Mirror of BoringSSL (grpc依赖) https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

691 lines
25 KiB

/*
* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project.
*/
/* ====================================================================
* Copyright (c) 2015 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*/
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <string>
#include <vector>
#include <gtest/gtest.h>
#include <openssl/aes.h>
#include <openssl/cipher.h>
#include <openssl/err.h>
#include <openssl/nid.h>
#include <openssl/rand.h>
#include <openssl/sha.h>
#include <openssl/span.h>
#include "../test/file_test.h"
#include "../test/test_util.h"
#include "../test/wycheproof_util.h"
#include "./internal.h"
static const EVP_CIPHER *GetCipher(const std::string &name) {
if (name == "DES-CBC") {
return EVP_des_cbc();
} else if (name == "DES-ECB") {
return EVP_des_ecb();
} else if (name == "DES-EDE") {
return EVP_des_ede();
} else if (name == "DES-EDE3") {
return EVP_des_ede3();
} else if (name == "DES-EDE-CBC") {
return EVP_des_ede_cbc();
} else if (name == "DES-EDE3-CBC") {
return EVP_des_ede3_cbc();
} else if (name == "RC4") {
return EVP_rc4();
} else if (name == "AES-128-ECB") {
return EVP_aes_128_ecb();
} else if (name == "AES-256-ECB") {
return EVP_aes_256_ecb();
} else if (name == "AES-128-CBC") {
return EVP_aes_128_cbc();
} else if (name == "AES-128-GCM") {
return EVP_aes_128_gcm();
} else if (name == "AES-128-OFB") {
return EVP_aes_128_ofb();
} else if (name == "AES-192-CBC") {
return EVP_aes_192_cbc();
} else if (name == "AES-192-CTR") {
return EVP_aes_192_ctr();
} else if (name == "AES-192-ECB") {
return EVP_aes_192_ecb();
} else if (name == "AES-192-GCM") {
return EVP_aes_192_gcm();
} else if (name == "AES-192-OFB") {
return EVP_aes_192_ofb();
} else if (name == "AES-256-CBC") {
return EVP_aes_256_cbc();
} else if (name == "AES-128-CTR") {
return EVP_aes_128_ctr();
} else if (name == "AES-256-CTR") {
return EVP_aes_256_ctr();
} else if (name == "AES-256-GCM") {
return EVP_aes_256_gcm();
} else if (name == "AES-256-OFB") {
return EVP_aes_256_ofb();
}
return nullptr;
}
enum class Operation {
// kBoth tests both encryption and decryption.
kBoth,
// kEncrypt tests encryption. The result of encryption should always
// successfully decrypt, so this should only be used if the test file has a
// matching decrypt-only vector.
kEncrypt,
// kDecrypt tests decryption. This should only be used if the test file has a
// matching encrypt-only input, or if multiple ciphertexts are valid for
// a given plaintext and this is a non-canonical ciphertext.
kDecrypt,
// kInvalidDecrypt tests decryption and expects it to fail, e.g. due to
// invalid tag or padding.
kInvalidDecrypt,
};
static const char *OperationToString(Operation op) {
switch (op) {
case Operation::kBoth:
return "Both";
case Operation::kEncrypt:
return "Encrypt";
case Operation::kDecrypt:
return "Decrypt";
case Operation::kInvalidDecrypt:
return "InvalidDecrypt";
}
abort();
}
// MaybeCopyCipherContext, if |copy| is true, replaces |*ctx| with a, hopefully
// equivalent, copy of it.
static bool MaybeCopyCipherContext(bool copy,
bssl::UniquePtr<EVP_CIPHER_CTX> *ctx) {
if (!copy) {
return true;
}
bssl::UniquePtr<EVP_CIPHER_CTX> ctx2(EVP_CIPHER_CTX_new());
if (!ctx2 || !EVP_CIPHER_CTX_copy(ctx2.get(), ctx->get())) {
return false;
}
*ctx = std::move(ctx2);
return true;
}
static void TestCipherAPI(const EVP_CIPHER *cipher, Operation op, bool padding,
bool copy, bool in_place, bool use_evp_cipher,
size_t chunk_size, bssl::Span<const uint8_t> key,
bssl::Span<const uint8_t> iv,
bssl::Span<const uint8_t> plaintext,
bssl::Span<const uint8_t> ciphertext,
bssl::Span<const uint8_t> aad,
bssl::Span<const uint8_t> tag) {
bool encrypt = op == Operation::kEncrypt;
bool is_custom_cipher =
EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_CUSTOM_CIPHER;
bssl::Span<const uint8_t> in = encrypt ? plaintext : ciphertext;
bssl::Span<const uint8_t> expected = encrypt ? ciphertext : plaintext;
bool is_aead = EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE;
// Some |EVP_CIPHER|s take a variable-length key, and need to first be
// configured with the key length, which requires configuring the cipher.
bssl::UniquePtr<EVP_CIPHER_CTX> ctx(EVP_CIPHER_CTX_new());
ASSERT_TRUE(ctx);
ASSERT_TRUE(EVP_CipherInit_ex(ctx.get(), cipher, /*engine=*/nullptr,
/*key=*/nullptr, /*iv=*/nullptr,
encrypt ? 1 : 0));
ASSERT_TRUE(EVP_CIPHER_CTX_set_key_length(ctx.get(), key.size()));
if (!padding) {
ASSERT_TRUE(EVP_CIPHER_CTX_set_padding(ctx.get(), 0));
}
// Configure the key.
ASSERT_TRUE(MaybeCopyCipherContext(copy, &ctx));
ASSERT_TRUE(EVP_CipherInit_ex(ctx.get(), /*cipher=*/nullptr,
/*engine=*/nullptr, key.data(), /*iv=*/nullptr,
/*enc=*/-1));
// Configure the IV to run the actual operation. Callers that wish to use a
// key for multiple, potentially concurrent, operations will likely copy at
// this point. The |EVP_CIPHER_CTX| API uses the same type to represent a
// pre-computed key schedule and a streaming operation.
ASSERT_TRUE(MaybeCopyCipherContext(copy, &ctx));
if (is_aead) {
ASSERT_LE(iv.size(), size_t{INT_MAX});
ASSERT_TRUE(EVP_CIPHER_CTX_ctrl(ctx.get(), EVP_CTRL_AEAD_SET_IVLEN,
static_cast<int>(iv.size()), 0));
ASSERT_EQ(EVP_CIPHER_CTX_iv_length(ctx.get()), iv.size());
} else {
ASSERT_EQ(iv.size(), EVP_CIPHER_CTX_iv_length(ctx.get()));
}
ASSERT_TRUE(EVP_CipherInit_ex(ctx.get(), /*cipher=*/nullptr,
/*engine=*/nullptr,
/*key=*/nullptr, iv.data(), /*enc=*/-1));
if (is_aead && !encrypt) {
ASSERT_TRUE(EVP_CIPHER_CTX_ctrl(ctx.get(), EVP_CTRL_AEAD_SET_TAG,
tag.size(),
const_cast<uint8_t *>(tag.data())));
}
// Note: the deprecated |EVP_CIPHER|-based AEAD API is sensitive to whether
// parameters are NULL, so it is important to skip the |in| and |aad|
// |EVP_CipherUpdate| calls when empty.
while (!aad.empty()) {
size_t todo =
chunk_size == 0 ? aad.size() : std::min(aad.size(), chunk_size);
if (use_evp_cipher) {
// AEADs always use the "custom cipher" return value convention. Passing a
// null output pointer triggers the AAD logic.
ASSERT_TRUE(is_custom_cipher);
ASSERT_EQ(static_cast<int>(todo),
EVP_Cipher(ctx.get(), nullptr, aad.data(), todo));
} else {
int len;
ASSERT_TRUE(EVP_CipherUpdate(ctx.get(), nullptr, &len, aad.data(), todo));
// Although it doesn't output anything, |EVP_CipherUpdate| should claim to
// output the input length.
EXPECT_EQ(len, static_cast<int>(todo));
}
aad = aad.subspan(todo);
}
// Set up the output buffer.
size_t max_out = in.size();
size_t block_size = EVP_CIPHER_CTX_block_size(ctx.get());
if (block_size > 1 &&
(EVP_CIPHER_CTX_flags(ctx.get()) & EVP_CIPH_NO_PADDING) == 0 &&
EVP_CIPHER_CTX_encrypting(ctx.get())) {
max_out += block_size - (max_out % block_size);
}
std::vector<uint8_t> result(max_out);
if (in_place) {
std::copy(in.begin(), in.end(), result.begin());
in = bssl::MakeConstSpan(result).first(in.size());
}
size_t total = 0;
int len;
while (!in.empty()) {
size_t todo = chunk_size == 0 ? in.size() : std::min(in.size(), chunk_size);
EXPECT_LE(todo, static_cast<size_t>(INT_MAX));
ASSERT_TRUE(MaybeCopyCipherContext(copy, &ctx));
if (use_evp_cipher) {
// |EVP_Cipher| sometimes returns the number of bytes written, or -1 on
// error, and sometimes 1 or 0, implicitly writing |in_len| bytes.
if (is_custom_cipher) {
len = EVP_Cipher(ctx.get(), result.data() + total, in.data(), todo);
} else {
ASSERT_EQ(
1, EVP_Cipher(ctx.get(), result.data() + total, in.data(), todo));
len = static_cast<int>(todo);
}
} else {
ASSERT_TRUE(EVP_CipherUpdate(ctx.get(), result.data() + total, &len,
in.data(), static_cast<int>(todo)));
}
ASSERT_GE(len, 0);
total += static_cast<size_t>(len);
in = in.subspan(todo);
}
if (op == Operation::kInvalidDecrypt) {
if (use_evp_cipher) {
// Only the "custom cipher" return value convention can report failures.
// Passing all nulls should act like |EVP_CipherFinal_ex|.
ASSERT_TRUE(is_custom_cipher);
EXPECT_EQ(-1, EVP_Cipher(ctx.get(), nullptr, nullptr, 0));
} else {
// Invalid padding and invalid tags all appear as a failed
// |EVP_CipherFinal_ex|.
EXPECT_FALSE(EVP_CipherFinal_ex(ctx.get(), result.data() + total, &len));
}
} else {
if (use_evp_cipher) {
if (is_custom_cipher) {
// Only the "custom cipher" convention has an |EVP_CipherFinal_ex|
// equivalent.
len = EVP_Cipher(ctx.get(), nullptr, nullptr, 0);
} else {
len = 0;
}
} else {
ASSERT_TRUE(EVP_CipherFinal_ex(ctx.get(), result.data() + total, &len));
}
ASSERT_GE(len, 0);
total += static_cast<size_t>(len);
result.resize(total);
EXPECT_EQ(Bytes(expected), Bytes(result));
if (encrypt && is_aead) {
uint8_t rtag[16];
ASSERT_LE(tag.size(), sizeof(rtag));
ASSERT_TRUE(MaybeCopyCipherContext(copy, &ctx));
ASSERT_TRUE(EVP_CIPHER_CTX_ctrl(ctx.get(), EVP_CTRL_AEAD_GET_TAG,
tag.size(), rtag));
EXPECT_EQ(Bytes(tag), Bytes(rtag, tag.size()));
}
}
}
static void TestLowLevelAPI(
const EVP_CIPHER *cipher, Operation op, bool in_place, size_t chunk_size,
bssl::Span<const uint8_t> key, bssl::Span<const uint8_t> iv,
bssl::Span<const uint8_t> plaintext, bssl::Span<const uint8_t> ciphertext) {
bool encrypt = op == Operation::kEncrypt;
bssl::Span<const uint8_t> in = encrypt ? plaintext : ciphertext;
bssl::Span<const uint8_t> expected = encrypt ? ciphertext : plaintext;
int nid = EVP_CIPHER_nid(cipher);
bool is_ctr = nid == NID_aes_128_ctr || nid == NID_aes_192_ctr ||
nid == NID_aes_256_ctr;
bool is_cbc = nid == NID_aes_128_cbc || nid == NID_aes_192_cbc ||
nid == NID_aes_256_cbc;
bool is_ofb = nid == NID_aes_128_ofb128 || nid == NID_aes_192_ofb128 ||
nid == NID_aes_256_ofb128;
if (!is_ctr && !is_cbc && !is_ofb) {
return;
}
// Invalid ciphertexts are not possible in any of the ciphers where this API
// applies.
ASSERT_NE(op, Operation::kInvalidDecrypt);
AES_KEY aes;
if (encrypt || !is_cbc) {
ASSERT_EQ(0, AES_set_encrypt_key(key.data(), key.size() * 8, &aes));
} else {
ASSERT_EQ(0, AES_set_decrypt_key(key.data(), key.size() * 8, &aes));
}
std::vector<uint8_t> result;
if (in_place) {
result.assign(in.begin(), in.end());
} else {
result.resize(expected.size());
}
bssl::Span<uint8_t> out = bssl::MakeSpan(result);
// Input and output sizes for all the low-level APIs should match.
ASSERT_EQ(in.size(), out.size());
// The low-level APIs all use block-size IVs.
ASSERT_EQ(iv.size(), size_t{AES_BLOCK_SIZE});
uint8_t ivec[AES_BLOCK_SIZE];
OPENSSL_memcpy(ivec, iv.data(), iv.size());
if (is_ctr) {
unsigned num = 0;
uint8_t ecount_buf[AES_BLOCK_SIZE];
if (chunk_size == 0) {
AES_ctr128_encrypt(in.data(), out.data(), in.size(), &aes, ivec,
ecount_buf, &num);
} else {
do {
size_t todo = std::min(in.size(), chunk_size);
AES_ctr128_encrypt(in.data(), out.data(), todo, &aes, ivec, ecount_buf,
&num);
in = in.subspan(todo);
out = out.subspan(todo);
} while (!in.empty());
}
EXPECT_EQ(Bytes(expected), Bytes(result));
} else if (is_cbc && chunk_size % AES_BLOCK_SIZE == 0) {
// Note |AES_cbc_encrypt| requires block-aligned chunks.
if (chunk_size == 0) {
AES_cbc_encrypt(in.data(), out.data(), in.size(), &aes, ivec, encrypt);
} else {
do {
size_t todo = std::min(in.size(), chunk_size);
AES_cbc_encrypt(in.data(), out.data(), todo, &aes, ivec, encrypt);
in = in.subspan(todo);
out = out.subspan(todo);
} while (!in.empty());
}
EXPECT_EQ(Bytes(expected), Bytes(result));
} else if (is_ofb) {
int num = 0;
if (chunk_size == 0) {
AES_ofb128_encrypt(in.data(), out.data(), in.size(), &aes, ivec, &num);
} else {
do {
size_t todo = std::min(in.size(), chunk_size);
AES_ofb128_encrypt(in.data(), out.data(), todo, &aes, ivec, &num);
in = in.subspan(todo);
out = out.subspan(todo);
} while (!in.empty());
}
EXPECT_EQ(Bytes(expected), Bytes(result));
}
}
static void TestCipher(const EVP_CIPHER *cipher, Operation input_op,
bool padding, bssl::Span<const uint8_t> key,
bssl::Span<const uint8_t> iv,
bssl::Span<const uint8_t> plaintext,
bssl::Span<const uint8_t> ciphertext,
bssl::Span<const uint8_t> aad,
bssl::Span<const uint8_t> tag) {
size_t block_size = EVP_CIPHER_block_size(cipher);
std::vector<Operation> ops;
if (input_op == Operation::kBoth) {
ops = {Operation::kEncrypt, Operation::kDecrypt};
} else {
ops = {input_op};
}
for (Operation op : ops) {
SCOPED_TRACE(OperationToString(op));
// Zero indicates a single-shot API.
static const size_t kChunkSizes[] = {0, 1, 2, 5, 7, 8, 9, 15, 16,
17, 31, 32, 33, 63, 64, 65, 512};
for (size_t chunk_size : kChunkSizes) {
SCOPED_TRACE(chunk_size);
if (chunk_size > plaintext.size() && chunk_size > ciphertext.size() &&
chunk_size > aad.size()) {
continue;
}
for (bool in_place : {false, true}) {
SCOPED_TRACE(in_place);
for (bool copy : {false, true}) {
SCOPED_TRACE(copy);
TestCipherAPI(cipher, op, padding, copy, in_place,
/*use_evp_cipher=*/false, chunk_size, key, iv,
plaintext, ciphertext, aad, tag);
if (!padding && chunk_size % block_size == 0) {
TestCipherAPI(cipher, op, padding, copy, in_place,
/*use_evp_cipher=*/true, chunk_size, key, iv,
plaintext, ciphertext, aad, tag);
}
}
if (!padding) {
TestLowLevelAPI(cipher, op, in_place, chunk_size, key, iv, plaintext,
ciphertext);
}
}
}
}
}
static void CipherFileTest(FileTest *t) {
std::string cipher_str;
ASSERT_TRUE(t->GetAttribute(&cipher_str, "Cipher"));
const EVP_CIPHER *cipher = GetCipher(cipher_str);
ASSERT_TRUE(cipher);
std::vector<uint8_t> key, iv, plaintext, ciphertext, aad, tag;
ASSERT_TRUE(t->GetBytes(&key, "Key"));
ASSERT_TRUE(t->GetBytes(&plaintext, "Plaintext"));
ASSERT_TRUE(t->GetBytes(&ciphertext, "Ciphertext"));
if (EVP_CIPHER_iv_length(cipher) > 0) {
ASSERT_TRUE(t->GetBytes(&iv, "IV"));
}
if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE) {
ASSERT_TRUE(t->GetBytes(&aad, "AAD"));
ASSERT_TRUE(t->GetBytes(&tag, "Tag"));
}
Operation op = Operation::kBoth;
if (t->HasAttribute("Operation")) {
const std::string &str = t->GetAttributeOrDie("Operation");
if (str == "Encrypt" || str == "ENCRYPT") {
op = Operation::kEncrypt;
} else if (str == "Decrypt" || str == "DECRYPT") {
op = Operation::kDecrypt;
} else if (str == "InvalidDecrypt") {
op = Operation::kInvalidDecrypt;
} else {
FAIL() << "Unknown operation: " << str;
}
}
TestCipher(cipher, op, /*padding=*/false, key, iv, plaintext, ciphertext, aad,
tag);
}
TEST(CipherTest, TestVectors) {
FileTestGTest("crypto/cipher_extra/test/cipher_tests.txt", CipherFileTest);
}
TEST(CipherTest, CAVP_AES_128_CBC) {
FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_128_cbc.txt",
CipherFileTest);
}
TEST(CipherTest, CAVP_AES_128_CTR) {
FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_128_ctr.txt",
CipherFileTest);
}
TEST(CipherTest, CAVP_AES_192_CBC) {
FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_192_cbc.txt",
CipherFileTest);
}
TEST(CipherTest, CAVP_AES_192_CTR) {
FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_192_ctr.txt",
CipherFileTest);
}
TEST(CipherTest, CAVP_AES_256_CBC) {
FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_256_cbc.txt",
CipherFileTest);
}
TEST(CipherTest, CAVP_AES_256_CTR) {
FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_256_ctr.txt",
CipherFileTest);
}
TEST(CipherTest, CAVP_TDES_CBC) {
FileTestGTest("crypto/cipher_extra/test/nist_cavp/tdes_cbc.txt",
CipherFileTest);
}
TEST(CipherTest, CAVP_TDES_ECB) {
FileTestGTest("crypto/cipher_extra/test/nist_cavp/tdes_ecb.txt",
CipherFileTest);
}
TEST(CipherTest, WycheproofAESCBC) {
FileTestGTest("third_party/wycheproof_testvectors/aes_cbc_pkcs5_test.txt",
[](FileTest *t) {
t->IgnoreInstruction("type");
t->IgnoreInstruction("ivSize");
std::string key_size;
ASSERT_TRUE(t->GetInstruction(&key_size, "keySize"));
const EVP_CIPHER *cipher;
switch (atoi(key_size.c_str())) {
case 128:
cipher = EVP_aes_128_cbc();
break;
case 192:
cipher = EVP_aes_192_cbc();
break;
case 256:
cipher = EVP_aes_256_cbc();
break;
default:
FAIL() << "Unsupported key size: " << key_size;
}
std::vector<uint8_t> key, iv, msg, ct;
ASSERT_TRUE(t->GetBytes(&key, "key"));
ASSERT_TRUE(t->GetBytes(&iv, "iv"));
ASSERT_TRUE(t->GetBytes(&msg, "msg"));
ASSERT_TRUE(t->GetBytes(&ct, "ct"));
WycheproofResult result;
ASSERT_TRUE(GetWycheproofResult(t, &result));
TestCipher(cipher,
result.IsValid() ? Operation::kBoth
: Operation::kInvalidDecrypt,
/*padding=*/true, key, iv, msg, ct, /*aad=*/{},
/*tag=*/{});
});
}
TEST(CipherTest, SHA1WithSecretSuffix) {
uint8_t buf[SHA_CBLOCK * 4];
RAND_bytes(buf, sizeof(buf));
// Hashing should run in time independent of the bytes.
CONSTTIME_SECRET(buf, sizeof(buf));
// Exhaustively testing interesting cases in this function is cubic in the
// block size, so we test in 3-byte increments.
constexpr size_t kSkip = 3;
// This value should be less than 8 to test the edge case when the 8-byte
// length wraps to the next block.
static_assert(kSkip < 8, "kSkip is too large");
// |EVP_sha1_final_with_secret_suffix| is sensitive to the public length of
// the partial block previously hashed. In TLS, this is the HMAC prefix, the
// header, and the public minimum padding length.
for (size_t prefix = 0; prefix < SHA_CBLOCK; prefix += kSkip) {
SCOPED_TRACE(prefix);
// The first block is treated differently, so we run with up to three
// blocks of length variability.
for (size_t max_len = 0; max_len < 3 * SHA_CBLOCK; max_len += kSkip) {
SCOPED_TRACE(max_len);
for (size_t len = 0; len <= max_len; len += kSkip) {
SCOPED_TRACE(len);
uint8_t expected[SHA_DIGEST_LENGTH];
SHA1(buf, prefix + len, expected);
CONSTTIME_DECLASSIFY(expected, sizeof(expected));
// Make a copy of the secret length to avoid interfering with the loop.
size_t secret_len = len;
CONSTTIME_SECRET(&secret_len, sizeof(secret_len));
SHA_CTX ctx;
SHA1_Init(&ctx);
SHA1_Update(&ctx, buf, prefix);
uint8_t computed[SHA_DIGEST_LENGTH];
ASSERT_TRUE(EVP_sha1_final_with_secret_suffix(
&ctx, computed, buf + prefix, secret_len, max_len));
CONSTTIME_DECLASSIFY(computed, sizeof(computed));
EXPECT_EQ(Bytes(expected), Bytes(computed));
}
}
}
}
TEST(CipherTest, SHA256WithSecretSuffix) {
uint8_t buf[SHA256_CBLOCK * 4];
RAND_bytes(buf, sizeof(buf));
// Hashing should run in time independent of the bytes.
CONSTTIME_SECRET(buf, sizeof(buf));
// Exhaustively testing interesting cases in this function is cubic in the
// block size, so we test in 3-byte increments.
constexpr size_t kSkip = 3;
// This value should be less than 8 to test the edge case when the 8-byte
// length wraps to the next block.
static_assert(kSkip < 8, "kSkip is too large");
// |EVP_sha256_final_with_secret_suffix| is sensitive to the public length of
// the partial block previously hashed. In TLS, this is the HMAC prefix, the
// header, and the public minimum padding length.
for (size_t prefix = 0; prefix < SHA256_CBLOCK; prefix += kSkip) {
SCOPED_TRACE(prefix);
// The first block is treated differently, so we run with up to three
// blocks of length variability.
for (size_t max_len = 0; max_len < 3 * SHA256_CBLOCK; max_len += kSkip) {
SCOPED_TRACE(max_len);
for (size_t len = 0; len <= max_len; len += kSkip) {
SCOPED_TRACE(len);
uint8_t expected[SHA256_DIGEST_LENGTH];
SHA256(buf, prefix + len, expected);
CONSTTIME_DECLASSIFY(expected, sizeof(expected));
// Make a copy of the secret length to avoid interfering with the loop.
size_t secret_len = len;
CONSTTIME_SECRET(&secret_len, sizeof(secret_len));
SHA256_CTX ctx;
SHA256_Init(&ctx);
SHA256_Update(&ctx, buf, prefix);
uint8_t computed[SHA256_DIGEST_LENGTH];
ASSERT_TRUE(EVP_sha256_final_with_secret_suffix(
&ctx, computed, buf + prefix, secret_len, max_len));
CONSTTIME_DECLASSIFY(computed, sizeof(computed));
EXPECT_EQ(Bytes(expected), Bytes(computed));
}
}
}
}
TEST(CipherTest, GetCipher) {
const EVP_CIPHER *cipher = EVP_get_cipherbynid(NID_aes_128_gcm);
ASSERT_TRUE(cipher);
EXPECT_EQ(NID_aes_128_gcm, EVP_CIPHER_nid(cipher));
cipher = EVP_get_cipherbyname("aes-128-gcm");
ASSERT_TRUE(cipher);
EXPECT_EQ(NID_aes_128_gcm, EVP_CIPHER_nid(cipher));
cipher = EVP_get_cipherbyname("AES-128-GCM");
ASSERT_TRUE(cipher);
EXPECT_EQ(NID_aes_128_gcm, EVP_CIPHER_nid(cipher));
// We support a tcpdump-specific alias for 3DES.
cipher = EVP_get_cipherbyname("3des");
ASSERT_TRUE(cipher);
EXPECT_EQ(NID_des_ede3_cbc, EVP_CIPHER_nid(cipher));
}