_CIPH_NO_PADDING) == 0 && |
|
EVP_CIPHER_CTX_encrypting(ctx.get())) { |
|
max_out += block_size - (max_out % block_size); |
|
} |
|
std::vector<uint8_t> result(max_out); |
|
if (in_place) { |
|
std::copy(in.begin(), in.end(), result.begin()); |
|
in = bssl::MakeConstSpan(result).first(in.size()); |
|
} |
|
|
|
size_t total = 0; |
|
int len; |
|
while (!in.empty()) { |
|
size_t todo = chunk_size == 0 ? in.size() : std::min(in.size(), chunk_size); |
|
EXPECT_LE(todo, static_cast<size_t>(INT_MAX)); |
|
ASSERT_TRUE(MaybeCopyCipherContext(copy, &ctx)); |
|
if (use_evp_cipher) { |
|
// |EVP_Cipher| sometimes returns the number of bytes written, or -1 on |
|
// error, and sometimes 1 or 0, implicitly writing |in_len| bytes. |
|
if (is_custom_cipher) { |
|
len = EVP_Cipher(ctx.get(), result.data() + total, in.data(), todo); |
|
} else { |
|
ASSERT_EQ( |
|
1, EVP_Cipher(ctx.get(), result.data() + total, in.data(), todo)); |
|
len = static_cast<int>(todo); |
|
} |
|
} else { |
|
ASSERT_TRUE(EVP_CipherUpdate(ctx.get(), result.data() + total, &len, |
|
in.data(), static_cast<int>(todo))); |
|
} |
|
ASSERT_GE(len, 0); |
|
total += static_cast<size_t>(len); |
|
in = in.subspan(todo); |
|
} |
|
if (op == Operation::kInvalidDecrypt) { |
|
if (use_evp_cipher) { |
|
// Only the "custom cipher" return value convention can report failures. |
|
// Passing all nulls should act like |EVP_CipherFinal_ex|. |
|
ASSERT_TRUE(is_custom_cipher); |
|
EXPECT_EQ(-1, EVP_Cipher(ctx.get(), nullptr, nullptr, 0)); |
|
} else { |
|
// Invalid padding and invalid tags all appear as a failed |
|
// |EVP_CipherFinal_ex|. |
|
EXPECT_FALSE(EVP_CipherFinal_ex(ctx.get(), result.data() + total, &len)); |
|
} |
|
} else { |
|
if (use_evp_cipher) { |
|
if (is_custom_cipher) { |
|
// Only the "custom cipher" convention has an |EVP_CipherFinal_ex| |
|
// equivalent. |
|
len = EVP_Cipher(ctx.get(), nullptr, nullptr, 0); |
|
} else { |
|
len = 0; |
|
} |
|
} else { |
|
ASSERT_TRUE(EVP_CipherFinal_ex(ctx.get(), result.data() + total, &len)); |
|
} |
|
ASSERT_GE(len, 0); |
|
total += static_cast<size_t>(len); |
|
result.resize(total); |
|
EXPECT_EQ(Bytes(expected), Bytes(result)); |
|
if (encrypt && is_aead) { |
|
uint8_t rtag[16]; |
|
ASSERT_LE(tag.size(), sizeof(rtag)); |
|
ASSERT_TRUE(MaybeCopyCipherContext(copy, &ctx)); |
|
ASSERT_TRUE(EVP_CIPHER_CTX_ctrl(ctx.get(), EVP_CTRL_AEAD_GET_TAG, |
|
tag.size(), rtag)); |
|
EXPECT_EQ(Bytes(tag), Bytes(rtag, tag.size())); |
|
} |
|
} |
|
} |
|
|
|
static void TestLowLevelAPI( |
|
const EVP_CIPHER *cipher, Operation op, bool in_place, size_t chunk_size, |
|
bssl::Span<const uint8_t> key, bssl::Span<const uint8_t> iv, |
|
bssl::Span<const uint8_t> plaintext, bssl::Span<const uint8_t> ciphertext) { |
|
bool encrypt = op == Operation::kEncrypt; |
|
bssl::Span<const uint8_t> in = encrypt ? plaintext : ciphertext; |
|
bssl::Span<const uint8_t> expected = encrypt ? ciphertext : plaintext; |
|
int nid = EVP_CIPHER_nid(cipher); |
|
bool is_ctr = nid == NID_aes_128_ctr || nid == NID_aes_192_ctr || |
|
nid == NID_aes_256_ctr; |
|
bool is_cbc = nid == NID_aes_128_cbc || nid == NID_aes_192_cbc || |
|
nid == NID_aes_256_cbc; |
|
bool is_ofb = nid == NID_aes_128_ofb128 || nid == NID_aes_192_ofb128 || |
|
nid == NID_aes_256_ofb128; |
|
if (!is_ctr && !is_cbc && !is_ofb) { |
|
return; |
|
} |
|
|
|
// Invalid ciphertexts are not possible in any of the ciphers where this API |
|
// applies. |
|
ASSERT_NE(op, Operation::kInvalidDecrypt); |
|
|
|
AES_KEY aes; |
|
if (encrypt || !is_cbc) { |
|
ASSERT_EQ(0, AES_set_encrypt_key(key.data(), key.size() * 8, &aes)); |
|
} else { |
|
ASSERT_EQ(0, AES_set_decrypt_key(key.data(), key.size() * 8, &aes)); |
|
} |
|
|
|
std::vector<uint8_t> result; |
|
if (in_place) { |
|
result.assign(in.begin(), in.end()); |
|
} else { |
|
result.resize(expected.size()); |
|
} |
|
bssl::Span<uint8_t> out = bssl::MakeSpan(result); |
|
// Input and output sizes for all the low-level APIs should match. |
|
ASSERT_EQ(in.size(), out.size()); |
|
|
|
// The low-level APIs all use block-size IVs. |
|
ASSERT_EQ(iv.size(), size_t{AES_BLOCK_SIZE}); |
|
uint8_t ivec[AES_BLOCK_SIZE]; |
|
OPENSSL_memcpy(ivec, iv.data(), iv.size()); |
|
|
|
if (is_ctr) { |
|
unsigned num = 0; |
|
uint8_t ecount_buf[AES_BLOCK_SIZE]; |
|
if (chunk_size == 0) { |
|
AES_ctr128_encrypt(in.data(), out.data(), in.size(), &aes, ivec, |
|
ecount_buf, &num); |
|
} else { |
|
do { |
|
size_t todo = std::min(in.size(), chunk_size); |
|
AES_ctr128_encrypt(in.data(), out.data(), todo, &aes, ivec, ecount_buf, |
|
&num); |
|
in = in.subspan(todo); |
|
out = out.subspan(todo); |
|
} while (!in.empty()); |
|
} |
|
EXPECT_EQ(Bytes(expected), Bytes(result)); |
|
} else if (is_cbc && chunk_size % AES_BLOCK_SIZE == 0) { |
|
// Note |AES_cbc_encrypt| requires block-aligned chunks. |
|
if (chunk_size == 0) { |
|
AES_cbc_encrypt(in.data(), out.data(), in.size(), &aes, ivec, encrypt); |
|
} else { |
|
do { |
|
size_t todo = std::min(in.size(), chunk_size); |
|
AES_cbc_encrypt(in.data(), out.data(), todo, &aes, ivec, encrypt); |
|
in = in.subspan(todo); |
|
out = out.subspan(todo); |
|
} while (!in.empty()); |
|
} |
|
EXPECT_EQ(Bytes(expected), Bytes(result)); |
|
} else if (is_ofb) { |
|
int num = 0; |
|
if (chunk_size == 0) { |
|
AES_ofb128_encrypt(in.data(), out.data(), in.size(), &aes, ivec, &num); |
|
} else { |
|
do { |
|
size_t todo = std::min(in.size(), chunk_size); |
|
AES_ofb128_encrypt(in.data(), out.data(), todo, &aes, ivec, &num); |
|
in = in.subspan(todo); |
|
out = out.subspan(todo); |
|
} while (!in.empty()); |
|
} |
|
EXPECT_EQ(Bytes(expected), Bytes(result)); |
|
} |
|
} |
|
|
|
static void TestCipher(const EVP_CIPHER *cipher, Operation input_op, |
|
bool padding, bssl::Span<const uint8_t> key, |
|
bssl::Span<const uint8_t> iv, |
|
bssl::Span<const uint8_t> plaintext, |
|
bssl::Span<const uint8_t> ciphertext, |
|
bssl::Span<const uint8_t> aad, |
|
bssl::Span<const uint8_t> tag) { |
|
size_t block_size = EVP_CIPHER_block_size(cipher); |
|
std::vector<Operation> ops; |
|
if (input_op == Operation::kBoth) { |
|
ops = {Operation::kEncrypt, Operation::kDecrypt}; |
|
} else { |
|
ops = {input_op}; |
|
} |
|
for (Operation op : ops) { |
|
SCOPED_TRACE(OperationToString(op)); |
|
// Zero indicates a single-shot API. |
|
static const size_t kChunkSizes[] = {0, 1, 2, 5, 7, 8, 9, 15, 16, |
|
17, 31, 32, 33, 63, 64, 65, 512}; |
|
for (size_t chunk_size : kChunkSizes) { |
|
SCOPED_TRACE(chunk_size); |
|
if (chunk_size > plaintext.size() && chunk_size > ciphertext.size() && |
|
chunk_size > aad.size()) { |
|
continue; |
|
} |
|
for (bool in_place : {false, true}) { |
|
SCOPED_TRACE(in_place); |
|
for (bool copy : {false, true}) { |
|
SCOPED_TRACE(copy); |
|
TestCipherAPI(cipher, op, padding, copy, in_place, |
|
/*use_evp_cipher=*/false, chunk_size, key, iv, |
|
plaintext, ciphertext, aad, tag); |
|
if (!padding && chunk_size % block_size == 0) { |
|
TestCipherAPI(cipher, op, padding, copy, in_place, |
|
/*use_evp_cipher=*/true, chunk_size, key, iv, |
|
plaintext, ciphertext, aad, tag); |
|
} |
|
} |
|
if (!padding) { |
|
TestLowLevelAPI(cipher, op, in_place, chunk_size, key, iv, plaintext, |
|
ciphertext); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void CipherFileTest(FileTest *t) { |
|
std::string cipher_str; |
|
ASSERT_TRUE(t->GetAttribute(&cipher_str, "Cipher")); |
|
const EVP_CIPHER *cipher = GetCipher(cipher_str); |
|
ASSERT_TRUE(cipher); |
|
|
|
std::vector<uint8_t> key, iv, plaintext, ciphertext, aad, tag; |
|
ASSERT_TRUE(t->GetBytes(&key, "Key")); |
|
ASSERT_TRUE(t->GetBytes(&plaintext, "Plaintext")); |
|
ASSERT_TRUE(t->GetBytes(&ciphertext, "Ciphertext")); |
|
if (EVP_CIPHER_iv_length(cipher) > 0) { |
|
ASSERT_TRUE(t->GetBytes(&iv, "IV")); |
|
} |
|
if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE) { |
|
ASSERT_TRUE(t->GetBytes(&aad, "AAD")); |
|
ASSERT_TRUE(t->GetBytes(&tag, "Tag")); |
|
} |
|
|
|
Operation op = Operation::kBoth; |
|
if (t->HasAttribute("Operation")) { |
|
const std::string &str = t->GetAttributeOrDie("Operation"); |
|
if (str == "Encrypt" || str == "ENCRYPT") { |
|
op = Operation::kEncrypt; |
|
} else if (str == "Decrypt" || str == "DECRYPT") { |
|
op = Operation::kDecrypt; |
|
} else if (str == "InvalidDecrypt") { |
|
op = Operation::kInvalidDecrypt; |
|
} else { |
|
FAIL() << "Unknown operation: " << str; |
|
} |
|
} |
|
|
|
TestCipher(cipher, op, /*padding=*/false, key, iv, plaintext, ciphertext, aad, |
|
tag); |
|
} |
|
|
|
TEST(CipherTest, TestVectors) { |
|
FileTestGTest("crypto/cipher_extra/test/cipher_tests.txt", CipherFileTest); |
|
} |
|
|
|
TEST(CipherTest, CAVP_AES_128_CBC) { |
|
FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_128_cbc.txt", |
|
CipherFileTest); |
|
} |
|
|
|
TEST(CipherTest, CAVP_AES_128_CTR) { |
|
FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_128_ctr.txt", |
|
CipherFileTest); |
|
} |
|
|
|
TEST(CipherTest, CAVP_AES_192_CBC) { |
|
FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_192_cbc.txt", |
|
CipherFileTest); |
|
} |
|
|
|
TEST(CipherTest, CAVP_AES_192_CTR) { |
|
FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_192_ctr.txt", |
|
CipherFileTest); |
|
} |
|
|
|
TEST(CipherTest, CAVP_AES_256_CBC) { |
|
FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_256_cbc.txt", |
|
CipherFileTest); |
|
} |
|
|
|
TEST(CipherTest, CAVP_AES_256_CTR) { |
|
FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_256_ctr.txt", |
|
CipherFileTest); |
|
} |
|
|
|
TEST(CipherTest, CAVP_TDES_CBC) { |
|
FileTestGTest("crypto/cipher_extra/test/nist_cavp/tdes_cbc.txt", |
|
CipherFileTest); |
|
} |
|
|
|
TEST(CipherTest, CAVP_TDES_ECB) { |
|
FileTestGTest("crypto/cipher_extra/test/nist_cavp/tdes_ecb.txt", |
|
CipherFileTest); |
|
} |
|
|
|
TEST(CipherTest, WycheproofAESCBC) { |
|
FileTestGTest("third_party/wycheproof_testvectors/aes_cbc_pkcs5_test.txt", |
|
[](FileTest *t) { |
|
t->IgnoreInstruction("type"); |
|
t->IgnoreInstruction("ivSize"); |
|
|
|
std::string key_size; |
|
ASSERT_TRUE(t->GetInstruction(&key_size, "keySize")); |
|
const EVP_CIPHER *cipher; |
|
switch (atoi(key_size.c_str())) { |
|
case 128: |
|
cipher = EVP_aes_128_cbc(); |
|
break; |
|
case 192: |
|
cipher = EVP_aes_192_cbc(); |
|
break; |
|
case 256: |
|
cipher = EVP_aes_256_cbc(); |
|
break; |
|
default: |
|
FAIL() << "Unsupported key size: " << key_size; |
|
} |
|
|
|
std::vector<uint8_t> key, iv, msg, ct; |
|
ASSERT_TRUE(t->GetBytes(&key, "key")); |
|
ASSERT_TRUE(t->GetBytes(&iv, "iv")); |
|
ASSERT_TRUE(t->GetBytes(&msg, "msg")); |
|
ASSERT_TRUE(t->GetBytes(&ct, "ct")); |
|
WycheproofResult result; |
|
ASSERT_TRUE(GetWycheproofResult(t, &result)); |
|
TestCipher(cipher, |
|
result.IsValid() ? Operation::kBoth |
|
: Operation::kInvalidDecrypt, |
|
/*padding=*/true, key, iv, msg, ct, /*aad=*/{}, |
|
/*tag=*/{}); |
|
}); |
|
} |
|
|
|
TEST(CipherTest, SHA1WithSecretSuffix) { |
|
uint8_t buf[SHA_CBLOCK * 4]; |
|
RAND_bytes(buf, sizeof(buf)); |
|
// Hashing should run in time independent of the bytes. |
|
CONSTTIME_SECRET(buf, sizeof(buf)); |
|
|
|
// Exhaustively testing interesting cases in this function is cubic in the |
|
// block size, so we test in 3-byte increments. |
|
constexpr size_t kSkip = 3; |
|
// This value should be less than 8 to test the edge case when the 8-byte |
|
// length wraps to the next block. |
|
static_assert(kSkip < 8, "kSkip is too large"); |
|
|
|
// |EVP_sha1_final_with_secret_suffix| is sensitive to the public length of |
|
// the partial block previously hashed. In TLS, this is the HMAC prefix, the |
|
// header, and the public minimum padding length. |
|
for (size_t prefix = 0; prefix < SHA_CBLOCK; prefix += kSkip) { |
|
SCOPED_TRACE(prefix); |
|
// The first block is treated differently, so we run with up to three |
|
// blocks of length variability. |
|
for (size_t max_len = 0; max_len < 3 * SHA_CBLOCK; max_len += kSkip) { |
|
SCOPED_TRACE(max_len); |
|
for (size_t len = 0; len <= max_len; len += kSkip) { |
|
SCOPED_TRACE(len); |
|
|
|
uint8_t expected[SHA_DIGEST_LENGTH]; |
|
SHA1(buf, prefix + len, expected); |
|
CONSTTIME_DECLASSIFY(expected, sizeof(expected)); |
|
|
|
// Make a copy of the secret length to avoid interfering with the loop. |
|
size_t secret_len = len; |
|
CONSTTIME_SECRET(&secret_len, sizeof(secret_len)); |
|
|
|
SHA_CTX ctx; |
|
SHA1_Init(&ctx); |
|
SHA1_Update(&ctx, buf, prefix); |
|
uint8_t computed[SHA_DIGEST_LENGTH]; |
|
ASSERT_TRUE(EVP_sha1_final_with_secret_suffix( |
|
&ctx, computed, buf + prefix, secret_len, max_len)); |
|
|
|
CONSTTIME_DECLASSIFY(computed, sizeof(computed)); |
|
EXPECT_EQ(Bytes(expected), Bytes(computed)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
TEST(CipherTest, SHA256WithSecretSuffix) { |
|
uint8_t buf[SHA256_CBLOCK * 4]; |
|
RAND_bytes(buf, sizeof(buf)); |
|
// Hashing should run in time independent of the bytes. |
|
CONSTTIME_SECRET(buf, sizeof(buf)); |
|
|
|
// Exhaustively testing interesting cases in this function is cubic in the |
|
// block size, so we test in 3-byte increments. |
|
constexpr size_t kSkip = 3; |
|
// This value should be less than 8 to test the edge case when the 8-byte |
|
// length wraps to the next block. |
|
static_assert(kSkip < 8, "kSkip is too large"); |
|
|
|
// |EVP_sha256_final_with_secret_suffix| is sensitive to the public length of |
|
// the partial block previously hashed. In TLS, this is the HMAC prefix, the |
|
// header, and the public minimum padding length. |
|
for (size_t prefix = 0; prefix < SHA256_CBLOCK; prefix += kSkip) { |
|
SCOPED_TRACE(prefix); |
|
// The first block is treated differently, so we run with up to three |
|
// blocks of length variability. |
|
for (size_t max_len = 0; max_len < 3 * SHA256_CBLOCK; max_len += kSkip) { |
|
SCOPED_TRACE(max_len); |
|
for (size_t len = 0; len <= max_len; len += kSkip) { |
|
SCOPED_TRACE(len); |
|
|
|
uint8_t expected[SHA256_DIGEST_LENGTH]; |
|
SHA256(buf, prefix + len, expected); |
|
CONSTTIME_DECLASSIFY(expected, sizeof(expected)); |
|
|
|
// Make a copy of the secret length to avoid interfering with the loop. |
|
size_t secret_len = len; |
|
CONSTTIME_SECRET(&secret_len, sizeof(secret_len)); |
|
|
|
SHA256_CTX ctx; |
|
SHA256_Init(&ctx); |
|
SHA256_Update(&ctx, buf, prefix); |
|
uint8_t computed[SHA256_DIGEST_LENGTH]; |
|
ASSERT_TRUE(EVP_sha256_final_with_secret_suffix( |
|
&ctx, computed, buf + prefix, secret_len, max_len)); |
|
|
|
CONSTTIME_DECLASSIFY(computed, sizeof(computed)); |
|
EXPECT_EQ(Bytes(expected), Bytes(computed)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
TEST(CipherTest, GetCipher) { |
|
const EVP_CIPHER *cipher = EVP_get_cipherbynid(NID_aes_128_gcm); |
|
ASSERT_TRUE(cipher); |
|
EXPECT_EQ(NID_aes_128_gcm, EVP_CIPHER_nid(cipher)); |
|
|
|
cipher = EVP_get_cipherbyname("aes-128-gcm"); |
|
ASSERT_TRUE(cipher); |
|
EXPECT_EQ(NID_aes_128_gcm, EVP_CIPHER_nid(cipher)); |
|
|
|
cipher = EVP_get_cipherbyname("AES-128-GCM"); |
|
ASSERT_TRUE(cipher); |
|
EXPECT_EQ(NID_aes_128_gcm, EVP_CIPHER_nid(cipher)); |
|
|
|
// We support a tcpdump-specific alias for 3DES. |
|
cipher = EVP_get_cipherbyname("3des"); |
|
ASSERT_TRUE(cipher); |
|
EXPECT_EQ(NID_des_ede3_cbc, EVP_CIPHER_nid(cipher)); |
|
}
|
|
|