Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
527 lines
15 KiB
527 lines
15 KiB
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] */ |
|
|
|
#include <assert.h> |
|
#include <errno.h> |
|
#include <stdio.h> |
|
#include <string.h> |
|
|
|
#include <openssl/base64.h> |
|
#include <openssl/bio.h> |
|
#include <openssl/buffer.h> |
|
#include <openssl/evp.h> |
|
#include <openssl/mem.h> |
|
|
|
#include "../../crypto/internal.h" |
|
|
|
|
|
#define B64_BLOCK_SIZE 1024 |
|
#define B64_BLOCK_SIZE2 768 |
|
#define B64_NONE 0 |
|
#define B64_ENCODE 1 |
|
#define B64_DECODE 2 |
|
#define EVP_ENCODE_LENGTH(l) (((l+2)/3*4)+(l/48+1)*2+80) |
|
|
|
typedef struct b64_struct { |
|
int buf_len; |
|
int buf_off; |
|
int tmp_len; // used to find the start when decoding |
|
int tmp_nl; // If true, scan until '\n' |
|
int encode; |
|
int start; // have we started decoding yet? |
|
int cont; // <= 0 when finished |
|
EVP_ENCODE_CTX base64; |
|
char buf[EVP_ENCODE_LENGTH(B64_BLOCK_SIZE) + 10]; |
|
char tmp[B64_BLOCK_SIZE]; |
|
} BIO_B64_CTX; |
|
|
|
static int b64_new(BIO *bio) { |
|
BIO_B64_CTX *ctx; |
|
|
|
ctx = OPENSSL_malloc(sizeof(*ctx)); |
|
if (ctx == NULL) { |
|
return 0; |
|
} |
|
|
|
OPENSSL_memset(ctx, 0, sizeof(*ctx)); |
|
|
|
ctx->cont = 1; |
|
ctx->start = 1; |
|
|
|
bio->init = 1; |
|
bio->ptr = (char *)ctx; |
|
return 1; |
|
} |
|
|
|
static int b64_free(BIO *bio) { |
|
if (bio == NULL) { |
|
return 0; |
|
} |
|
OPENSSL_free(bio->ptr); |
|
bio->ptr = NULL; |
|
bio->init = 0; |
|
bio->flags = 0; |
|
return 1; |
|
} |
|
|
|
static int b64_read(BIO *b, char *out, int outl) { |
|
int ret = 0, i, ii, j, k, x, n, num, ret_code = 0; |
|
BIO_B64_CTX *ctx; |
|
uint8_t *p, *q; |
|
|
|
if (out == NULL) { |
|
return 0; |
|
} |
|
ctx = (BIO_B64_CTX *) b->ptr; |
|
|
|
if (ctx == NULL || b->next_bio == NULL) { |
|
return 0; |
|
} |
|
|
|
BIO_clear_retry_flags(b); |
|
|
|
if (ctx->encode != B64_DECODE) { |
|
ctx->encode = B64_DECODE; |
|
ctx->buf_len = 0; |
|
ctx->buf_off = 0; |
|
ctx->tmp_len = 0; |
|
EVP_DecodeInit(&ctx->base64); |
|
} |
|
|
|
// First check if there are bytes decoded/encoded |
|
if (ctx->buf_len > 0) { |
|
assert(ctx->buf_len >= ctx->buf_off); |
|
i = ctx->buf_len - ctx->buf_off; |
|
if (i > outl) { |
|
i = outl; |
|
} |
|
assert(ctx->buf_off + i < (int)sizeof(ctx->buf)); |
|
OPENSSL_memcpy(out, &ctx->buf[ctx->buf_off], i); |
|
ret = i; |
|
out += i; |
|
outl -= i; |
|
ctx->buf_off += i; |
|
if (ctx->buf_len == ctx->buf_off) { |
|
ctx->buf_len = 0; |
|
ctx->buf_off = 0; |
|
} |
|
} |
|
|
|
// At this point, we have room of outl bytes and an empty buffer, so we |
|
// should read in some more. |
|
|
|
ret_code = 0; |
|
while (outl > 0) { |
|
if (ctx->cont <= 0) { |
|
break; |
|
} |
|
|
|
i = BIO_read(b->next_bio, &(ctx->tmp[ctx->tmp_len]), |
|
B64_BLOCK_SIZE - ctx->tmp_len); |
|
|
|
if (i <= 0) { |
|
ret_code = i; |
|
|
|
// Should we continue next time we are called? |
|
if (!BIO_should_retry(b->next_bio)) { |
|
ctx->cont = i; |
|
// If buffer empty break |
|
if (ctx->tmp_len == 0) { |
|
break; |
|
} else { |
|
// Fall through and process what we have |
|
i = 0; |
|
} |
|
} else { |
|
// else we retry and add more data to buffer |
|
break; |
|
} |
|
} |
|
i += ctx->tmp_len; |
|
ctx->tmp_len = i; |
|
|
|
// We need to scan, a line at a time until we have a valid line if we are |
|
// starting. |
|
if (ctx->start && (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL))) { |
|
// ctx->start = 1; |
|
ctx->tmp_len = 0; |
|
} else if (ctx->start) { |
|
q = p = (uint8_t *)ctx->tmp; |
|
num = 0; |
|
for (j = 0; j < i; j++) { |
|
if (*(q++) != '\n') { |
|
continue; |
|
} |
|
|
|
// due to a previous very long line, we need to keep on scanning for a |
|
// '\n' before we even start looking for base64 encoded stuff. |
|
if (ctx->tmp_nl) { |
|
p = q; |
|
ctx->tmp_nl = 0; |
|
continue; |
|
} |
|
|
|
k = EVP_DecodeUpdate(&(ctx->base64), (uint8_t *)ctx->buf, &num, p, |
|
q - p); |
|
|
|
if (k <= 0 && num == 0 && ctx->start) { |
|
EVP_DecodeInit(&ctx->base64); |
|
} else { |
|
if (p != (uint8_t *)&(ctx->tmp[0])) { |
|
i -= (p - (uint8_t *)&(ctx->tmp[0])); |
|
for (x = 0; x < i; x++) { |
|
ctx->tmp[x] = p[x]; |
|
} |
|
} |
|
EVP_DecodeInit(&ctx->base64); |
|
ctx->start = 0; |
|
break; |
|
} |
|
p = q; |
|
} |
|
|
|
// we fell off the end without starting |
|
if (j == i && num == 0) { |
|
// Is this is one long chunk?, if so, keep on reading until a new |
|
// line. |
|
if (p == (uint8_t *)&(ctx->tmp[0])) { |
|
// Check buffer full |
|
if (i == B64_BLOCK_SIZE) { |
|
ctx->tmp_nl = 1; |
|
ctx->tmp_len = 0; |
|
} |
|
} else if (p != q) { // finished on a '\n' |
|
n = q - p; |
|
for (ii = 0; ii < n; ii++) { |
|
ctx->tmp[ii] = p[ii]; |
|
} |
|
ctx->tmp_len = n; |
|
} |
|
// else finished on a '\n' |
|
continue; |
|
} else { |
|
ctx->tmp_len = 0; |
|
} |
|
} else if (i < B64_BLOCK_SIZE && ctx->cont > 0) { |
|
// If buffer isn't full and we can retry then restart to read in more |
|
// data. |
|
continue; |
|
} |
|
|
|
if (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL)) { |
|
int z, jj; |
|
|
|
jj = i & ~3; // process per 4 |
|
z = EVP_DecodeBlock((uint8_t *)ctx->buf, (uint8_t *)ctx->tmp, jj); |
|
if (jj > 2) { |
|
if (ctx->tmp[jj - 1] == '=') { |
|
z--; |
|
if (ctx->tmp[jj - 2] == '=') { |
|
z--; |
|
} |
|
} |
|
} |
|
// z is now number of output bytes and jj is the number consumed. |
|
if (jj != i) { |
|
OPENSSL_memmove(ctx->tmp, &ctx->tmp[jj], i - jj); |
|
ctx->tmp_len = i - jj; |
|
} |
|
ctx->buf_len = 0; |
|
if (z > 0) { |
|
ctx->buf_len = z; |
|
} |
|
i = z; |
|
} else { |
|
i = EVP_DecodeUpdate(&(ctx->base64), (uint8_t *)ctx->buf, |
|
&ctx->buf_len, (uint8_t *)ctx->tmp, i); |
|
ctx->tmp_len = 0; |
|
} |
|
ctx->buf_off = 0; |
|
if (i < 0) { |
|
ret_code = 0; |
|
ctx->buf_len = 0; |
|
break; |
|
} |
|
|
|
if (ctx->buf_len <= outl) { |
|
i = ctx->buf_len; |
|
} else { |
|
i = outl; |
|
} |
|
|
|
OPENSSL_memcpy(out, ctx->buf, i); |
|
ret += i; |
|
ctx->buf_off = i; |
|
if (ctx->buf_off == ctx->buf_len) { |
|
ctx->buf_len = 0; |
|
ctx->buf_off = 0; |
|
} |
|
outl -= i; |
|
out += i; |
|
} |
|
|
|
BIO_copy_next_retry(b); |
|
return ret == 0 ? ret_code : ret; |
|
} |
|
|
|
static int b64_write(BIO *b, const char *in, int inl) { |
|
int ret = 0, n, i; |
|
BIO_B64_CTX *ctx; |
|
|
|
ctx = (BIO_B64_CTX *)b->ptr; |
|
BIO_clear_retry_flags(b); |
|
|
|
if (ctx->encode != B64_ENCODE) { |
|
ctx->encode = B64_ENCODE; |
|
ctx->buf_len = 0; |
|
ctx->buf_off = 0; |
|
ctx->tmp_len = 0; |
|
EVP_EncodeInit(&(ctx->base64)); |
|
} |
|
|
|
assert(ctx->buf_off < (int)sizeof(ctx->buf)); |
|
assert(ctx->buf_len <= (int)sizeof(ctx->buf)); |
|
assert(ctx->buf_len >= ctx->buf_off); |
|
|
|
n = ctx->buf_len - ctx->buf_off; |
|
while (n > 0) { |
|
i = BIO_write(b->next_bio, &(ctx->buf[ctx->buf_off]), n); |
|
if (i <= 0) { |
|
BIO_copy_next_retry(b); |
|
return i; |
|
} |
|
assert(i <= n); |
|
ctx->buf_off += i; |
|
assert(ctx->buf_off <= (int)sizeof(ctx->buf)); |
|
assert(ctx->buf_len >= ctx->buf_off); |
|
n -= i; |
|
} |
|
|
|
// at this point all pending data has been written. |
|
ctx->buf_off = 0; |
|
ctx->buf_len = 0; |
|
|
|
if (in == NULL || inl <= 0) { |
|
return 0; |
|
} |
|
|
|
while (inl > 0) { |
|
n = (inl > B64_BLOCK_SIZE) ? B64_BLOCK_SIZE : inl; |
|
|
|
if (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL)) { |
|
if (ctx->tmp_len > 0) { |
|
assert(ctx->tmp_len <= 3); |
|
n = 3 - ctx->tmp_len; |
|
// There's a theoretical possibility of this. |
|
if (n > inl) { |
|
n = inl; |
|
} |
|
OPENSSL_memcpy(&(ctx->tmp[ctx->tmp_len]), in, n); |
|
ctx->tmp_len += n; |
|
ret += n; |
|
if (ctx->tmp_len < 3) { |
|
break; |
|
} |
|
ctx->buf_len = EVP_EncodeBlock((uint8_t *)ctx->buf, (uint8_t *)ctx->tmp, |
|
ctx->tmp_len); |
|
assert(ctx->buf_len <= (int)sizeof(ctx->buf)); |
|
assert(ctx->buf_len >= ctx->buf_off); |
|
|
|
// Since we're now done using the temporary buffer, the length should |
|
// be zeroed. |
|
ctx->tmp_len = 0; |
|
} else { |
|
if (n < 3) { |
|
OPENSSL_memcpy(ctx->tmp, in, n); |
|
ctx->tmp_len = n; |
|
ret += n; |
|
break; |
|
} |
|
n -= n % 3; |
|
ctx->buf_len = |
|
EVP_EncodeBlock((uint8_t *)ctx->buf, (const uint8_t *)in, n); |
|
assert(ctx->buf_len <= (int)sizeof(ctx->buf)); |
|
assert(ctx->buf_len >= ctx->buf_off); |
|
ret += n; |
|
} |
|
} else { |
|
EVP_EncodeUpdate(&(ctx->base64), (uint8_t *)ctx->buf, &ctx->buf_len, |
|
(uint8_t *)in, n); |
|
assert(ctx->buf_len <= (int)sizeof(ctx->buf)); |
|
assert(ctx->buf_len >= ctx->buf_off); |
|
ret += n; |
|
} |
|
inl -= n; |
|
in += n; |
|
|
|
ctx->buf_off = 0; |
|
n = ctx->buf_len; |
|
|
|
while (n > 0) { |
|
i = BIO_write(b->next_bio, &(ctx->buf[ctx->buf_off]), n); |
|
if (i <= 0) { |
|
BIO_copy_next_retry(b); |
|
return ret == 0 ? i : ret; |
|
} |
|
assert(i <= n); |
|
n -= i; |
|
ctx->buf_off += i; |
|
assert(ctx->buf_off <= (int)sizeof(ctx->buf)); |
|
assert(ctx->buf_len >= ctx->buf_off); |
|
} |
|
ctx->buf_len = 0; |
|
ctx->buf_off = 0; |
|
} |
|
return ret; |
|
} |
|
|
|
static long b64_ctrl(BIO *b, int cmd, long num, void *ptr) { |
|
BIO_B64_CTX *ctx; |
|
long ret = 1; |
|
int i; |
|
|
|
ctx = (BIO_B64_CTX *)b->ptr; |
|
|
|
switch (cmd) { |
|
case BIO_CTRL_RESET: |
|
ctx->cont = 1; |
|
ctx->start = 1; |
|
ctx->encode = B64_NONE; |
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
|
break; |
|
|
|
case BIO_CTRL_EOF: // More to read |
|
if (ctx->cont <= 0) { |
|
ret = 1; |
|
} else { |
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
|
} |
|
break; |
|
|
|
case BIO_CTRL_WPENDING: // More to write in buffer |
|
assert(ctx->buf_len >= ctx->buf_off); |
|
ret = ctx->buf_len - ctx->buf_off; |
|
if ((ret == 0) && (ctx->encode != B64_NONE) && (ctx->base64.data_used != 0)) { |
|
ret = 1; |
|
} else if (ret <= 0) { |
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
|
} |
|
break; |
|
|
|
case BIO_CTRL_PENDING: // More to read in buffer |
|
assert(ctx->buf_len >= ctx->buf_off); |
|
ret = ctx->buf_len - ctx->buf_off; |
|
if (ret <= 0) { |
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
|
} |
|
break; |
|
|
|
case BIO_CTRL_FLUSH: |
|
// do a final write |
|
again: |
|
while (ctx->buf_len != ctx->buf_off) { |
|
i = b64_write(b, NULL, 0); |
|
if (i < 0) { |
|
return i; |
|
} |
|
} |
|
if (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL)) { |
|
if (ctx->tmp_len != 0) { |
|
ctx->buf_len = EVP_EncodeBlock((uint8_t *)ctx->buf, |
|
(uint8_t *)ctx->tmp, ctx->tmp_len); |
|
ctx->buf_off = 0; |
|
ctx->tmp_len = 0; |
|
goto again; |
|
} |
|
} else if (ctx->encode != B64_NONE && ctx->base64.data_used != 0) { |
|
ctx->buf_off = 0; |
|
EVP_EncodeFinal(&(ctx->base64), (uint8_t *)ctx->buf, &(ctx->buf_len)); |
|
// push out the bytes |
|
goto again; |
|
} |
|
// Finally flush the underlying BIO |
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
|
break; |
|
|
|
case BIO_C_DO_STATE_MACHINE: |
|
BIO_clear_retry_flags(b); |
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
|
BIO_copy_next_retry(b); |
|
break; |
|
|
|
case BIO_CTRL_INFO: |
|
case BIO_CTRL_GET: |
|
case BIO_CTRL_SET: |
|
default: |
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
|
break; |
|
} |
|
return ret; |
|
} |
|
|
|
static long b64_callback_ctrl(BIO *b, int cmd, bio_info_cb fp) { |
|
if (b->next_bio == NULL) { |
|
return 0; |
|
} |
|
return BIO_callback_ctrl(b->next_bio, cmd, fp); |
|
} |
|
|
|
static const BIO_METHOD b64_method = { |
|
BIO_TYPE_BASE64, "base64 encoding", b64_write, b64_read, NULL /* puts */, |
|
NULL /* gets */, b64_ctrl, b64_new, b64_free, b64_callback_ctrl, |
|
}; |
|
|
|
const BIO_METHOD *BIO_f_base64(void) { return &b64_method; }
|
|
|