Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2483 lines
91 KiB
2483 lines
91 KiB
/* Copyright (c) 2016, Google Inc. |
|
* |
|
* Permission to use, copy, modify, and/or distribute this software for any |
|
* purpose with or without fee is hereby granted, provided that the above |
|
* copyright notice and this permission notice appear in all copies. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
|
|
|
#include <limits.h> |
|
#include <stdio.h> |
|
|
|
#include <map> |
|
#include <string> |
|
#include <vector> |
|
|
|
#include <gtest/gtest.h> |
|
|
|
#include <openssl/asn1.h> |
|
#include <openssl/asn1t.h> |
|
#include <openssl/bio.h> |
|
#include <openssl/bytestring.h> |
|
#include <openssl/err.h> |
|
#include <openssl/mem.h> |
|
#include <openssl/obj.h> |
|
#include <openssl/span.h> |
|
#include <openssl/x509v3.h> |
|
|
|
#include "../test/test_util.h" |
|
#include "internal.h" |
|
|
|
#if defined(OPENSSL_THREADS) |
|
#include <thread> |
|
#endif |
|
|
|
|
|
// kTag128 is an ASN.1 structure with a universal tag with number 128. |
|
static const uint8_t kTag128[] = { |
|
0x1f, 0x81, 0x00, 0x01, 0x00, |
|
}; |
|
|
|
// kTag258 is an ASN.1 structure with a universal tag with number 258. |
|
static const uint8_t kTag258[] = { |
|
0x1f, 0x82, 0x02, 0x01, 0x00, |
|
}; |
|
|
|
static_assert(V_ASN1_NEG_INTEGER == 258, |
|
"V_ASN1_NEG_INTEGER changed. Update kTag258 to collide with it."); |
|
|
|
// kTagOverflow is an ASN.1 structure with a universal tag with number 2^35-1, |
|
// which will not fit in an int. |
|
static const uint8_t kTagOverflow[] = { |
|
0x1f, 0xff, 0xff, 0xff, 0xff, 0x7f, 0x01, 0x00, |
|
}; |
|
|
|
TEST(ASN1Test, LargeTags) { |
|
const uint8_t *p = kTag258; |
|
bssl::UniquePtr<ASN1_TYPE> obj(d2i_ASN1_TYPE(NULL, &p, sizeof(kTag258))); |
|
EXPECT_FALSE(obj) << "Parsed value with illegal tag" << obj->type; |
|
ERR_clear_error(); |
|
|
|
p = kTagOverflow; |
|
obj.reset(d2i_ASN1_TYPE(NULL, &p, sizeof(kTagOverflow))); |
|
EXPECT_FALSE(obj) << "Parsed value with tag overflow" << obj->type; |
|
ERR_clear_error(); |
|
|
|
p = kTag128; |
|
obj.reset(d2i_ASN1_TYPE(NULL, &p, sizeof(kTag128))); |
|
ASSERT_TRUE(obj); |
|
EXPECT_EQ(128, obj->type); |
|
const uint8_t kZero = 0; |
|
EXPECT_EQ(Bytes(&kZero, 1), Bytes(obj->value.asn1_string->data, |
|
obj->value.asn1_string->length)); |
|
} |
|
|
|
// |obj| and |i2d_func| require different template parameters because C++ may |
|
// deduce, say, |ASN1_STRING*| via |obj| and |const ASN1_STRING*| via |
|
// |i2d_func|. Template argument deduction then fails. The language is not able |
|
// to resolve this by observing that |const ASN1_STRING*| works for both. |
|
template <typename T, typename U> |
|
void TestSerialize(T obj, int (*i2d_func)(U a, uint8_t **pp), |
|
bssl::Span<const uint8_t> expected) { |
|
static_assert(std::is_convertible<T, U>::value, |
|
"incompatible parameter to i2d_func"); |
|
// Test the allocating version first. It is easiest to debug. |
|
uint8_t *ptr = nullptr; |
|
int len = i2d_func(obj, &ptr); |
|
ASSERT_GT(len, 0); |
|
EXPECT_EQ(Bytes(expected), Bytes(ptr, len)); |
|
OPENSSL_free(ptr); |
|
|
|
len = i2d_func(obj, nullptr); |
|
ASSERT_GT(len, 0); |
|
EXPECT_EQ(len, static_cast<int>(expected.size())); |
|
|
|
std::vector<uint8_t> buf(len); |
|
ptr = buf.data(); |
|
len = i2d_func(obj, &ptr); |
|
ASSERT_EQ(len, static_cast<int>(expected.size())); |
|
EXPECT_EQ(ptr, buf.data() + buf.size()); |
|
EXPECT_EQ(Bytes(expected), Bytes(buf)); |
|
} |
|
|
|
static bssl::UniquePtr<BIGNUM> BIGNUMPow2(unsigned bit) { |
|
bssl::UniquePtr<BIGNUM> bn(BN_new()); |
|
if (!bn || |
|
!BN_set_bit(bn.get(), bit)) { |
|
return nullptr; |
|
} |
|
return bn; |
|
} |
|
|
|
TEST(ASN1Test, Integer) { |
|
bssl::UniquePtr<BIGNUM> int64_min = BIGNUMPow2(63); |
|
ASSERT_TRUE(int64_min); |
|
BN_set_negative(int64_min.get(), 1); |
|
|
|
bssl::UniquePtr<BIGNUM> int64_max = BIGNUMPow2(63); |
|
ASSERT_TRUE(int64_max); |
|
ASSERT_TRUE(BN_sub_word(int64_max.get(), 1)); |
|
|
|
bssl::UniquePtr<BIGNUM> int32_min = BIGNUMPow2(31); |
|
ASSERT_TRUE(int32_min); |
|
BN_set_negative(int32_min.get(), 1); |
|
|
|
bssl::UniquePtr<BIGNUM> int32_max = BIGNUMPow2(31); |
|
ASSERT_TRUE(int32_max); |
|
ASSERT_TRUE(BN_sub_word(int32_max.get(), 1)); |
|
|
|
struct { |
|
// der is the DER encoding of the INTEGER, including the tag and length. |
|
std::vector<uint8_t> der; |
|
// type and data are the corresponding fields of the |ASN1_STRING| |
|
// representation. |
|
int type; |
|
std::vector<uint8_t> data; |
|
// bn_asc is the |BIGNUM| representation, as parsed by the |BN_asc2bn| |
|
// function. |
|
const char *bn_asc; |
|
} kTests[] = { |
|
// -2^64 - 1 |
|
{{0x02, 0x09, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, |
|
V_ASN1_NEG_INTEGER, |
|
{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
|
"-0x10000000000000001"}, |
|
// -2^64 |
|
{{0x02, 0x09, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
|
V_ASN1_NEG_INTEGER, |
|
{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
|
"-0x10000000000000000"}, |
|
// -2^64 + 1 |
|
{{0x02, 0x09, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
|
V_ASN1_NEG_INTEGER, |
|
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, |
|
"-0xffffffffffffffff"}, |
|
// -2^63 - 1 |
|
{{0x02, 0x09, 0xff, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, |
|
V_ASN1_NEG_INTEGER, |
|
{0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
|
"-0x8000000000000001"}, |
|
// -2^63 (INT64_MIN) |
|
{{0x02, 0x08, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
|
V_ASN1_NEG_INTEGER, |
|
{0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
|
"-0x8000000000000000"}, |
|
// -2^63 + 1 |
|
{{0x02, 0x08, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
|
V_ASN1_NEG_INTEGER, |
|
{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, |
|
"-0x7fffffffffffffff"}, |
|
// -2^32 - 1 |
|
{{0x02, 0x05, 0xfe, 0xff, 0xff, 0xff, 0xff}, |
|
V_ASN1_NEG_INTEGER, |
|
{0x01, 0x00, 0x00, 0x00, 0x01}, |
|
"-0x100000001"}, |
|
// -2^32 |
|
{{0x02, 0x05, 0xff, 0x00, 0x00, 0x00, 0x00}, |
|
V_ASN1_NEG_INTEGER, |
|
{0x01, 0x00, 0x00, 0x00, 0x00}, |
|
"-0x100000000"}, |
|
// -2^32 + 1 |
|
{{0x02, 0x05, 0xff, 0x00, 0x00, 0x00, 0x01}, |
|
V_ASN1_NEG_INTEGER, |
|
{0xff, 0xff, 0xff, 0xff}, |
|
"-0xffffffff"}, |
|
// -2^31 - 1 |
|
{{0x02, 0x05, 0xff, 0x7f, 0xff, 0xff, 0xff}, |
|
V_ASN1_NEG_INTEGER, |
|
{0x80, 0x00, 0x00, 0x01}, |
|
"-0x80000001"}, |
|
// -2^31 (INT32_MIN) |
|
{{0x02, 0x04, 0x80, 0x00, 0x00, 0x00}, |
|
V_ASN1_NEG_INTEGER, |
|
{0x80, 0x00, 0x00, 0x00}, |
|
"-0x80000000"}, |
|
// -2^31 + 1 |
|
{{0x02, 0x04, 0x80, 0x00, 0x00, 0x01}, |
|
V_ASN1_NEG_INTEGER, |
|
{0x7f, 0xff, 0xff, 0xff}, |
|
"-0x7fffffff"}, |
|
// -257 |
|
{{0x02, 0x02, 0xfe, 0xff}, V_ASN1_NEG_INTEGER, {0x01, 0x01}, "-257"}, |
|
// -256 |
|
{{0x02, 0x02, 0xff, 0x00}, V_ASN1_NEG_INTEGER, {0x01, 0x00}, "-256"}, |
|
// -255 |
|
{{0x02, 0x02, 0xff, 0x01}, V_ASN1_NEG_INTEGER, {0xff}, "-255"}, |
|
// -129 |
|
{{0x02, 0x02, 0xff, 0x7f}, V_ASN1_NEG_INTEGER, {0x81}, "-129"}, |
|
// -128 |
|
{{0x02, 0x01, 0x80}, V_ASN1_NEG_INTEGER, {0x80}, "-128"}, |
|
// -127 |
|
{{0x02, 0x01, 0x81}, V_ASN1_NEG_INTEGER, {0x7f}, "-127"}, |
|
// -1 |
|
{{0x02, 0x01, 0xff}, V_ASN1_NEG_INTEGER, {0x01}, "-1"}, |
|
// 0 |
|
{{0x02, 0x01, 0x00}, V_ASN1_INTEGER, {}, "0"}, |
|
// 1 |
|
{{0x02, 0x01, 0x01}, V_ASN1_INTEGER, {0x01}, "1"}, |
|
// 127 |
|
{{0x02, 0x01, 0x7f}, V_ASN1_INTEGER, {0x7f}, "127"}, |
|
// 128 |
|
{{0x02, 0x02, 0x00, 0x80}, V_ASN1_INTEGER, {0x80}, "128"}, |
|
// 129 |
|
{{0x02, 0x02, 0x00, 0x81}, V_ASN1_INTEGER, {0x81}, "129"}, |
|
// 255 |
|
{{0x02, 0x02, 0x00, 0xff}, V_ASN1_INTEGER, {0xff}, "255"}, |
|
// 256 |
|
{{0x02, 0x02, 0x01, 0x00}, V_ASN1_INTEGER, {0x01, 0x00}, "256"}, |
|
// 257 |
|
{{0x02, 0x02, 0x01, 0x01}, V_ASN1_INTEGER, {0x01, 0x01}, "257"}, |
|
// 2^31 - 2 |
|
{{0x02, 0x04, 0x7f, 0xff, 0xff, 0xfe}, |
|
V_ASN1_INTEGER, |
|
{0x7f, 0xff, 0xff, 0xfe}, |
|
"0x7ffffffe"}, |
|
// 2^31 - 1 (INT32_MAX) |
|
{{0x02, 0x04, 0x7f, 0xff, 0xff, 0xff}, |
|
V_ASN1_INTEGER, |
|
{0x7f, 0xff, 0xff, 0xff}, |
|
"0x7fffffff"}, |
|
// 2^31 |
|
{{0x02, 0x05, 0x00, 0x80, 0x00, 0x00, 0x00}, |
|
V_ASN1_INTEGER, |
|
{0x80, 0x00, 0x00, 0x00}, |
|
"0x80000000"}, |
|
// 2^32 - 2 |
|
{{0x02, 0x05, 0x00, 0xff, 0xff, 0xff, 0xfe}, |
|
V_ASN1_INTEGER, |
|
{0xff, 0xff, 0xff, 0xfe}, |
|
"0xfffffffe"}, |
|
// 2^32 - 1 (UINT32_MAX) |
|
{{0x02, 0x05, 0x00, 0xff, 0xff, 0xff, 0xff}, |
|
V_ASN1_INTEGER, |
|
{0xff, 0xff, 0xff, 0xff}, |
|
"0xffffffff"}, |
|
// 2^32 |
|
{{0x02, 0x05, 0x01, 0x00, 0x00, 0x00, 0x00}, |
|
V_ASN1_INTEGER, |
|
{0x01, 0x00, 0x00, 0x00, 0x00}, |
|
"0x100000000"}, |
|
// 2^63 - 2 |
|
{{0x02, 0x08, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}, |
|
V_ASN1_INTEGER, |
|
{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}, |
|
"0x7ffffffffffffffe"}, |
|
// 2^63 - 1 (INT64_MAX) |
|
{{0x02, 0x08, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, |
|
V_ASN1_INTEGER, |
|
{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, |
|
"0x7fffffffffffffff"}, |
|
// 2^63 |
|
{{0x02, 0x09, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
|
V_ASN1_INTEGER, |
|
{0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
|
"0x8000000000000000"}, |
|
// 2^64 - 2 |
|
{{0x02, 0x09, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}, |
|
V_ASN1_INTEGER, |
|
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}, |
|
"0xfffffffffffffffe"}, |
|
// 2^64 - 1 (UINT64_MAX) |
|
{{0x02, 0x09, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, |
|
V_ASN1_INTEGER, |
|
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, |
|
"0xffffffffffffffff"}, |
|
// 2^64 |
|
{{0x02, 0x09, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
|
V_ASN1_INTEGER, |
|
{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
|
"0x10000000000000000"}, |
|
// 2^64 + 1 |
|
{{0x02, 0x09, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
|
V_ASN1_INTEGER, |
|
{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
|
"0x10000000000000001"}, |
|
}; |
|
|
|
for (const auto &t : kTests) { |
|
SCOPED_TRACE(t.bn_asc); |
|
// Collect a map of different ways to construct the integer. The key is the |
|
// method used and is only retained to aid debugging. |
|
std::map<std::string, bssl::UniquePtr<ASN1_INTEGER>> objs; |
|
|
|
// Construct |ASN1_INTEGER| by setting the type and data manually. |
|
bssl::UniquePtr<ASN1_INTEGER> by_data(ASN1_STRING_type_new(t.type)); |
|
ASSERT_TRUE(by_data); |
|
ASSERT_TRUE(ASN1_STRING_set(by_data.get(), t.data.data(), t.data.size())); |
|
objs["data"] = std::move(by_data); |
|
|
|
// Construct |ASN1_INTEGER| from a |BIGNUM|. |
|
BIGNUM *bn_raw = nullptr; |
|
ASSERT_TRUE(BN_asc2bn(&bn_raw, t.bn_asc)); |
|
bssl::UniquePtr<BIGNUM> bn(bn_raw); |
|
bssl::UniquePtr<ASN1_INTEGER> by_bn(BN_to_ASN1_INTEGER(bn.get(), nullptr)); |
|
ASSERT_TRUE(by_bn); |
|
objs["bn"] = std::move(by_bn); |
|
|
|
// Construct |ASN1_INTEGER| from decoding. |
|
const uint8_t *ptr = t.der.data(); |
|
bssl::UniquePtr<ASN1_INTEGER> by_der( |
|
d2i_ASN1_INTEGER(nullptr, &ptr, t.der.size())); |
|
ASSERT_TRUE(by_der); |
|
EXPECT_EQ(ptr, t.der.data() + t.der.size()); |
|
objs["der"] = std::move(by_der); |
|
|
|
// Construct |ASN1_INTEGER| from various C types, if it fits. |
|
bool fits_in_long = false, fits_in_i64 = false, fits_in_u64 = false; |
|
uint64_t u64 = 0; |
|
int64_t i64 = 0; |
|
long l = 0; |
|
uint64_t abs_u64; |
|
if (BN_get_u64(bn.get(), &abs_u64)) { |
|
fits_in_u64 = !BN_is_negative(bn.get()); |
|
if (fits_in_u64) { |
|
u64 = abs_u64; |
|
bssl::UniquePtr<ASN1_INTEGER> by_u64(ASN1_INTEGER_new()); |
|
ASSERT_TRUE(by_u64); |
|
ASSERT_TRUE(ASN1_INTEGER_set_uint64(by_u64.get(), u64)); |
|
objs["u64"] = std::move(by_u64); |
|
} |
|
|
|
fits_in_i64 = BN_cmp(int64_min.get(), bn.get()) <= 0 && |
|
BN_cmp(bn.get(), int64_max.get()) <= 0; |
|
if (fits_in_i64) { |
|
if (BN_is_negative(bn.get())) { |
|
i64 = static_cast<int64_t>(0u - abs_u64); |
|
} else { |
|
i64 = static_cast<int64_t>(abs_u64); |
|
} |
|
bssl::UniquePtr<ASN1_INTEGER> by_i64(ASN1_INTEGER_new()); |
|
ASSERT_TRUE(by_i64); |
|
ASSERT_TRUE(ASN1_INTEGER_set_int64(by_i64.get(), i64)); |
|
objs["i64"] = std::move(by_i64); |
|
} |
|
|
|
if (sizeof(long) == 8) { |
|
fits_in_long = fits_in_i64; |
|
} else { |
|
ASSERT_EQ(4u, sizeof(long)); |
|
fits_in_long = BN_cmp(int32_min.get(), bn.get()) <= 0 && |
|
BN_cmp(bn.get(), int32_max.get()) <= 0; |
|
} |
|
if (fits_in_long) { |
|
l = static_cast<long>(i64); |
|
bssl::UniquePtr<ASN1_INTEGER> by_long(ASN1_INTEGER_new()); |
|
ASSERT_TRUE(by_long); |
|
ASSERT_TRUE(ASN1_INTEGER_set(by_long.get(), l)); |
|
objs["long"] = std::move(by_long); |
|
} |
|
} |
|
|
|
// Default construction should return the zero |ASN1_INTEGER|. |
|
if (BN_is_zero(bn.get())) { |
|
bssl::UniquePtr<ASN1_INTEGER> by_default(ASN1_INTEGER_new()); |
|
ASSERT_TRUE(by_default); |
|
objs["default"] = std::move(by_default); |
|
} |
|
|
|
// Test that every |ASN1_INTEGER| constructed behaves as expected. |
|
for (const auto &pair : objs) { |
|
// The fields should be as expected. |
|
SCOPED_TRACE(pair.first); |
|
const ASN1_INTEGER *obj = pair.second.get(); |
|
EXPECT_EQ(t.type, ASN1_STRING_type(obj)); |
|
EXPECT_EQ(Bytes(t.data), Bytes(ASN1_STRING_get0_data(obj), |
|
ASN1_STRING_length(obj))); |
|
|
|
// The object should encode correctly. |
|
TestSerialize(obj, i2d_ASN1_INTEGER, t.der); |
|
|
|
bssl::UniquePtr<BIGNUM> bn2(ASN1_INTEGER_to_BN(obj, nullptr)); |
|
ASSERT_TRUE(bn2); |
|
EXPECT_EQ(0, BN_cmp(bn.get(), bn2.get())); |
|
|
|
if (fits_in_u64) { |
|
uint64_t v; |
|
ASSERT_TRUE(ASN1_INTEGER_get_uint64(&v, obj)); |
|
EXPECT_EQ(v, u64); |
|
} else { |
|
uint64_t v; |
|
EXPECT_FALSE(ASN1_INTEGER_get_uint64(&v, obj)); |
|
} |
|
|
|
if (fits_in_i64) { |
|
int64_t v; |
|
ASSERT_TRUE(ASN1_INTEGER_get_int64(&v, obj)); |
|
EXPECT_EQ(v, i64); |
|
} else { |
|
int64_t v; |
|
EXPECT_FALSE(ASN1_INTEGER_get_int64(&v, obj)); |
|
} |
|
|
|
if (fits_in_long) { |
|
EXPECT_EQ(l, ASN1_INTEGER_get(obj)); |
|
} else { |
|
EXPECT_EQ(-1, ASN1_INTEGER_get(obj)); |
|
} |
|
|
|
// All variations of integers should compare as equal to each other, as |
|
// strings or integers. (Functions like |ASN1_TYPE_cmp| rely on |
|
// string-based comparison.) |
|
for (const auto &pair2 : objs) { |
|
SCOPED_TRACE(pair2.first); |
|
EXPECT_EQ(0, ASN1_INTEGER_cmp(obj, pair2.second.get())); |
|
EXPECT_EQ(0, ASN1_STRING_cmp(obj, pair2.second.get())); |
|
} |
|
} |
|
|
|
// Although our parsers will never output non-minimal |ASN1_INTEGER|s, it is |
|
// possible to construct them manually. They should encode correctly. |
|
std::vector<uint8_t> data = t.data; |
|
const int kMaxExtraBytes = 5; |
|
for (int i = 0; i < kMaxExtraBytes; i++) { |
|
data.insert(data.begin(), 0x00); |
|
SCOPED_TRACE(Bytes(data)); |
|
|
|
bssl::UniquePtr<ASN1_INTEGER> non_minimal(ASN1_STRING_type_new(t.type)); |
|
ASSERT_TRUE(non_minimal); |
|
ASSERT_TRUE(ASN1_STRING_set(non_minimal.get(), data.data(), data.size())); |
|
|
|
TestSerialize(non_minimal.get(), i2d_ASN1_INTEGER, t.der); |
|
} |
|
} |
|
|
|
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kTests); i++) { |
|
SCOPED_TRACE(Bytes(kTests[i].der)); |
|
const uint8_t *ptr = kTests[i].der.data(); |
|
bssl::UniquePtr<ASN1_INTEGER> a( |
|
d2i_ASN1_INTEGER(nullptr, &ptr, kTests[i].der.size())); |
|
ASSERT_TRUE(a); |
|
for (size_t j = 0; j < OPENSSL_ARRAY_SIZE(kTests); j++) { |
|
SCOPED_TRACE(Bytes(kTests[j].der)); |
|
ptr = kTests[j].der.data(); |
|
bssl::UniquePtr<ASN1_INTEGER> b( |
|
d2i_ASN1_INTEGER(nullptr, &ptr, kTests[j].der.size())); |
|
ASSERT_TRUE(b); |
|
|
|
// |ASN1_INTEGER_cmp| should compare numerically. |ASN1_STRING_cmp| does |
|
// not but should preserve equality. |
|
if (i < j) { |
|
EXPECT_LT(ASN1_INTEGER_cmp(a.get(), b.get()), 0); |
|
EXPECT_NE(ASN1_STRING_cmp(a.get(), b.get()), 0); |
|
} else if (i > j) { |
|
EXPECT_GT(ASN1_INTEGER_cmp(a.get(), b.get()), 0); |
|
EXPECT_NE(ASN1_STRING_cmp(a.get(), b.get()), 0); |
|
} else { |
|
EXPECT_EQ(ASN1_INTEGER_cmp(a.get(), b.get()), 0); |
|
EXPECT_EQ(ASN1_STRING_cmp(a.get(), b.get()), 0); |
|
} |
|
} |
|
} |
|
|
|
std::vector<uint8_t> kInvalidTests[] = { |
|
// The empty string is not an integer. |
|
{0x02, 0x00}, |
|
// Integers must be minimally-encoded. |
|
{0x02, 0x02, 0x00, 0x00}, |
|
{0x02, 0x02, 0x00, 0x7f}, |
|
{0x02, 0x02, 0xff, 0xff}, |
|
{0x02, 0x02, 0xff, 0x80}, |
|
}; |
|
for (const auto &invalid : kInvalidTests) { |
|
SCOPED_TRACE(Bytes(invalid)); |
|
|
|
const uint8_t *ptr = invalid.data(); |
|
bssl::UniquePtr<ASN1_INTEGER> integer( |
|
d2i_ASN1_INTEGER(nullptr, &ptr, invalid.size())); |
|
EXPECT_FALSE(integer); |
|
} |
|
|
|
// Callers expect |ASN1_INTEGER_get| and |ASN1_ENUMERATED_get| to return zero |
|
// given NULL. |
|
EXPECT_EQ(0, ASN1_INTEGER_get(nullptr)); |
|
EXPECT_EQ(0, ASN1_ENUMERATED_get(nullptr)); |
|
} |
|
|
|
// Although invalid, a negative zero should encode correctly. |
|
TEST(ASN1Test, NegativeZero) { |
|
bssl::UniquePtr<ASN1_INTEGER> neg_zero( |
|
ASN1_STRING_type_new(V_ASN1_NEG_INTEGER)); |
|
ASSERT_TRUE(neg_zero); |
|
EXPECT_EQ(0, ASN1_INTEGER_get(neg_zero.get())); |
|
|
|
static const uint8_t kDER[] = {0x02, 0x01, 0x00}; |
|
TestSerialize(neg_zero.get(), i2d_ASN1_INTEGER, kDER); |
|
} |
|
|
|
TEST(ASN1Test, SerializeObject) { |
|
static const uint8_t kDER[] = {0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, |
|
0xf7, 0x0d, 0x01, 0x01, 0x01}; |
|
const ASN1_OBJECT *obj = OBJ_nid2obj(NID_rsaEncryption); |
|
TestSerialize(obj, i2d_ASN1_OBJECT, kDER); |
|
} |
|
|
|
TEST(ASN1Test, Boolean) { |
|
static const uint8_t kTrue[] = {0x01, 0x01, 0xff}; |
|
TestSerialize(0xff, i2d_ASN1_BOOLEAN, kTrue); |
|
// Other constants are also correctly encoded as TRUE. |
|
TestSerialize(1, i2d_ASN1_BOOLEAN, kTrue); |
|
TestSerialize(0x100, i2d_ASN1_BOOLEAN, kTrue); |
|
|
|
const uint8_t *ptr = kTrue; |
|
EXPECT_EQ(0xff, d2i_ASN1_BOOLEAN(nullptr, &ptr, sizeof(kTrue))); |
|
EXPECT_EQ(ptr, kTrue + sizeof(kTrue)); |
|
|
|
static const uint8_t kFalse[] = {0x01, 0x01, 0x00}; |
|
TestSerialize(0x00, i2d_ASN1_BOOLEAN, kFalse); |
|
|
|
ptr = kFalse; |
|
EXPECT_EQ(0, d2i_ASN1_BOOLEAN(nullptr, &ptr, sizeof(kFalse))); |
|
EXPECT_EQ(ptr, kFalse + sizeof(kFalse)); |
|
|
|
const std::vector<uint8_t> kInvalidBooleans[] = { |
|
// No tag header. |
|
{}, |
|
// No length. |
|
{0x01}, |
|
// Truncated contents. |
|
{0x01, 0x01}, |
|
// Contents too short or too long. |
|
{0x01, 0x00}, |
|
{0x01, 0x02, 0x00, 0x00}, |
|
// Wrong tag number. |
|
{0x02, 0x01, 0x00}, |
|
// Wrong tag class. |
|
{0x81, 0x01, 0x00}, |
|
// Element is constructed. |
|
{0x21, 0x01, 0x00}, |
|
// TODO(https://crbug.com/boringssl/354): Reject non-DER encodings of TRUE |
|
// and test this. |
|
}; |
|
for (const auto &invalid : kInvalidBooleans) { |
|
SCOPED_TRACE(Bytes(invalid)); |
|
ptr = invalid.data(); |
|
EXPECT_EQ(-1, d2i_ASN1_BOOLEAN(nullptr, &ptr, invalid.size())); |
|
ERR_clear_error(); |
|
} |
|
} |
|
|
|
// The templates go through a different codepath, so test them separately. |
|
TEST(ASN1Test, SerializeEmbeddedBoolean) { |
|
bssl::UniquePtr<BASIC_CONSTRAINTS> val(BASIC_CONSTRAINTS_new()); |
|
ASSERT_TRUE(val); |
|
|
|
// BasicConstraints defaults to FALSE, so the encoding should be empty. |
|
static const uint8_t kLeaf[] = {0x30, 0x00}; |
|
val->ca = 0; |
|
TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kLeaf); |
|
|
|
// TRUE should always be encoded as 0xff, independent of what value the caller |
|
// placed in the |ASN1_BOOLEAN|. |
|
static const uint8_t kCA[] = {0x30, 0x03, 0x01, 0x01, 0xff}; |
|
val->ca = 0xff; |
|
TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kCA); |
|
val->ca = 1; |
|
TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kCA); |
|
val->ca = 0x100; |
|
TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kCA); |
|
} |
|
|
|
TEST(ASN1Test, ASN1Type) { |
|
const struct { |
|
int type; |
|
std::vector<uint8_t> der; |
|
} kTests[] = { |
|
// BOOLEAN { TRUE } |
|
{V_ASN1_BOOLEAN, {0x01, 0x01, 0xff}}, |
|
// BOOLEAN { FALSE } |
|
{V_ASN1_BOOLEAN, {0x01, 0x01, 0x00}}, |
|
// OCTET_STRING { "a" } |
|
{V_ASN1_OCTET_STRING, {0x04, 0x01, 0x61}}, |
|
// OCTET_STRING { } |
|
{V_ASN1_OCTET_STRING, {0x04, 0x00}}, |
|
// BIT_STRING { `01` `00` } |
|
{V_ASN1_BIT_STRING, {0x03, 0x02, 0x01, 0x00}}, |
|
// INTEGER { -1 } |
|
{V_ASN1_INTEGER, {0x02, 0x01, 0xff}}, |
|
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.2 } |
|
{V_ASN1_OBJECT, |
|
{0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, |
|
0x09, 0x02}}, |
|
// NULL {} |
|
{V_ASN1_NULL, {0x05, 0x00}}, |
|
// SEQUENCE {} |
|
{V_ASN1_SEQUENCE, {0x30, 0x00}}, |
|
// SET {} |
|
{V_ASN1_SET, {0x31, 0x00}}, |
|
// [0] { UTF8String { "a" } } |
|
{V_ASN1_OTHER, {0xa0, 0x03, 0x0c, 0x01, 0x61}}, |
|
}; |
|
for (const auto &t : kTests) { |
|
SCOPED_TRACE(Bytes(t.der)); |
|
|
|
// The input should successfully parse. |
|
const uint8_t *ptr = t.der.data(); |
|
bssl::UniquePtr<ASN1_TYPE> val(d2i_ASN1_TYPE(nullptr, &ptr, t.der.size())); |
|
ASSERT_TRUE(val); |
|
|
|
EXPECT_EQ(ASN1_TYPE_get(val.get()), t.type); |
|
EXPECT_EQ(val->type, t.type); |
|
TestSerialize(val.get(), i2d_ASN1_TYPE, t.der); |
|
} |
|
} |
|
|
|
// Test that reading |value.ptr| from a FALSE |ASN1_TYPE| behaves correctly. The |
|
// type historically supported this, so maintain the invariant in case external |
|
// code relies on it. |
|
TEST(ASN1Test, UnusedBooleanBits) { |
|
// OCTET_STRING { "a" } |
|
static const uint8_t kDER[] = {0x04, 0x01, 0x61}; |
|
const uint8_t *ptr = kDER; |
|
bssl::UniquePtr<ASN1_TYPE> val(d2i_ASN1_TYPE(nullptr, &ptr, sizeof(kDER))); |
|
ASSERT_TRUE(val); |
|
EXPECT_EQ(V_ASN1_OCTET_STRING, val->type); |
|
EXPECT_TRUE(val->value.ptr); |
|
|
|
// Set |val| to a BOOLEAN containing FALSE. |
|
ASN1_TYPE_set(val.get(), V_ASN1_BOOLEAN, NULL); |
|
EXPECT_EQ(V_ASN1_BOOLEAN, val->type); |
|
EXPECT_FALSE(val->value.ptr); |
|
} |
|
|
|
TEST(ASN1Test, ParseASN1Object) { |
|
// 1.2.840.113554.4.1.72585.2, an arbitrary unknown OID. |
|
static const uint8_t kOID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, |
|
0x04, 0x01, 0x84, 0xb7, 0x09, 0x02}; |
|
ASN1_OBJECT *obj = ASN1_OBJECT_create(NID_undef, kOID, sizeof(kOID), |
|
"short name", "long name"); |
|
ASSERT_TRUE(obj); |
|
|
|
// OBJECT_IDENTIFIER { 1.3.101.112 } |
|
static const uint8_t kDER[] = {0x06, 0x03, 0x2b, 0x65, 0x70}; |
|
const uint8_t *ptr = kDER; |
|
// Parse an |ASN1_OBJECT| with object reuse. |
|
EXPECT_TRUE(d2i_ASN1_OBJECT(&obj, &ptr, sizeof(kDER))); |
|
EXPECT_EQ(NID_ED25519, OBJ_obj2nid(obj)); |
|
ASN1_OBJECT_free(obj); |
|
|
|
// Repeat the test, this time overriding a static |ASN1_OBJECT|. It should |
|
// detect this and construct a new one. |
|
obj = OBJ_nid2obj(NID_rsaEncryption); |
|
ptr = kDER; |
|
EXPECT_TRUE(d2i_ASN1_OBJECT(&obj, &ptr, sizeof(kDER))); |
|
EXPECT_EQ(NID_ED25519, OBJ_obj2nid(obj)); |
|
ASN1_OBJECT_free(obj); |
|
|
|
const std::vector<uint8_t> kInvalidObjects[] = { |
|
// No tag header. |
|
{}, |
|
// No length. |
|
{0x06}, |
|
// Truncated contents. |
|
{0x06, 0x01}, |
|
// An OID may not be empty. |
|
{0x06, 0x00}, |
|
// The last byte may not be a continuation byte (high bit set). |
|
{0x06, 0x03, 0x2b, 0x65, 0xf0}, |
|
// Each component must be minimally-encoded. |
|
{0x06, 0x03, 0x2b, 0x65, 0x80, 0x70}, |
|
{0x06, 0x03, 0x80, 0x2b, 0x65, 0x70}, |
|
// Wrong tag number. |
|
{0x01, 0x03, 0x2b, 0x65, 0x70}, |
|
// Wrong tag class. |
|
{0x86, 0x03, 0x2b, 0x65, 0x70}, |
|
// Element is constructed. |
|
{0x26, 0x03, 0x2b, 0x65, 0x70}, |
|
}; |
|
for (const auto &invalid : kInvalidObjects) { |
|
SCOPED_TRACE(Bytes(invalid)); |
|
ptr = invalid.data(); |
|
obj = d2i_ASN1_OBJECT(nullptr, &ptr, invalid.size()); |
|
EXPECT_FALSE(obj); |
|
ASN1_OBJECT_free(obj); |
|
ERR_clear_error(); |
|
} |
|
} |
|
|
|
TEST(ASN1Test, BitString) { |
|
const size_t kNotWholeBytes = static_cast<size_t>(-1); |
|
const struct { |
|
std::vector<uint8_t> in; |
|
size_t num_bytes; |
|
} kValidInputs[] = { |
|
// Empty bit string |
|
{{0x03, 0x01, 0x00}, 0}, |
|
// 0b1 |
|
{{0x03, 0x02, 0x07, 0x80}, kNotWholeBytes}, |
|
// 0b1010 |
|
{{0x03, 0x02, 0x04, 0xa0}, kNotWholeBytes}, |
|
// 0b1010101 |
|
{{0x03, 0x02, 0x01, 0xaa}, kNotWholeBytes}, |
|
// 0b10101010 |
|
{{0x03, 0x02, 0x00, 0xaa}, 1}, |
|
// Bits 0 and 63 are set |
|
{{0x03, 0x09, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, 8}, |
|
// 64 zero bits |
|
{{0x03, 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 8}, |
|
}; |
|
for (const auto &test : kValidInputs) { |
|
SCOPED_TRACE(Bytes(test.in)); |
|
// The input should parse and round-trip correctly. |
|
const uint8_t *ptr = test.in.data(); |
|
bssl::UniquePtr<ASN1_BIT_STRING> val( |
|
d2i_ASN1_BIT_STRING(nullptr, &ptr, test.in.size())); |
|
ASSERT_TRUE(val); |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, test.in); |
|
|
|
// Check the byte count. |
|
size_t num_bytes; |
|
if (test.num_bytes == kNotWholeBytes) { |
|
EXPECT_FALSE(ASN1_BIT_STRING_num_bytes(val.get(), &num_bytes)); |
|
} else { |
|
ASSERT_TRUE(ASN1_BIT_STRING_num_bytes(val.get(), &num_bytes)); |
|
EXPECT_EQ(num_bytes, test.num_bytes); |
|
} |
|
} |
|
|
|
const std::vector<uint8_t> kInvalidInputs[] = { |
|
// Wrong tag |
|
{0x04, 0x01, 0x00}, |
|
// Missing leading byte |
|
{0x03, 0x00}, |
|
// Leading byte too high |
|
{0x03, 0x02, 0x08, 0x00}, |
|
{0x03, 0x02, 0xff, 0x00}, |
|
// Empty bit strings must have a zero leading byte. |
|
{0x03, 0x01, 0x01}, |
|
// Unused bits must all be zero. |
|
{0x03, 0x02, 0x06, 0xc1 /* 0b11000001 */}, |
|
}; |
|
for (const auto &test : kInvalidInputs) { |
|
SCOPED_TRACE(Bytes(test)); |
|
const uint8_t *ptr = test.data(); |
|
bssl::UniquePtr<ASN1_BIT_STRING> val( |
|
d2i_ASN1_BIT_STRING(nullptr, &ptr, test.size())); |
|
EXPECT_FALSE(val); |
|
} |
|
} |
|
|
|
TEST(ASN1Test, SetBit) { |
|
bssl::UniquePtr<ASN1_BIT_STRING> val(ASN1_BIT_STRING_new()); |
|
ASSERT_TRUE(val); |
|
static const uint8_t kBitStringEmpty[] = {0x03, 0x01, 0x00}; |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringEmpty); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 100)); |
|
|
|
// Set a few bits via |ASN1_BIT_STRING_set_bit|. |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 0, 1)); |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 1, 1)); |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 2, 0)); |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 3, 1)); |
|
static const uint8_t kBitString1101[] = {0x03, 0x02, 0x04, 0xd0}; |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1101); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 1)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 2)); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 3)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 4)); |
|
|
|
// Bits that were set may be cleared. |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 1, 0)); |
|
static const uint8_t kBitString1001[] = {0x03, 0x02, 0x04, 0x90}; |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1001); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 1)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 2)); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 3)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 4)); |
|
|
|
// Clearing trailing bits truncates the string. |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 3, 0)); |
|
static const uint8_t kBitString1[] = {0x03, 0x02, 0x07, 0x80}; |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 1)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 2)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 3)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 4)); |
|
|
|
// Bits may be set beyond the end of the string. |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 63, 1)); |
|
static const uint8_t kBitStringLong[] = {0x03, 0x09, 0x00, 0x80, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x01}; |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringLong); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62)); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 63)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64)); |
|
|
|
// The string can be truncated back down again. |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 63, 0)); |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 63)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64)); |
|
|
|
// |ASN1_BIT_STRING_set_bit| also truncates when starting from a parsed |
|
// string. |
|
const uint8_t *ptr = kBitStringLong; |
|
val.reset(d2i_ASN1_BIT_STRING(nullptr, &ptr, sizeof(kBitStringLong))); |
|
ASSERT_TRUE(val); |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringLong); |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 63, 0)); |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 63)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64)); |
|
|
|
// A parsed bit string preserves trailing zero bits. |
|
static const uint8_t kBitString10010[] = {0x03, 0x02, 0x03, 0x90}; |
|
ptr = kBitString10010; |
|
val.reset(d2i_ASN1_BIT_STRING(nullptr, &ptr, sizeof(kBitString10010))); |
|
ASSERT_TRUE(val); |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString10010); |
|
// But |ASN1_BIT_STRING_set_bit| will truncate it even if otherwise a no-op. |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 0, 1)); |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1001); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 63)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64)); |
|
|
|
// By default, a BIT STRING implicitly truncates trailing zeros. |
|
val.reset(ASN1_BIT_STRING_new()); |
|
ASSERT_TRUE(val); |
|
static const uint8_t kZeros[64] = {0}; |
|
ASSERT_TRUE(ASN1_STRING_set(val.get(), kZeros, sizeof(kZeros))); |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringEmpty); |
|
} |
|
|
|
TEST(ASN1Test, StringToUTF8) { |
|
static const struct { |
|
std::vector<uint8_t> in; |
|
int type; |
|
const char *expected; |
|
} kTests[] = { |
|
// Non-minimal, two-byte UTF-8. |
|
{{0xc0, 0x81}, V_ASN1_UTF8STRING, nullptr}, |
|
// Non-minimal, three-byte UTF-8. |
|
{{0xe0, 0x80, 0x81}, V_ASN1_UTF8STRING, nullptr}, |
|
// Non-minimal, four-byte UTF-8. |
|
{{0xf0, 0x80, 0x80, 0x81}, V_ASN1_UTF8STRING, nullptr}, |
|
// Truncated, four-byte UTF-8. |
|
{{0xf0, 0x80, 0x80}, V_ASN1_UTF8STRING, nullptr}, |
|
// Low-surrogate value. |
|
{{0xed, 0xa0, 0x80}, V_ASN1_UTF8STRING, nullptr}, |
|
// High-surrogate value. |
|
{{0xed, 0xb0, 0x81}, V_ASN1_UTF8STRING, nullptr}, |
|
// Initial BOMs should be rejected from UCS-2 and UCS-4. |
|
{{0xfe, 0xff, 0, 88}, V_ASN1_BMPSTRING, nullptr}, |
|
{{0, 0, 0xfe, 0xff, 0, 0, 0, 88}, V_ASN1_UNIVERSALSTRING, nullptr}, |
|
// Otherwise, BOMs should pass through. |
|
{{0, 88, 0xfe, 0xff}, V_ASN1_BMPSTRING, "X\xef\xbb\xbf"}, |
|
{{0, 0, 0, 88, 0, 0, 0xfe, 0xff}, V_ASN1_UNIVERSALSTRING, |
|
"X\xef\xbb\xbf"}, |
|
// The maximum code-point should pass though. |
|
{{0, 16, 0xff, 0xfd}, V_ASN1_UNIVERSALSTRING, "\xf4\x8f\xbf\xbd"}, |
|
// Values outside the Unicode space should not. |
|
{{0, 17, 0, 0}, V_ASN1_UNIVERSALSTRING, nullptr}, |
|
// Non-characters should be rejected. |
|
{{0, 1, 0xff, 0xff}, V_ASN1_UNIVERSALSTRING, nullptr}, |
|
{{0, 1, 0xff, 0xfe}, V_ASN1_UNIVERSALSTRING, nullptr}, |
|
{{0, 0, 0xfd, 0xd5}, V_ASN1_UNIVERSALSTRING, nullptr}, |
|
// BMPString is UCS-2, not UTF-16, so surrogate pairs are invalid. |
|
{{0xd8, 0, 0xdc, 1}, V_ASN1_BMPSTRING, nullptr}, |
|
// INTEGERs are stored as strings, but cannot be converted to UTF-8. |
|
{{0x01}, V_ASN1_INTEGER, nullptr}, |
|
}; |
|
|
|
for (const auto &test : kTests) { |
|
SCOPED_TRACE(Bytes(test.in)); |
|
SCOPED_TRACE(test.type); |
|
bssl::UniquePtr<ASN1_STRING> s(ASN1_STRING_type_new(test.type)); |
|
ASSERT_TRUE(s); |
|
ASSERT_TRUE(ASN1_STRING_set(s.get(), test.in.data(), test.in.size())); |
|
|
|
uint8_t *utf8; |
|
const int utf8_len = ASN1_STRING_to_UTF8(&utf8, s.get()); |
|
EXPECT_EQ(utf8_len < 0, test.expected == nullptr); |
|
if (utf8_len >= 0) { |
|
if (test.expected != nullptr) { |
|
EXPECT_EQ(Bytes(test.expected), Bytes(utf8, utf8_len)); |
|
} |
|
OPENSSL_free(utf8); |
|
} else { |
|
ERR_clear_error(); |
|
} |
|
} |
|
} |
|
|
|
static std::string ASN1StringToStdString(const ASN1_STRING *str) { |
|
return std::string(ASN1_STRING_get0_data(str), |
|
ASN1_STRING_get0_data(str) + ASN1_STRING_length(str)); |
|
} |
|
|
|
static bool ASN1Time_check_time_t(const ASN1_TIME *s, time_t t) { |
|
struct tm stm, ttm; |
|
int day, sec; |
|
|
|
switch (ASN1_STRING_type(s)) { |
|
case V_ASN1_GENERALIZEDTIME: |
|
if (!asn1_generalizedtime_to_tm(&stm, s)) { |
|
return false; |
|
} |
|
break; |
|
case V_ASN1_UTCTIME: |
|
if (!asn1_utctime_to_tm(&stm, s, /*allow_timezone_offset=*/1)) { |
|
return false; |
|
} |
|
break; |
|
default: |
|
return false; |
|
} |
|
if (!OPENSSL_gmtime(&t, &ttm) || |
|
!OPENSSL_gmtime_diff(&day, &sec, &ttm, &stm)) { |
|
return false; |
|
} |
|
return day == 0 && sec ==0; |
|
} |
|
|
|
static std::string PrintStringToBIO(const ASN1_STRING *str, |
|
int (*print_func)(BIO *, |
|
const ASN1_STRING *)) { |
|
const uint8_t *data; |
|
size_t len; |
|
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); |
|
if (!bio || // |
|
!print_func(bio.get(), str) || |
|
!BIO_mem_contents(bio.get(), &data, &len)) { |
|
ADD_FAILURE() << "Could not print to BIO"; |
|
return ""; |
|
} |
|
return std::string(data, data + len); |
|
} |
|
|
|
TEST(ASN1Test, SetTime) { |
|
static const struct { |
|
time_t time; |
|
const char *generalized; |
|
const char *utc; |
|
const char *printed; |
|
} kTests[] = { |
|
{-631152001, "19491231235959Z", nullptr, "Dec 31 23:59:59 1949 GMT"}, |
|
{-631152000, "19500101000000Z", "500101000000Z", |
|
"Jan 1 00:00:00 1950 GMT"}, |
|
{0, "19700101000000Z", "700101000000Z", "Jan 1 00:00:00 1970 GMT"}, |
|
{981173106, "20010203040506Z", "010203040506Z", "Feb 3 04:05:06 2001 GMT"}, |
|
{951804000, "20000229060000Z", "000229060000Z", "Feb 29 06:00:00 2000 GMT"}, |
|
// NASA says this is the correct time for posterity. |
|
{-16751025, "19690621025615Z", "690621025615Z", "Jun 21 02:56:15 1969 GMT"}, |
|
// -1 is sometimes used as an error value. Ensure we correctly handle it. |
|
{-1, "19691231235959Z", "691231235959Z", "Dec 31 23:59:59 1969 GMT"}, |
|
#if defined(OPENSSL_64_BIT) |
|
// TODO(https://crbug.com/boringssl/416): These cases overflow 32-bit |
|
// |time_t| and do not consistently work on 32-bit platforms. For now, |
|
// disable the tests on 32-bit. Re-enable them once the bug is fixed. |
|
{2524607999, "20491231235959Z", "491231235959Z", |
|
"Dec 31 23:59:59 2049 GMT"}, |
|
{2524608000, "20500101000000Z", nullptr, "Jan 1 00:00:00 2050 GMT"}, |
|
// Test boundary conditions. |
|
{-62167219200, "00000101000000Z", nullptr, "Jan 1 00:00:00 0 GMT"}, |
|
{-62167219201, nullptr, nullptr, nullptr}, |
|
{253402300799, "99991231235959Z", nullptr, "Dec 31 23:59:59 9999 GMT"}, |
|
{253402300800, nullptr, nullptr, nullptr}, |
|
#endif |
|
}; |
|
for (const auto &t : kTests) { |
|
time_t tt; |
|
SCOPED_TRACE(t.time); |
|
|
|
bssl::UniquePtr<ASN1_UTCTIME> utc(ASN1_UTCTIME_set(nullptr, t.time)); |
|
if (t.utc) { |
|
ASSERT_TRUE(utc); |
|
EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(utc.get())); |
|
EXPECT_EQ(t.utc, ASN1StringToStdString(utc.get())); |
|
EXPECT_TRUE(ASN1Time_check_time_t(utc.get(), t.time)); |
|
EXPECT_EQ(ASN1_TIME_to_time_t(utc.get(), &tt), 1); |
|
EXPECT_EQ(tt, t.time); |
|
EXPECT_EQ(PrintStringToBIO(utc.get(), &ASN1_UTCTIME_print), t.printed); |
|
EXPECT_EQ(PrintStringToBIO(utc.get(), &ASN1_TIME_print), t.printed); |
|
} else { |
|
EXPECT_FALSE(utc); |
|
} |
|
|
|
bssl::UniquePtr<ASN1_GENERALIZEDTIME> generalized( |
|
ASN1_GENERALIZEDTIME_set(nullptr, t.time)); |
|
if (t.generalized) { |
|
ASSERT_TRUE(generalized); |
|
EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(generalized.get())); |
|
EXPECT_EQ(t.generalized, ASN1StringToStdString(generalized.get())); |
|
EXPECT_TRUE(ASN1Time_check_time_t(generalized.get(), t.time)); |
|
EXPECT_EQ(ASN1_TIME_to_time_t(generalized.get(), &tt), 1); |
|
EXPECT_EQ(tt, t.time); |
|
EXPECT_EQ( |
|
PrintStringToBIO(generalized.get(), &ASN1_GENERALIZEDTIME_print), |
|
t.printed); |
|
EXPECT_EQ(PrintStringToBIO(generalized.get(), &ASN1_TIME_print), |
|
t.printed); |
|
} else { |
|
EXPECT_FALSE(generalized); |
|
} |
|
|
|
bssl::UniquePtr<ASN1_TIME> choice(ASN1_TIME_set(nullptr, t.time)); |
|
if (t.generalized) { |
|
ASSERT_TRUE(choice); |
|
if (t.utc) { |
|
EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(choice.get())); |
|
EXPECT_EQ(t.utc, ASN1StringToStdString(choice.get())); |
|
} else { |
|
EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(choice.get())); |
|
EXPECT_EQ(t.generalized, ASN1StringToStdString(choice.get())); |
|
} |
|
EXPECT_TRUE(ASN1Time_check_time_t(choice.get(), t.time)); |
|
EXPECT_EQ(ASN1_TIME_to_time_t(choice.get(), &tt), 1); |
|
EXPECT_EQ(tt, t.time); |
|
} else { |
|
EXPECT_FALSE(choice); |
|
} |
|
} |
|
} |
|
|
|
static std::vector<uint8_t> StringToVector(const std::string &str) { |
|
return std::vector<uint8_t>(str.begin(), str.end()); |
|
} |
|
|
|
TEST(ASN1Test, StringPrintEx) { |
|
const struct { |
|
int type; |
|
std::vector<uint8_t> data; |
|
int str_flags; |
|
unsigned long flags; |
|
std::string expected; |
|
} kTests[] = { |
|
// A string like "hello" is never escaped or quoted. |
|
// |ASN1_STRFLGS_ESC_QUOTE| only introduces quotes when needed. Note |
|
// OpenSSL interprets T61String as Latin-1. |
|
{V_ASN1_T61STRING, StringToVector("hello"), 0, 0, "hello"}, |
|
{V_ASN1_T61STRING, StringToVector("hello"), 0, |
|
ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB, |
|
"hello"}, |
|
{V_ASN1_T61STRING, StringToVector("hello"), 0, |
|
ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB | |
|
ASN1_STRFLGS_ESC_QUOTE, |
|
"hello"}, |
|
|
|
// By default, 8-bit characters are printed without escaping. |
|
{V_ASN1_T61STRING, |
|
{0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'}, |
|
0, |
|
0, |
|
std::string(1, '\0') + "\n\x80\xff,+\"\\<>;"}, |
|
|
|
// Flags control different escapes. Note that any escape flag will cause |
|
// blackslashes to be escaped. |
|
{V_ASN1_T61STRING, |
|
{0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'}, |
|
0, |
|
ASN1_STRFLGS_ESC_2253, |
|
std::string(1, '\0') + "\n\x80\xff\\,\\+\\\"\\\\\\<\\>\\;"}, |
|
{V_ASN1_T61STRING, |
|
{0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'}, |
|
0, |
|
ASN1_STRFLGS_ESC_CTRL, |
|
"\\00\\0A\x80\xff,+\"\\\\<>;"}, |
|
{V_ASN1_T61STRING, |
|
{0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'}, |
|
0, |
|
ASN1_STRFLGS_ESC_MSB, |
|
std::string(1, '\0') + "\n\\80\\FF,+\"\\\\<>;"}, |
|
{V_ASN1_T61STRING, |
|
{0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'}, |
|
0, |
|
ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB, |
|
"\\00\\0A\\80\\FF\\,\\+\\\"\\\\\\<\\>\\;"}, |
|
|
|
// When quoted, fewer characters need to be escaped in RFC 2253. |
|
{V_ASN1_T61STRING, |
|
{0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'}, |
|
0, |
|
ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB | |
|
ASN1_STRFLGS_ESC_QUOTE, |
|
"\"\\00\\0A\\80\\FF,+\\\"\\\\<>;\""}, |
|
|
|
// If no characters benefit from quotes, no quotes are added. |
|
{V_ASN1_T61STRING, |
|
{0, '\n', 0x80, 0xff, '"', '\\'}, |
|
0, |
|
ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB | |
|
ASN1_STRFLGS_ESC_QUOTE, |
|
"\\00\\0A\\80\\FF\\\"\\\\"}, |
|
|
|
// RFC 2253 only escapes spaces at the start and end of a string. |
|
{V_ASN1_T61STRING, StringToVector(" "), 0, ASN1_STRFLGS_ESC_2253, |
|
"\\ \\ "}, |
|
{V_ASN1_T61STRING, StringToVector(" "), 0, |
|
ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_UTF8_CONVERT, "\\ \\ "}, |
|
{V_ASN1_T61STRING, StringToVector(" "), 0, |
|
ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_QUOTE, "\" \""}, |
|
|
|
// RFC 2253 only escapes # at the start of a string. |
|
{V_ASN1_T61STRING, StringToVector("###"), 0, ASN1_STRFLGS_ESC_2253, |
|
"\\###"}, |
|
{V_ASN1_T61STRING, StringToVector("###"), 0, |
|
ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_QUOTE, "\"###\""}, |
|
|
|
// By default, strings are decoded and Unicode code points are |
|
// individually escaped. |
|
{V_ASN1_UTF8STRING, StringToVector("a\xc2\x80\xc4\x80\xf0\x90\x80\x80"), |
|
0, ASN1_STRFLGS_ESC_MSB, "a\\80\\U0100\\W00010000"}, |
|
{V_ASN1_BMPSTRING, |
|
{0x00, 'a', 0x00, 0x80, 0x01, 0x00}, |
|
0, |
|
ASN1_STRFLGS_ESC_MSB, |
|
"a\\80\\U0100"}, |
|
{V_ASN1_UNIVERSALSTRING, |
|
{0x00, 0x00, 0x00, 'a', // |
|
0x00, 0x00, 0x00, 0x80, // |
|
0x00, 0x00, 0x01, 0x00, // |
|
0x00, 0x01, 0x00, 0x00}, |
|
0, |
|
ASN1_STRFLGS_ESC_MSB, |
|
"a\\80\\U0100\\W00010000"}, |
|
|
|
// |ASN1_STRFLGS_UTF8_CONVERT| normalizes everything to UTF-8 and then |
|
// escapes individual bytes. |
|
{V_ASN1_IA5STRING, StringToVector("a\x80"), 0, |
|
ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT, "a\\C2\\80"}, |
|
{V_ASN1_T61STRING, StringToVector("a\x80"), 0, |
|
ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT, "a\\C2\\80"}, |
|
{V_ASN1_UTF8STRING, StringToVector("a\xc2\x80\xc4\x80\xf0\x90\x80\x80"), |
|
0, ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT, |
|
"a\\C2\\80\\C4\\80\\F0\\90\\80\\80"}, |
|
{V_ASN1_BMPSTRING, |
|
{0x00, 'a', 0x00, 0x80, 0x01, 0x00}, |
|
0, |
|
ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT, |
|
"a\\C2\\80\\C4\\80"}, |
|
{V_ASN1_UNIVERSALSTRING, |
|
{0x00, 0x00, 0x00, 'a', // |
|
0x00, 0x00, 0x00, 0x80, // |
|
0x00, 0x00, 0x01, 0x00, // |
|
0x00, 0x01, 0x00, 0x00}, |
|
0, |
|
ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT, |
|
"a\\C2\\80\\C4\\80\\F0\\90\\80\\80"}, |
|
|
|
// The same as above, but without escaping the UTF-8 encoding. |
|
{V_ASN1_IA5STRING, StringToVector("a\x80"), 0, ASN1_STRFLGS_UTF8_CONVERT, |
|
"a\xc2\x80"}, |
|
{V_ASN1_T61STRING, StringToVector("a\x80"), 0, ASN1_STRFLGS_UTF8_CONVERT, |
|
"a\xc2\x80"}, |
|
{V_ASN1_UTF8STRING, StringToVector("a\xc2\x80\xc4\x80\xf0\x90\x80\x80"), |
|
0, ASN1_STRFLGS_UTF8_CONVERT, "a\xc2\x80\xc4\x80\xf0\x90\x80\x80"}, |
|
{V_ASN1_BMPSTRING, |
|
{0x00, 'a', 0x00, 0x80, 0x01, 0x00}, |
|
0, |
|
ASN1_STRFLGS_UTF8_CONVERT, |
|
"a\xc2\x80\xc4\x80"}, |
|
{V_ASN1_UNIVERSALSTRING, |
|
{0x00, 0x00, 0x00, 'a', // |
|
0x00, 0x00, 0x00, 0x80, // |
|
0x00, 0x00, 0x01, 0x00, // |
|
0x00, 0x01, 0x00, 0x00}, |
|
0, |
|
ASN1_STRFLGS_UTF8_CONVERT, |
|
"a\xc2\x80\xc4\x80\xf0\x90\x80\x80"}, |
|
|
|
// Types that cannot be decoded are, by default, treated as a byte string. |
|
{V_ASN1_OCTET_STRING, {0xff}, 0, 0, "\xff"}, |
|
{-1, {0xff}, 0, 0, "\xff"}, |
|
{100, {0xff}, 0, 0, "\xff"}, |
|
|
|
// |ASN1_STRFLGS_UTF8_CONVERT| still converts these bytes to UTF-8. |
|
// |
|
// TODO(davidben): This seems like a bug. Although it's unclear because |
|
// the non-RFC-2253 options aren't especially sound. Can we just remove |
|
// them? |
|
{V_ASN1_OCTET_STRING, {0xff}, 0, ASN1_STRFLGS_UTF8_CONVERT, "\xc3\xbf"}, |
|
{-1, {0xff}, 0, ASN1_STRFLGS_UTF8_CONVERT, "\xc3\xbf"}, |
|
{100, {0xff}, 0, ASN1_STRFLGS_UTF8_CONVERT, "\xc3\xbf"}, |
|
|
|
// |ASN1_STRFLGS_IGNORE_TYPE| causes the string type to be ignored, so it |
|
// is always treated as a byte string, even if it is not a valid encoding. |
|
{V_ASN1_UTF8STRING, {0xff}, 0, ASN1_STRFLGS_IGNORE_TYPE, "\xff"}, |
|
{V_ASN1_BMPSTRING, {0xff}, 0, ASN1_STRFLGS_IGNORE_TYPE, "\xff"}, |
|
{V_ASN1_UNIVERSALSTRING, {0xff}, 0, ASN1_STRFLGS_IGNORE_TYPE, "\xff"}, |
|
|
|
// |ASN1_STRFLGS_SHOW_TYPE| prepends the type name. |
|
{V_ASN1_UTF8STRING, {'a'}, 0, ASN1_STRFLGS_SHOW_TYPE, "UTF8STRING:a"}, |
|
{-1, {'a'}, 0, ASN1_STRFLGS_SHOW_TYPE, "(unknown):a"}, |
|
{100, {'a'}, 0, ASN1_STRFLGS_SHOW_TYPE, "(unknown):a"}, |
|
|
|
// |ASN1_STRFLGS_DUMP_ALL| and |ASN1_STRFLGS_DUMP_UNKNOWN| cause |
|
// non-string types to be printed in hex, though without the DER wrapper |
|
// by default. |
|
{V_ASN1_UTF8STRING, StringToVector("\xe2\x98\x83"), 0, |
|
ASN1_STRFLGS_DUMP_UNKNOWN, "\\U2603"}, |
|
{V_ASN1_UTF8STRING, StringToVector("\xe2\x98\x83"), 0, |
|
ASN1_STRFLGS_DUMP_ALL, "#E29883"}, |
|
{V_ASN1_OCTET_STRING, StringToVector("\xe2\x98\x83"), 0, |
|
ASN1_STRFLGS_DUMP_UNKNOWN, "#E29883"}, |
|
{V_ASN1_OCTET_STRING, StringToVector("\xe2\x98\x83"), 0, |
|
ASN1_STRFLGS_DUMP_ALL, "#E29883"}, |
|
|
|
// |ASN1_STRFLGS_DUMP_DER| includes the entire element. |
|
{V_ASN1_UTF8STRING, StringToVector("\xe2\x98\x83"), 0, |
|
ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, "#0C03E29883"}, |
|
{V_ASN1_OCTET_STRING, StringToVector("\xe2\x98\x83"), 0, |
|
ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, "#0403E29883"}, |
|
{V_ASN1_BIT_STRING, |
|
{0x80}, |
|
ASN1_STRING_FLAG_BITS_LEFT | 4, |
|
ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, |
|
"#03020480"}, |
|
// INTEGER { 1 } |
|
{V_ASN1_INTEGER, |
|
{0x01}, |
|
0, |
|
ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, |
|
"#020101"}, |
|
// INTEGER { -1 } |
|
{V_ASN1_NEG_INTEGER, |
|
{0x01}, |
|
0, |
|
ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, |
|
"#0201FF"}, |
|
// ENUMERATED { 1 } |
|
{V_ASN1_ENUMERATED, |
|
{0x01}, |
|
0, |
|
ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, |
|
"#0A0101"}, |
|
// ENUMERATED { -1 } |
|
{V_ASN1_NEG_ENUMERATED, |
|
{0x01}, |
|
0, |
|
ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, |
|
"#0A01FF"}, |
|
}; |
|
for (const auto &t : kTests) { |
|
SCOPED_TRACE(t.type); |
|
SCOPED_TRACE(Bytes(t.data)); |
|
SCOPED_TRACE(t.str_flags); |
|
SCOPED_TRACE(t.flags); |
|
|
|
bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_type_new(t.type)); |
|
ASSERT_TRUE(ASN1_STRING_set(str.get(), t.data.data(), t.data.size())); |
|
str->flags = t.str_flags; |
|
|
|
// If the |BIO| is null, it should measure the size. |
|
int len = ASN1_STRING_print_ex(nullptr, str.get(), t.flags); |
|
EXPECT_EQ(len, static_cast<int>(t.expected.size())); |
|
|
|
// Measuring the size should also work for the |FILE| version |
|
len = ASN1_STRING_print_ex_fp(nullptr, str.get(), t.flags); |
|
EXPECT_EQ(len, static_cast<int>(t.expected.size())); |
|
|
|
// Actually print the string. |
|
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); |
|
ASSERT_TRUE(bio); |
|
len = ASN1_STRING_print_ex(bio.get(), str.get(), t.flags); |
|
EXPECT_EQ(len, static_cast<int>(t.expected.size())); |
|
|
|
const uint8_t *bio_contents; |
|
size_t bio_len; |
|
ASSERT_TRUE(BIO_mem_contents(bio.get(), &bio_contents, &bio_len)); |
|
EXPECT_EQ(t.expected, std::string(bio_contents, bio_contents + bio_len)); |
|
} |
|
|
|
const struct { |
|
int type; |
|
std::vector<uint8_t> data; |
|
int str_flags; |
|
unsigned long flags; |
|
} kUnprintableTests[] = { |
|
// It is an error if the string cannot be decoded. |
|
{V_ASN1_UTF8STRING, {0xff}, 0, ASN1_STRFLGS_ESC_MSB}, |
|
{V_ASN1_BMPSTRING, {0xff}, 0, ASN1_STRFLGS_ESC_MSB}, |
|
{V_ASN1_BMPSTRING, {0xff}, 0, ASN1_STRFLGS_ESC_MSB}, |
|
{V_ASN1_UNIVERSALSTRING, {0xff}, 0, ASN1_STRFLGS_ESC_MSB}, |
|
// Invalid codepoints are errors. |
|
{V_ASN1_UTF8STRING, {0xed, 0xa0, 0x80}, 0, ASN1_STRFLGS_ESC_MSB}, |
|
{V_ASN1_BMPSTRING, {0xd8, 0x00}, 0, ASN1_STRFLGS_ESC_MSB}, |
|
{V_ASN1_UNIVERSALSTRING, |
|
{0x00, 0x00, 0xd8, 0x00}, |
|
0, |
|
ASN1_STRFLGS_ESC_MSB}, |
|
// Even when re-encoding UTF-8 back into UTF-8, we should check validity. |
|
{V_ASN1_UTF8STRING, |
|
{0xff}, |
|
0, |
|
ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT}, |
|
}; |
|
for (const auto &t : kUnprintableTests) { |
|
SCOPED_TRACE(t.type); |
|
SCOPED_TRACE(Bytes(t.data)); |
|
SCOPED_TRACE(t.str_flags); |
|
SCOPED_TRACE(t.flags); |
|
|
|
bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_type_new(t.type)); |
|
ASSERT_TRUE(ASN1_STRING_set(str.get(), t.data.data(), t.data.size())); |
|
str->flags = t.str_flags; |
|
|
|
// If the |BIO| is null, it should measure the size. |
|
int len = ASN1_STRING_print_ex(nullptr, str.get(), t.flags); |
|
EXPECT_EQ(len, -1); |
|
ERR_clear_error(); |
|
|
|
// Measuring the size should also work for the |FILE| version |
|
len = ASN1_STRING_print_ex_fp(nullptr, str.get(), t.flags); |
|
EXPECT_EQ(len, -1); |
|
ERR_clear_error(); |
|
|
|
// Actually print the string. |
|
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); |
|
ASSERT_TRUE(bio); |
|
len = ASN1_STRING_print_ex(bio.get(), str.get(), t.flags); |
|
EXPECT_EQ(len, -1); |
|
ERR_clear_error(); |
|
} |
|
} |
|
|
|
TEST(ASN1Test, MBString) { |
|
const unsigned long kAll = B_ASN1_PRINTABLESTRING | B_ASN1_IA5STRING | |
|
B_ASN1_T61STRING | B_ASN1_BMPSTRING | |
|
B_ASN1_UNIVERSALSTRING | B_ASN1_UTF8STRING; |
|
|
|
const struct { |
|
int format; |
|
std::vector<uint8_t> in; |
|
unsigned long mask; |
|
int expected_type; |
|
std::vector<uint8_t> expected_data; |
|
int num_codepoints; |
|
} kTests[] = { |
|
// Given a choice of formats, we pick the smallest that fits. |
|
{MBSTRING_UTF8, {}, kAll, V_ASN1_PRINTABLESTRING, {}, 0}, |
|
{MBSTRING_UTF8, {'a'}, kAll, V_ASN1_PRINTABLESTRING, {'a'}, 1}, |
|
{MBSTRING_UTF8, |
|
{'a', 'A', '0', '\'', '(', ')', '+', ',', '-', '.', '/', ':', '=', '?'}, |
|
kAll, |
|
V_ASN1_PRINTABLESTRING, |
|
{'a', 'A', '0', '\'', '(', ')', '+', ',', '-', '.', '/', ':', '=', '?'}, |
|
14}, |
|
{MBSTRING_UTF8, {'*'}, kAll, V_ASN1_IA5STRING, {'*'}, 1}, |
|
{MBSTRING_UTF8, {'\n'}, kAll, V_ASN1_IA5STRING, {'\n'}, 1}, |
|
{MBSTRING_UTF8, |
|
{0xc2, 0x80 /* U+0080 */}, |
|
kAll, |
|
V_ASN1_T61STRING, |
|
{0x80}, |
|
1}, |
|
{MBSTRING_UTF8, |
|
{0xc4, 0x80 /* U+0100 */}, |
|
kAll, |
|
V_ASN1_BMPSTRING, |
|
{0x01, 0x00}, |
|
1}, |
|
{MBSTRING_UTF8, |
|
{0xf0, 0x90, 0x80, 0x80 /* U+10000 */}, |
|
kAll, |
|
V_ASN1_UNIVERSALSTRING, |
|
{0x00, 0x01, 0x00, 0x00}, |
|
1}, |
|
{MBSTRING_UTF8, |
|
{0xf0, 0x90, 0x80, 0x80 /* U+10000 */}, |
|
kAll & ~B_ASN1_UNIVERSALSTRING, |
|
V_ASN1_UTF8STRING, |
|
{0xf0, 0x90, 0x80, 0x80}, |
|
1}, |
|
|
|
// NUL is not printable. It should also not terminate iteration. |
|
{MBSTRING_UTF8, {0}, kAll, V_ASN1_IA5STRING, {0}, 1}, |
|
{MBSTRING_UTF8, {0, 'a'}, kAll, V_ASN1_IA5STRING, {0, 'a'}, 2}, |
|
|
|
// When a particular format is specified, we use it. |
|
{MBSTRING_UTF8, |
|
{'a'}, |
|
B_ASN1_PRINTABLESTRING, |
|
V_ASN1_PRINTABLESTRING, |
|
{'a'}, |
|
1}, |
|
{MBSTRING_UTF8, {'a'}, B_ASN1_IA5STRING, V_ASN1_IA5STRING, {'a'}, 1}, |
|
{MBSTRING_UTF8, {'a'}, B_ASN1_T61STRING, V_ASN1_T61STRING, {'a'}, 1}, |
|
{MBSTRING_UTF8, {'a'}, B_ASN1_UTF8STRING, V_ASN1_UTF8STRING, {'a'}, 1}, |
|
{MBSTRING_UTF8, |
|
{'a'}, |
|
B_ASN1_BMPSTRING, |
|
V_ASN1_BMPSTRING, |
|
{0x00, 'a'}, |
|
1}, |
|
{MBSTRING_UTF8, |
|
{'a'}, |
|
B_ASN1_UNIVERSALSTRING, |
|
V_ASN1_UNIVERSALSTRING, |
|
{0x00, 0x00, 0x00, 'a'}, |
|
1}, |
|
|
|
// A long string with characters of many widths, to test sizes are |
|
// measured in code points. |
|
{MBSTRING_UTF8, |
|
{ |
|
'a', // |
|
0xc2, 0x80, // U+0080 |
|
0xc4, 0x80, // U+0100 |
|
0xf0, 0x90, 0x80, 0x80, // U+10000 |
|
}, |
|
B_ASN1_UNIVERSALSTRING, |
|
V_ASN1_UNIVERSALSTRING, |
|
{ |
|
0x00, 0x00, 0x00, 'a', // |
|
0x00, 0x00, 0x00, 0x80, // |
|
0x00, 0x00, 0x01, 0x00, // |
|
0x00, 0x01, 0x00, 0x00, // |
|
}, |
|
4}, |
|
}; |
|
for (const auto &t : kTests) { |
|
SCOPED_TRACE(t.format); |
|
SCOPED_TRACE(Bytes(t.in)); |
|
SCOPED_TRACE(t.mask); |
|
|
|
// Passing in nullptr should do a dry run. |
|
EXPECT_EQ(t.expected_type, |
|
ASN1_mbstring_copy(nullptr, t.in.data(), t.in.size(), t.format, |
|
t.mask)); |
|
|
|
// Test allocating a new object. |
|
ASN1_STRING *str = nullptr; |
|
EXPECT_EQ( |
|
t.expected_type, |
|
ASN1_mbstring_copy(&str, t.in.data(), t.in.size(), t.format, t.mask)); |
|
ASSERT_TRUE(str); |
|
EXPECT_EQ(t.expected_type, ASN1_STRING_type(str)); |
|
EXPECT_EQ(Bytes(t.expected_data), |
|
Bytes(ASN1_STRING_get0_data(str), ASN1_STRING_length(str))); |
|
|
|
// Test writing into an existing object. |
|
ASN1_STRING_free(str); |
|
str = ASN1_STRING_new(); |
|
ASSERT_TRUE(str); |
|
ASN1_STRING *old_str = str; |
|
EXPECT_EQ( |
|
t.expected_type, |
|
ASN1_mbstring_copy(&str, t.in.data(), t.in.size(), t.format, t.mask)); |
|
ASSERT_EQ(old_str, str); |
|
EXPECT_EQ(t.expected_type, ASN1_STRING_type(str)); |
|
EXPECT_EQ(Bytes(t.expected_data), |
|
Bytes(ASN1_STRING_get0_data(str), ASN1_STRING_length(str))); |
|
ASN1_STRING_free(str); |
|
str = nullptr; |
|
|
|
// minsize and maxsize should be enforced, even in a dry run. |
|
EXPECT_EQ(t.expected_type, |
|
ASN1_mbstring_ncopy(nullptr, t.in.data(), t.in.size(), t.format, |
|
t.mask, /*minsize=*/t.num_codepoints, |
|
/*maxsize=*/t.num_codepoints)); |
|
|
|
EXPECT_EQ(t.expected_type, |
|
ASN1_mbstring_ncopy(&str, t.in.data(), t.in.size(), t.format, |
|
t.mask, /*minsize=*/t.num_codepoints, |
|
/*maxsize=*/t.num_codepoints)); |
|
ASSERT_TRUE(str); |
|
EXPECT_EQ(t.expected_type, ASN1_STRING_type(str)); |
|
EXPECT_EQ(Bytes(t.expected_data), |
|
Bytes(ASN1_STRING_get0_data(str), ASN1_STRING_length(str))); |
|
ASN1_STRING_free(str); |
|
str = nullptr; |
|
|
|
EXPECT_EQ(-1, ASN1_mbstring_ncopy( |
|
nullptr, t.in.data(), t.in.size(), t.format, t.mask, |
|
/*minsize=*/t.num_codepoints + 1, /*maxsize=*/0)); |
|
ERR_clear_error(); |
|
EXPECT_EQ(-1, ASN1_mbstring_ncopy( |
|
&str, t.in.data(), t.in.size(), t.format, t.mask, |
|
/*minsize=*/t.num_codepoints + 1, /*maxsize=*/0)); |
|
EXPECT_FALSE(str); |
|
ERR_clear_error(); |
|
if (t.num_codepoints > 1) { |
|
EXPECT_EQ(-1, ASN1_mbstring_ncopy( |
|
nullptr, t.in.data(), t.in.size(), t.format, t.mask, |
|
/*minsize=*/0, /*maxsize=*/t.num_codepoints - 1)); |
|
ERR_clear_error(); |
|
EXPECT_EQ(-1, ASN1_mbstring_ncopy( |
|
&str, t.in.data(), t.in.size(), t.format, t.mask, |
|
/*minsize=*/0, /*maxsize=*/t.num_codepoints - 1)); |
|
EXPECT_FALSE(str); |
|
ERR_clear_error(); |
|
} |
|
} |
|
|
|
const struct { |
|
int format; |
|
std::vector<uint8_t> in; |
|
unsigned long mask; |
|
} kInvalidTests[] = { |
|
// Invalid encodings are rejected. |
|
{MBSTRING_UTF8, {0xff}, B_ASN1_UTF8STRING}, |
|
{MBSTRING_BMP, {0xff}, B_ASN1_UTF8STRING}, |
|
{MBSTRING_UNIV, {0xff}, B_ASN1_UTF8STRING}, |
|
|
|
// Lone surrogates are not code points. |
|
{MBSTRING_UTF8, {0xed, 0xa0, 0x80}, B_ASN1_UTF8STRING}, |
|
{MBSTRING_BMP, {0xd8, 0x00}, B_ASN1_UTF8STRING}, |
|
{MBSTRING_UNIV, {0x00, 0x00, 0xd8, 0x00}, B_ASN1_UTF8STRING}, |
|
|
|
// The input does not fit in the allowed output types. |
|
{MBSTRING_UTF8, {'\n'}, B_ASN1_PRINTABLESTRING}, |
|
{MBSTRING_UTF8, |
|
{0xc2, 0x80 /* U+0080 */}, |
|
B_ASN1_PRINTABLESTRING | B_ASN1_IA5STRING}, |
|
{MBSTRING_UTF8, |
|
{0xc4, 0x80 /* U+0100 */}, |
|
B_ASN1_PRINTABLESTRING | B_ASN1_IA5STRING | B_ASN1_T61STRING}, |
|
{MBSTRING_UTF8, |
|
{0xf0, 0x90, 0x80, 0x80 /* U+10000 */}, |
|
B_ASN1_PRINTABLESTRING | B_ASN1_IA5STRING | B_ASN1_T61STRING | |
|
B_ASN1_BMPSTRING}, |
|
|
|
// Unrecognized bits are ignored. |
|
{MBSTRING_UTF8, {'\n'}, B_ASN1_PRINTABLESTRING | B_ASN1_SEQUENCE}, |
|
}; |
|
for (const auto &t : kInvalidTests) { |
|
SCOPED_TRACE(t.format); |
|
SCOPED_TRACE(Bytes(t.in)); |
|
SCOPED_TRACE(t.mask); |
|
|
|
EXPECT_EQ(-1, ASN1_mbstring_copy(nullptr, t.in.data(), t.in.size(), |
|
t.format, t.mask)); |
|
ERR_clear_error(); |
|
|
|
ASN1_STRING *str = nullptr; |
|
EXPECT_EQ(-1, ASN1_mbstring_copy(&str, t.in.data(), t.in.size(), |
|
t.format, t.mask)); |
|
ERR_clear_error(); |
|
EXPECT_EQ(nullptr, str); |
|
} |
|
} |
|
|
|
TEST(ASN1Test, StringByNID) { |
|
// |ASN1_mbstring_*| tests above test most of the interactions with |inform|, |
|
// so all tests below use UTF-8. |
|
const struct { |
|
int nid; |
|
std::string in; |
|
int expected_type; |
|
std::string expected; |
|
} kTests[] = { |
|
// Although DirectoryString and PKCS9String allow many types of strings, |
|
// we prefer UTF8String. |
|
{NID_commonName, "abc", V_ASN1_UTF8STRING, "abc"}, |
|
{NID_commonName, "\xe2\x98\x83", V_ASN1_UTF8STRING, "\xe2\x98\x83"}, |
|
{NID_localityName, "abc", V_ASN1_UTF8STRING, "abc"}, |
|
{NID_stateOrProvinceName, "abc", V_ASN1_UTF8STRING, "abc"}, |
|
{NID_organizationName, "abc", V_ASN1_UTF8STRING, "abc"}, |
|
{NID_organizationalUnitName, "abc", V_ASN1_UTF8STRING, "abc"}, |
|
{NID_pkcs9_unstructuredName, "abc", V_ASN1_UTF8STRING, "abc"}, |
|
{NID_pkcs9_challengePassword, "abc", V_ASN1_UTF8STRING, "abc"}, |
|
{NID_pkcs9_unstructuredAddress, "abc", V_ASN1_UTF8STRING, "abc"}, |
|
{NID_givenName, "abc", V_ASN1_UTF8STRING, "abc"}, |
|
{NID_givenName, "abc", V_ASN1_UTF8STRING, "abc"}, |
|
{NID_givenName, "abc", V_ASN1_UTF8STRING, "abc"}, |
|
{NID_surname, "abc", V_ASN1_UTF8STRING, "abc"}, |
|
{NID_initials, "abc", V_ASN1_UTF8STRING, "abc"}, |
|
{NID_name, "abc", V_ASN1_UTF8STRING, "abc"}, |
|
|
|
// Some attribute types use a particular string type. |
|
{NID_countryName, "US", V_ASN1_PRINTABLESTRING, "US"}, |
|
{NID_pkcs9_emailAddress, "example@example.com", V_ASN1_IA5STRING, |
|
"example@example.com"}, |
|
{NID_serialNumber, "1234", V_ASN1_PRINTABLESTRING, "1234"}, |
|
{NID_friendlyName, "abc", V_ASN1_BMPSTRING, |
|
std::string({'\0', 'a', '\0', 'b', '\0', 'c'})}, |
|
{NID_dnQualifier, "US", V_ASN1_PRINTABLESTRING, "US"}, |
|
{NID_domainComponent, "com", V_ASN1_IA5STRING, "com"}, |
|
{NID_ms_csp_name, "abc", V_ASN1_BMPSTRING, |
|
std::string({'\0', 'a', '\0', 'b', '\0', 'c'})}, |
|
|
|
// Unknown NIDs default to UTF8String. |
|
{NID_rsaEncryption, "abc", V_ASN1_UTF8STRING, "abc"}, |
|
}; |
|
for (const auto &t : kTests) { |
|
SCOPED_TRACE(t.nid); |
|
SCOPED_TRACE(t.in); |
|
|
|
// Test allocating a new object. |
|
bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID( |
|
nullptr, reinterpret_cast<const uint8_t *>(t.in.data()), t.in.size(), |
|
MBSTRING_UTF8, t.nid)); |
|
ASSERT_TRUE(str); |
|
EXPECT_EQ(t.expected_type, ASN1_STRING_type(str.get())); |
|
EXPECT_EQ(Bytes(t.expected), Bytes(ASN1_STRING_get0_data(str.get()), |
|
ASN1_STRING_length(str.get()))); |
|
|
|
// Test writing into an existing object. |
|
str.reset(ASN1_STRING_new()); |
|
ASSERT_TRUE(str); |
|
ASN1_STRING *old_str = str.get(); |
|
ASSERT_TRUE(ASN1_STRING_set_by_NID( |
|
&old_str, reinterpret_cast<const uint8_t *>(t.in.data()), t.in.size(), |
|
MBSTRING_UTF8, t.nid)); |
|
ASSERT_EQ(old_str, str.get()); |
|
EXPECT_EQ(t.expected_type, ASN1_STRING_type(str.get())); |
|
EXPECT_EQ(Bytes(t.expected), Bytes(ASN1_STRING_get0_data(str.get()), |
|
ASN1_STRING_length(str.get()))); |
|
} |
|
|
|
const struct { |
|
int nid; |
|
std::string in; |
|
} kInvalidTests[] = { |
|
// DirectoryString forbids empty inputs. |
|
{NID_commonName, ""}, |
|
{NID_localityName, ""}, |
|
{NID_stateOrProvinceName, ""}, |
|
{NID_organizationName, ""}, |
|
{NID_organizationalUnitName, ""}, |
|
{NID_pkcs9_unstructuredName, ""}, |
|
{NID_pkcs9_challengePassword, ""}, |
|
{NID_pkcs9_unstructuredAddress, ""}, |
|
{NID_givenName, ""}, |
|
{NID_givenName, ""}, |
|
{NID_givenName, ""}, |
|
{NID_surname, ""}, |
|
{NID_initials, ""}, |
|
{NID_name, ""}, |
|
|
|
// Test upper bounds from RFC 5280. |
|
{NID_name, std::string(32769, 'a')}, |
|
{NID_commonName, std::string(65, 'a')}, |
|
{NID_localityName, std::string(129, 'a')}, |
|
{NID_stateOrProvinceName, std::string(129, 'a')}, |
|
{NID_organizationName, std::string(65, 'a')}, |
|
{NID_organizationalUnitName, std::string(65, 'a')}, |
|
{NID_pkcs9_emailAddress, std::string(256, 'a')}, |
|
{NID_serialNumber, std::string(65, 'a')}, |
|
|
|
// X520countryName must be exactly two characters. |
|
{NID_countryName, "A"}, |
|
{NID_countryName, "AAA"}, |
|
|
|
// Some string types cannot represent all codepoints. |
|
{NID_countryName, "\xe2\x98\x83"}, |
|
{NID_pkcs9_emailAddress, "\xe2\x98\x83"}, |
|
{NID_serialNumber, "\xe2\x98\x83"}, |
|
{NID_dnQualifier, "\xe2\x98\x83"}, |
|
{NID_domainComponent, "\xe2\x98\x83"}, |
|
}; |
|
for (const auto &t : kInvalidTests) { |
|
SCOPED_TRACE(t.nid); |
|
SCOPED_TRACE(t.in); |
|
bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID( |
|
nullptr, reinterpret_cast<const uint8_t *>(t.in.data()), t.in.size(), |
|
MBSTRING_UTF8, t.nid)); |
|
EXPECT_FALSE(str); |
|
ERR_clear_error(); |
|
} |
|
} |
|
|
|
TEST(ASN1Test, StringByCustomNID) { |
|
// This test affects library-global state. We rely on nothing else in the test |
|
// suite using these OIDs. |
|
int nid1 = OBJ_create("1.2.840.113554.4.1.72585.1000", "custom OID 1000", |
|
"custom OID 1000"); |
|
ASSERT_NE(NID_undef, nid1); |
|
int nid2 = OBJ_create("1.2.840.113554.4.1.72585.1001", "custom OID 1001", |
|
"custom OID 1001"); |
|
ASSERT_NE(NID_undef, nid2); |
|
|
|
// Values registered in the string table should be picked up. |
|
ASSERT_TRUE(ASN1_STRING_TABLE_add(nid1, 5, 10, V_ASN1_PRINTABLESTRING, |
|
STABLE_NO_MASK)); |
|
bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID( |
|
nullptr, reinterpret_cast<const uint8_t *>("12345"), 5, MBSTRING_UTF8, |
|
nid1)); |
|
ASSERT_TRUE(str); |
|
EXPECT_EQ(V_ASN1_PRINTABLESTRING, ASN1_STRING_type(str.get())); |
|
EXPECT_EQ(Bytes("12345"), Bytes(ASN1_STRING_get0_data(str.get()), |
|
ASN1_STRING_length(str.get()))); |
|
|
|
// Minimum and maximum lengths are enforced. |
|
str.reset(ASN1_STRING_set_by_NID( |
|
nullptr, reinterpret_cast<const uint8_t *>("1234"), 4, MBSTRING_UTF8, |
|
nid1)); |
|
EXPECT_FALSE(str); |
|
ERR_clear_error(); |
|
str.reset(ASN1_STRING_set_by_NID( |
|
nullptr, reinterpret_cast<const uint8_t *>("12345678901"), 11, |
|
MBSTRING_UTF8, nid1)); |
|
EXPECT_FALSE(str); |
|
ERR_clear_error(); |
|
|
|
// Without |STABLE_NO_MASK|, we always pick UTF8String. -1 means there is no |
|
// length limit. |
|
ASSERT_TRUE(ASN1_STRING_TABLE_add(nid2, -1, -1, DIRSTRING_TYPE, 0)); |
|
str.reset(ASN1_STRING_set_by_NID(nullptr, |
|
reinterpret_cast<const uint8_t *>("12345"), |
|
5, MBSTRING_UTF8, nid2)); |
|
ASSERT_TRUE(str); |
|
EXPECT_EQ(V_ASN1_UTF8STRING, ASN1_STRING_type(str.get())); |
|
EXPECT_EQ(Bytes("12345"), Bytes(ASN1_STRING_get0_data(str.get()), |
|
ASN1_STRING_length(str.get()))); |
|
|
|
// Overriding existing entries, built-in or custom, is an error. |
|
EXPECT_FALSE( |
|
ASN1_STRING_TABLE_add(NID_countryName, -1, -1, DIRSTRING_TYPE, 0)); |
|
EXPECT_FALSE(ASN1_STRING_TABLE_add(nid1, -1, -1, DIRSTRING_TYPE, 0)); |
|
} |
|
|
|
#if defined(OPENSSL_THREADS) |
|
TEST(ASN1Test, StringByCustomNIDThreads) { |
|
// This test affects library-global state. We rely on nothing else in the test |
|
// suite using these OIDs. |
|
int nid1 = OBJ_create("1.2.840.113554.4.1.72585.1002", "custom OID 1002", |
|
"custom OID 1002"); |
|
ASSERT_NE(NID_undef, nid1); |
|
int nid2 = OBJ_create("1.2.840.113554.4.1.72585.1003", "custom OID 1003", |
|
"custom OID 1003"); |
|
ASSERT_NE(NID_undef, nid2); |
|
|
|
std::vector<std::thread> threads; |
|
threads.emplace_back([&] { |
|
ASSERT_TRUE(ASN1_STRING_TABLE_add(nid1, 5, 10, V_ASN1_PRINTABLESTRING, |
|
STABLE_NO_MASK)); |
|
bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID( |
|
nullptr, reinterpret_cast<const uint8_t *>("12345"), 5, MBSTRING_UTF8, |
|
nid1)); |
|
ASSERT_TRUE(str); |
|
EXPECT_EQ(V_ASN1_PRINTABLESTRING, ASN1_STRING_type(str.get())); |
|
EXPECT_EQ(Bytes("12345"), Bytes(ASN1_STRING_get0_data(str.get()), |
|
ASN1_STRING_length(str.get()))); |
|
}); |
|
threads.emplace_back([&] { |
|
ASSERT_TRUE(ASN1_STRING_TABLE_add(nid2, 5, 10, V_ASN1_PRINTABLESTRING, |
|
STABLE_NO_MASK)); |
|
bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID( |
|
nullptr, reinterpret_cast<const uint8_t *>("12345"), 5, MBSTRING_UTF8, |
|
nid2)); |
|
ASSERT_TRUE(str); |
|
EXPECT_EQ(V_ASN1_PRINTABLESTRING, ASN1_STRING_type(str.get())); |
|
EXPECT_EQ(Bytes("12345"), Bytes(ASN1_STRING_get0_data(str.get()), |
|
ASN1_STRING_length(str.get()))); |
|
}); |
|
for (auto &thread : threads) { |
|
thread.join(); |
|
} |
|
} |
|
#endif // OPENSSL_THREADS |
|
|
|
// Test that multi-string types correctly encode negative ENUMERATED. |
|
// Multi-string types cannot contain INTEGER, so we only test ENUMERATED. |
|
TEST(ASN1Test, NegativeEnumeratedMultistring) { |
|
static const uint8_t kMinusOne[] = {0x0a, 0x01, 0xff}; // ENUMERATED { -1 } |
|
// |ASN1_PRINTABLE| is a multi-string type that allows ENUMERATED. |
|
const uint8_t *p = kMinusOne; |
|
bssl::UniquePtr<ASN1_STRING> str( |
|
d2i_ASN1_PRINTABLE(nullptr, &p, sizeof(kMinusOne))); |
|
ASSERT_TRUE(str); |
|
TestSerialize(str.get(), i2d_ASN1_PRINTABLE, kMinusOne); |
|
} |
|
|
|
TEST(ASN1Test, PrintableType) { |
|
const struct { |
|
std::vector<uint8_t> in; |
|
int result; |
|
} kTests[] = { |
|
{{}, V_ASN1_PRINTABLESTRING}, |
|
{{'a', 'A', '0', '\'', '(', ')', '+', ',', '-', '.', '/', ':', '=', '?'}, |
|
V_ASN1_PRINTABLESTRING}, |
|
{{'*'}, V_ASN1_IA5STRING}, |
|
{{'\0'}, V_ASN1_IA5STRING}, |
|
{{'\0', 'a'}, V_ASN1_IA5STRING}, |
|
{{0, 1, 2, 3, 125, 126, 127}, V_ASN1_IA5STRING}, |
|
{{0, 1, 2, 3, 125, 126, 127, 128}, V_ASN1_T61STRING}, |
|
{{128, 0, 1, 2, 3, 125, 126, 127}, V_ASN1_T61STRING}, |
|
}; |
|
for (const auto &t : kTests) { |
|
SCOPED_TRACE(Bytes(t.in)); |
|
EXPECT_EQ(t.result, ASN1_PRINTABLE_type(t.in.data(), t.in.size())); |
|
} |
|
} |
|
|
|
// Encoding a CHOICE type with an invalid selector should fail. |
|
TEST(ASN1Test, InvalidChoice) { |
|
bssl::UniquePtr<GENERAL_NAME> name(GENERAL_NAME_new()); |
|
ASSERT_TRUE(name); |
|
// CHOICE types are initialized with an invalid selector. |
|
EXPECT_EQ(-1, name->type); |
|
// |name| should fail to encode. |
|
EXPECT_EQ(-1, i2d_GENERAL_NAME(name.get(), nullptr)); |
|
|
|
// The error should be propagated through types containing |name|. |
|
bssl::UniquePtr<GENERAL_NAMES> names(GENERAL_NAMES_new()); |
|
ASSERT_TRUE(names); |
|
EXPECT_TRUE(bssl::PushToStack(names.get(), std::move(name))); |
|
EXPECT_EQ(-1, i2d_GENERAL_NAMES(names.get(), nullptr)); |
|
} |
|
|
|
// Encoding NID-only |ASN1_OBJECT|s should fail. |
|
TEST(ASN1Test, InvalidObject) { |
|
EXPECT_EQ(-1, i2d_ASN1_OBJECT(OBJ_nid2obj(NID_kx_ecdhe), nullptr)); |
|
|
|
bssl::UniquePtr<X509_ALGOR> alg(X509_ALGOR_new()); |
|
ASSERT_TRUE(alg); |
|
ASSERT_TRUE(X509_ALGOR_set0(alg.get(), OBJ_nid2obj(NID_kx_ecdhe), |
|
V_ASN1_UNDEF, nullptr)); |
|
EXPECT_EQ(-1, i2d_X509_ALGOR(alg.get(), nullptr)); |
|
} |
|
|
|
// Encoding invalid |ASN1_TYPE|s should fail. |ASN1_TYPE|s are |
|
// default-initialized to an invalid type. |
|
TEST(ASN1Test, InvalidASN1Type) { |
|
bssl::UniquePtr<ASN1_TYPE> obj(ASN1_TYPE_new()); |
|
ASSERT_TRUE(obj); |
|
EXPECT_EQ(-1, obj->type); |
|
EXPECT_EQ(-1, i2d_ASN1_TYPE(obj.get(), nullptr)); |
|
} |
|
|
|
// Encoding invalid MSTRING types should fail. An MSTRING is a CHOICE of |
|
// string-like types. They are initialized to an invalid type. |
|
TEST(ASN1Test, InvalidMSTRING) { |
|
bssl::UniquePtr<ASN1_STRING> obj(ASN1_TIME_new()); |
|
ASSERT_TRUE(obj); |
|
EXPECT_EQ(-1, obj->type); |
|
EXPECT_EQ(-1, i2d_ASN1_TIME(obj.get(), nullptr)); |
|
|
|
obj.reset(DIRECTORYSTRING_new()); |
|
ASSERT_TRUE(obj); |
|
EXPECT_EQ(-1, obj->type); |
|
EXPECT_EQ(-1, i2d_DIRECTORYSTRING(obj.get(), nullptr)); |
|
} |
|
|
|
TEST(ASN1Test, StringTableSorted) { |
|
const ASN1_STRING_TABLE *table; |
|
size_t table_len; |
|
asn1_get_string_table_for_testing(&table, &table_len); |
|
for (size_t i = 1; i < table_len; i++) { |
|
EXPECT_LT(table[i-1].nid, table[i].nid); |
|
} |
|
} |
|
|
|
TEST(ASN1Test, Null) { |
|
// An |ASN1_NULL| is an opaque, non-null pointer. It is an arbitrary signaling |
|
// value and does not need to be freed. (If the pointer is null, this is an |
|
// omitted OPTIONAL NULL.) |
|
EXPECT_NE(nullptr, ASN1_NULL_new()); |
|
|
|
// It is safe to free either the non-null pointer or the null one. |
|
ASN1_NULL_free(ASN1_NULL_new()); |
|
ASN1_NULL_free(nullptr); |
|
|
|
// A NULL may be decoded. |
|
static const uint8_t kNull[] = {0x05, 0x00}; |
|
const uint8_t *ptr = kNull; |
|
EXPECT_NE(nullptr, d2i_ASN1_NULL(nullptr, &ptr, sizeof(kNull))); |
|
EXPECT_EQ(ptr, kNull + sizeof(kNull)); |
|
|
|
// It may also be re-encoded. |
|
uint8_t *enc = nullptr; |
|
int enc_len = i2d_ASN1_NULL(ASN1_NULL_new(), &enc); |
|
ASSERT_GE(enc_len, 0); |
|
EXPECT_EQ(Bytes(kNull), Bytes(enc, enc_len)); |
|
OPENSSL_free(enc); |
|
enc = nullptr; |
|
|
|
// Although the standalone representation of NULL is a non-null pointer, the |
|
// |ASN1_TYPE| representation is a null pointer. |
|
ptr = kNull; |
|
bssl::UniquePtr<ASN1_TYPE> null_type( |
|
d2i_ASN1_TYPE(nullptr, &ptr, sizeof(kNull))); |
|
ASSERT_TRUE(null_type); |
|
EXPECT_EQ(ptr, kNull + sizeof(kNull)); |
|
EXPECT_EQ(V_ASN1_NULL, ASN1_TYPE_get(null_type.get())); |
|
EXPECT_EQ(nullptr, null_type->value.ptr); |
|
} |
|
|
|
TEST(ASN1Test, Pack) { |
|
bssl::UniquePtr<BASIC_CONSTRAINTS> val(BASIC_CONSTRAINTS_new()); |
|
ASSERT_TRUE(val); |
|
val->ca = 0; |
|
|
|
// Test all three calling conventions. |
|
static const uint8_t kExpected[] = {0x30, 0x00}; |
|
bssl::UniquePtr<ASN1_STRING> str( |
|
ASN1_item_pack(val.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS), nullptr)); |
|
ASSERT_TRUE(str); |
|
EXPECT_EQ( |
|
Bytes(ASN1_STRING_get0_data(str.get()), ASN1_STRING_length(str.get())), |
|
Bytes(kExpected)); |
|
|
|
ASN1_STRING *raw = nullptr; |
|
str.reset(ASN1_item_pack(val.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS), &raw)); |
|
ASSERT_TRUE(str); |
|
EXPECT_EQ(raw, str.get()); |
|
EXPECT_EQ( |
|
Bytes(ASN1_STRING_get0_data(str.get()), ASN1_STRING_length(str.get())), |
|
Bytes(kExpected)); |
|
|
|
str.reset(ASN1_STRING_new()); |
|
ASSERT_TRUE(str); |
|
raw = str.get(); |
|
EXPECT_TRUE( |
|
ASN1_item_pack(val.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS), &raw)); |
|
EXPECT_EQ(raw, str.get()); |
|
EXPECT_EQ( |
|
Bytes(ASN1_STRING_get0_data(str.get()), ASN1_STRING_length(str.get())), |
|
Bytes(kExpected)); |
|
} |
|
|
|
TEST(ASN1Test, Unpack) { |
|
bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_new()); |
|
ASSERT_TRUE(str); |
|
|
|
static const uint8_t kValid[] = {0x30, 0x00}; |
|
ASSERT_TRUE( |
|
ASN1_STRING_set(str.get(), kValid, sizeof(kValid))); |
|
bssl::UniquePtr<BASIC_CONSTRAINTS> val(static_cast<BASIC_CONSTRAINTS *>( |
|
ASN1_item_unpack(str.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS)))); |
|
ASSERT_TRUE(val); |
|
EXPECT_EQ(val->ca, 0); |
|
EXPECT_EQ(val->pathlen, nullptr); |
|
|
|
static const uint8_t kInvalid[] = {0x31, 0x00}; |
|
ASSERT_TRUE(ASN1_STRING_set(str.get(), kInvalid, sizeof(kInvalid))); |
|
val.reset(static_cast<BASIC_CONSTRAINTS *>( |
|
ASN1_item_unpack(str.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS)))); |
|
EXPECT_FALSE(val); |
|
|
|
static const uint8_t kTraiilingData[] = {0x30, 0x00, 0x00}; |
|
ASSERT_TRUE( |
|
ASN1_STRING_set(str.get(), kTraiilingData, sizeof(kTraiilingData))); |
|
val.reset(static_cast<BASIC_CONSTRAINTS *>( |
|
ASN1_item_unpack(str.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS)))); |
|
EXPECT_FALSE(val); |
|
} |
|
|
|
TEST(ASN1Test, StringCmp) { |
|
struct Input { |
|
int type; |
|
std::vector<uint8_t> data; |
|
int flags; |
|
bool equals_previous; |
|
}; |
|
// kInputs is a list of |ASN1_STRING| parameters, in sorted order. The input |
|
// should be sorted by bit length, then data, then type. |
|
const Input kInputs[] = { |
|
{V_ASN1_BIT_STRING, {}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, |
|
{V_ASN1_BIT_STRING, {}, 0, true}, |
|
// When |ASN1_STRING_FLAG_BITS_LEFT| is unset, BIT STRINGs implicitly |
|
// drop trailing zeros. |
|
{V_ASN1_BIT_STRING, {0x00, 0x00, 0x00, 0x00}, 0, true}, |
|
|
|
{V_ASN1_OCTET_STRING, {}, 0, false}, |
|
{V_ASN1_UTF8STRING, {}, 0, false}, |
|
|
|
// BIT STRINGs with padding bits (i.e. not part of the actual value) are |
|
// shorter and thus sort earlier: |
|
// 1-bit inputs. |
|
{V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 7, false}, |
|
{V_ASN1_BIT_STRING, {0x80}, ASN1_STRING_FLAG_BITS_LEFT | 7, false}, |
|
// 2-bit inputs. |
|
{V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 6, false}, |
|
{V_ASN1_BIT_STRING, {0xc0}, ASN1_STRING_FLAG_BITS_LEFT | 6, false}, |
|
// 3-bit inputs. |
|
{V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 5, false}, |
|
{V_ASN1_BIT_STRING, {0xe0}, ASN1_STRING_FLAG_BITS_LEFT | 5, false}, |
|
// 4-bit inputs. |
|
{V_ASN1_BIT_STRING, {0xf0}, ASN1_STRING_FLAG_BITS_LEFT | 4, false}, |
|
{V_ASN1_BIT_STRING, {0xf0}, 0, true}, // 4 trailing zeros dropped. |
|
{V_ASN1_BIT_STRING, {0xf0, 0x00}, 0, true}, // 12 trailing zeros dropped. |
|
// 5-bit inputs. |
|
{V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 3, false}, |
|
{V_ASN1_BIT_STRING, {0xf0}, ASN1_STRING_FLAG_BITS_LEFT | 3, false}, |
|
{V_ASN1_BIT_STRING, {0xf8}, ASN1_STRING_FLAG_BITS_LEFT | 3, false}, |
|
// 6-bit inputs. |
|
{V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 2, false}, |
|
{V_ASN1_BIT_STRING, {0xf0}, ASN1_STRING_FLAG_BITS_LEFT | 2, false}, |
|
{V_ASN1_BIT_STRING, {0xfc}, ASN1_STRING_FLAG_BITS_LEFT | 2, false}, |
|
// 7-bit inputs. |
|
{V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 1, false}, |
|
{V_ASN1_BIT_STRING, {0xf0}, ASN1_STRING_FLAG_BITS_LEFT | 1, false}, |
|
{V_ASN1_BIT_STRING, {0xfe}, ASN1_STRING_FLAG_BITS_LEFT | 1, false}, |
|
|
|
// 8-bit inputs. |
|
{V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, |
|
{V_ASN1_OCTET_STRING, {0x00}, 0, false}, |
|
{V_ASN1_UTF8STRING, {0x00}, 0, false}, |
|
|
|
{V_ASN1_BIT_STRING, {0x80}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, |
|
{V_ASN1_OCTET_STRING, {0x80}, 0, false}, |
|
{V_ASN1_UTF8STRING, {0x80}, 0, false}, |
|
|
|
{V_ASN1_BIT_STRING, {0xff}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, |
|
{V_ASN1_BIT_STRING, {0xff}, 0, true}, // No trailing zeros to drop. |
|
{V_ASN1_OCTET_STRING, {0xff}, 0, false}, |
|
{V_ASN1_UTF8STRING, {0xff}, 0, false}, |
|
|
|
// Bytes are compared lexicographically. |
|
{V_ASN1_BIT_STRING, {0x00, 0x00}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, |
|
{V_ASN1_OCTET_STRING, {0x00, 0x00}, 0, false}, |
|
{V_ASN1_UTF8STRING, {0x00, 0x00}, 0, false}, |
|
|
|
{V_ASN1_BIT_STRING, {0x00, 0xff}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, |
|
{V_ASN1_OCTET_STRING, {0x00, 0xff}, 0, false}, |
|
{V_ASN1_UTF8STRING, {0x00, 0xff}, 0, false}, |
|
|
|
{V_ASN1_BIT_STRING, {0xff, 0x00}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, |
|
{V_ASN1_OCTET_STRING, {0xff, 0x00}, 0, false}, |
|
{V_ASN1_UTF8STRING, {0xff, 0x00}, 0, false}, |
|
}; |
|
std::vector<bssl::UniquePtr<ASN1_STRING>> strs; |
|
strs.reserve(OPENSSL_ARRAY_SIZE(kInputs)); |
|
for (const auto &input : kInputs) { |
|
strs.emplace_back(ASN1_STRING_type_new(input.type)); |
|
ASSERT_TRUE(strs.back()); |
|
ASSERT_TRUE(ASN1_STRING_set(strs.back().get(), input.data.data(), |
|
input.data.size())); |
|
strs.back()->flags = input.flags; |
|
} |
|
|
|
for (size_t i = 0; i < strs.size(); i++) { |
|
SCOPED_TRACE(i); |
|
bool expect_equal = true; |
|
for (size_t j = i; j < strs.size(); j++) { |
|
SCOPED_TRACE(j); |
|
if (j > i && !kInputs[j].equals_previous) { |
|
expect_equal = false; |
|
} |
|
|
|
const int cmp_i_j = ASN1_STRING_cmp(strs[i].get(), strs[j].get()); |
|
const int cmp_j_i = ASN1_STRING_cmp(strs[j].get(), strs[i].get()); |
|
if (expect_equal) { |
|
EXPECT_EQ(cmp_i_j, 0); |
|
EXPECT_EQ(cmp_j_i, 0); |
|
} else if (i < j) { |
|
EXPECT_LT(cmp_i_j, 0); |
|
EXPECT_GT(cmp_j_i, 0); |
|
} else { |
|
EXPECT_GT(cmp_i_j, 0); |
|
EXPECT_LT(cmp_j_i, 0); |
|
} |
|
} |
|
} |
|
} |
|
|
|
TEST(ASN1Test, PrintASN1Object) { |
|
const struct { |
|
std::vector<uint8_t> in; |
|
const char *expected; |
|
} kDataTests[] = { |
|
// Known OIDs print as the name. |
|
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01}, "rsaEncryption"}, |
|
|
|
// Unknown OIDs print in decimal. |
|
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x00}, |
|
"1.2.840.113554.4.1.72585.0"}, |
|
|
|
// Inputs which cannot be parsed as OIDs print as "<INVALID>". |
|
{{0xff}, "<INVALID>"}, |
|
|
|
// The function has an internal 80-byte buffer. Test inputs at that |
|
// boundary. First, 78 characters. |
|
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, |
|
0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
|
"1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0." |
|
"0.0.0.1"}, |
|
// 79 characters. |
|
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, |
|
0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a}, |
|
"1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0." |
|
"0.0.0.10"}, |
|
// 80 characters. |
|
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, |
|
0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64}, |
|
"1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0." |
|
"0.0.0.100"}, |
|
// 81 characters. |
|
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, |
|
0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x87, 0x68}, |
|
"1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0." |
|
"0.0.0.1000"}, |
|
// 82 characters. |
|
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, |
|
0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xce, 0x10}, |
|
"1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0." |
|
"0.0.0.10000"}, |
|
}; |
|
for (const auto &t : kDataTests) { |
|
SCOPED_TRACE(Bytes(t.in)); |
|
bssl::UniquePtr<ASN1_OBJECT> obj(ASN1_OBJECT_create( |
|
NID_undef, t.in.data(), t.in.size(), /*sn=*/nullptr, /*ln=*/nullptr)); |
|
ASSERT_TRUE(obj); |
|
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); |
|
ASSERT_TRUE(bio); |
|
|
|
int len = i2a_ASN1_OBJECT(bio.get(), obj.get()); |
|
EXPECT_EQ(len, static_cast<int>(strlen(t.expected))); |
|
|
|
const uint8_t *bio_data; |
|
size_t bio_len; |
|
BIO_mem_contents(bio.get(), &bio_data, &bio_len); |
|
EXPECT_EQ(t.expected, |
|
std::string(reinterpret_cast<const char *>(bio_data), bio_len)); |
|
} |
|
|
|
// Test writing NULL. |
|
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); |
|
ASSERT_TRUE(bio); |
|
int len = i2a_ASN1_OBJECT(bio.get(), nullptr); |
|
EXPECT_EQ(len, 4); |
|
const uint8_t *bio_data; |
|
size_t bio_len; |
|
BIO_mem_contents(bio.get(), &bio_data, &bio_len); |
|
EXPECT_EQ("NULL", |
|
std::string(reinterpret_cast<const char *>(bio_data), bio_len)); |
|
} |
|
|
|
TEST(ASN1Test, GetObject) { |
|
// The header is valid, but there are not enough bytes for the length. |
|
static const uint8_t kTruncated[] = {0x30, 0x01}; |
|
const uint8_t *ptr = kTruncated; |
|
long length; |
|
int tag; |
|
int tag_class; |
|
EXPECT_EQ(0x80, ASN1_get_object(&ptr, &length, &tag, &tag_class, |
|
sizeof(kTruncated))); |
|
|
|
static const uint8_t kIndefinite[] = {0x30, 0x80, 0x00, 0x00}; |
|
ptr = kIndefinite; |
|
EXPECT_EQ(0x80, ASN1_get_object(&ptr, &length, &tag, &tag_class, |
|
sizeof(kIndefinite))); |
|
} |
|
|
|
template <typename T> |
|
void ExpectNoParse(T *(*d2i)(T **, const uint8_t **, long), |
|
const std::vector<uint8_t> &in) { |
|
SCOPED_TRACE(Bytes(in)); |
|
const uint8_t *ptr = in.data(); |
|
bssl::UniquePtr<T> obj(d2i(nullptr, &ptr, in.size())); |
|
EXPECT_FALSE(obj); |
|
} |
|
|
|
// The zero tag, constructed or primitive, is reserved and should rejected by |
|
// the parser. |
|
TEST(ASN1Test, ZeroTag) { |
|
ExpectNoParse(d2i_ASN1_TYPE, {0x00, 0x00}); |
|
ExpectNoParse(d2i_ASN1_TYPE, {0x00, 0x10, 0x00}); |
|
ExpectNoParse(d2i_ASN1_TYPE, {0x20, 0x00}); |
|
ExpectNoParse(d2i_ASN1_TYPE, {0x20, 0x00}); |
|
ExpectNoParse(d2i_ASN1_SEQUENCE_ANY, {0x30, 0x02, 0x00, 0x00}); |
|
ExpectNoParse(d2i_ASN1_SET_ANY, {0x31, 0x02, 0x00, 0x00}); |
|
// SEQUENCE { |
|
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.1 } |
|
// [UNIVERSAL 0 PRIMITIVE] {} |
|
// } |
|
ExpectNoParse(d2i_X509_ALGOR, |
|
{0x30, 0x10, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, |
|
0x04, 0x01, 0x84, 0xb7, 0x09, 0x01, 0x00, 0x00}); |
|
// SEQUENCE { |
|
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.1 } |
|
// [UNIVERSAL 0 CONSTRUCTED] {} |
|
// } |
|
ExpectNoParse(d2i_X509_ALGOR, |
|
{0x30, 0x10, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, |
|
0x04, 0x01, 0x84, 0xb7, 0x09, 0x01, 0x20, 0x00}); |
|
// SEQUENCE { |
|
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.1 } |
|
// [UNIVERSAL 0 PRIMITIVE] { "a" } |
|
// } |
|
ExpectNoParse(d2i_X509_ALGOR, |
|
{0x30, 0x11, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, |
|
0x04, 0x01, 0x84, 0xb7, 0x09, 0x01, 0x00, 0x01, 0x61}); |
|
} |
|
|
|
TEST(ASN1Test, StringEncoding) { |
|
const struct { |
|
ASN1_STRING *(*d2i)(ASN1_STRING **out, const uint8_t **inp, long len); |
|
std::vector<uint8_t> in; |
|
bool valid; |
|
} kTests[] = { |
|
// All OCTET STRINGs are valid. |
|
{d2i_ASN1_OCTET_STRING, {0x04, 0x00}, true}, |
|
{d2i_ASN1_OCTET_STRING, {0x04, 0x01, 0x00}, true}, |
|
|
|
// UTF8String must be valid UTF-8. |
|
{d2i_ASN1_UTF8STRING, {0x0c, 0x00}, true}, |
|
{d2i_ASN1_UTF8STRING, {0x0c, 0x01, 'a'}, true}, |
|
{d2i_ASN1_UTF8STRING, {0x0c, 0x03, 0xe2, 0x98, 0x83}, true}, |
|
// Non-minimal, two-byte UTF-8. |
|
{d2i_ASN1_UTF8STRING, {0x0c, 0x02, 0xc0, 0x81}, false}, |
|
// Truncated, four-byte UTF-8. |
|
{d2i_ASN1_UTF8STRING, {0x0c, 0x03, 0xf0, 0x80, 0x80}, false}, |
|
// Low-surrogate value. |
|
{d2i_ASN1_UTF8STRING, {0x0c, 0x03, 0xed, 0xa0, 0x80}, false}, |
|
// High-surrogate value. |
|
{d2i_ASN1_UTF8STRING, {0x0c, 0x03, 0xed, 0xb0, 0x81}, false}, |
|
|
|
// BMPString must be valid UCS-2. |
|
{d2i_ASN1_BMPSTRING, {0x1e, 0x00}, true}, |
|
{d2i_ASN1_BMPSTRING, {0x1e, 0x02, 0x00, 'a'}, true}, |
|
// Truncated code unit. |
|
{d2i_ASN1_BMPSTRING, {0x1e, 0x01, 'a'}, false}, |
|
// Lone surrogate. |
|
{d2i_ASN1_BMPSTRING, {0x1e, 0x02, 0xd8, 0}, false}, |
|
// BMPString is UCS-2, not UTF-16, so surrogate pairs are also invalid. |
|
{d2i_ASN1_BMPSTRING, {0x1e, 0x04, 0xd8, 0, 0xdc, 1}, false}, |
|
|
|
// UniversalString must be valid UTF-32. |
|
{d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x00}, true}, |
|
{d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x00, 0x00, 'a'}, true}, |
|
// Maximum code point. |
|
{d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x10, 0xff, 0xfd}, true}, |
|
// Reserved. |
|
{d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x10, 0xff, 0xfe}, false}, |
|
{d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x10, 0xff, 0xff}, false}, |
|
// Too high. |
|
{d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x11, 0x00, 0x00}, false}, |
|
// Surrogates are not characters. |
|
{d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x00, 0xd8, 0}, false}, |
|
// Truncated codepoint. |
|
{d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x03, 0x00, 0x00, 0x00}, false}, |
|
|
|
// We interpret T61String as Latin-1, so all inputs are valid. |
|
{d2i_ASN1_T61STRING, {0x14, 0x00}, true}, |
|
{d2i_ASN1_T61STRING, {0x14, 0x01, 0x00}, true}, |
|
}; |
|
for (const auto& t : kTests) { |
|
SCOPED_TRACE(Bytes(t.in)); |
|
const uint8_t *inp; |
|
|
|
if (t.d2i != nullptr) { |
|
inp = t.in.data(); |
|
bssl::UniquePtr<ASN1_STRING> str(t.d2i(nullptr, &inp, t.in.size())); |
|
EXPECT_EQ(t.valid, str != nullptr); |
|
} |
|
|
|
// Also test with the ANY parser. |
|
inp = t.in.data(); |
|
bssl::UniquePtr<ASN1_TYPE> any(d2i_ASN1_TYPE(nullptr, &inp, t.in.size())); |
|
EXPECT_EQ(t.valid, any != nullptr); |
|
} |
|
} |
|
|
|
// Exhaustively test POSIX time conversions for every day across the millenium. |
|
TEST(ASN1Test, POSIXTime) { |
|
const int kDaysInMonth[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; |
|
|
|
// Test the epoch explicitly, to confirm our baseline is correct. |
|
struct tm civil_time; |
|
ASSERT_TRUE(OPENSSL_posix_to_tm(0, &civil_time)); |
|
ASSERT_EQ(civil_time.tm_year + 1900, 1970); |
|
ASSERT_EQ(civil_time.tm_mon + 1, 1); |
|
ASSERT_EQ(civil_time.tm_mday, 1); |
|
ASSERT_EQ(civil_time.tm_hour, 0); |
|
ASSERT_EQ(civil_time.tm_min, 0); |
|
ASSERT_EQ(civil_time.tm_sec, 0); |
|
|
|
int64_t posix_time = -11676096000; // Sat, 01 Jan 1600 00:00:00 +0000 |
|
for (int year = 1600; year < 3000; year++) { |
|
SCOPED_TRACE(year); |
|
bool is_leap_year = (year % 4 == 0 && year % 100 != 0) || year % 400 == 0; |
|
for (int month = 1; month <= 12; month++) { |
|
SCOPED_TRACE(month); |
|
int days = kDaysInMonth[month - 1]; |
|
if (month == 2 && is_leap_year) { |
|
days++; |
|
} |
|
for (int day = 1; day <= days; day++) { |
|
SCOPED_TRACE(day); |
|
SCOPED_TRACE(posix_time); |
|
|
|
ASSERT_TRUE(OPENSSL_posix_to_tm(posix_time, &civil_time)); |
|
ASSERT_EQ(civil_time.tm_year + 1900, year); |
|
ASSERT_EQ(civil_time.tm_mon + 1, month); |
|
ASSERT_EQ(civil_time.tm_mday, day); |
|
ASSERT_EQ(civil_time.tm_hour, 0); |
|
ASSERT_EQ(civil_time.tm_min, 0); |
|
ASSERT_EQ(civil_time.tm_sec, 0); |
|
|
|
int64_t posix_time_computed; |
|
ASSERT_TRUE(OPENSSL_tm_to_posix(&civil_time, &posix_time_computed)); |
|
ASSERT_EQ(posix_time_computed, posix_time); |
|
|
|
// Advance to the next day. |
|
posix_time += 24 * 60 * 60; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// The ASN.1 macros do not work on Windows shared library builds, where usage of |
|
// |OPENSSL_EXPORT| is a bit stricter. |
|
#if !defined(OPENSSL_WINDOWS) || !defined(BORINGSSL_SHARED_LIBRARY) |
|
|
|
typedef struct asn1_linked_list_st { |
|
struct asn1_linked_list_st *next; |
|
} ASN1_LINKED_LIST; |
|
|
|
DECLARE_ASN1_ITEM(ASN1_LINKED_LIST) |
|
DECLARE_ASN1_FUNCTIONS(ASN1_LINKED_LIST) |
|
|
|
ASN1_SEQUENCE(ASN1_LINKED_LIST) = { |
|
ASN1_OPT(ASN1_LINKED_LIST, next, ASN1_LINKED_LIST), |
|
} ASN1_SEQUENCE_END(ASN1_LINKED_LIST) |
|
|
|
IMPLEMENT_ASN1_FUNCTIONS(ASN1_LINKED_LIST) |
|
|
|
static bool MakeLinkedList(bssl::UniquePtr<uint8_t> *out, size_t *out_len, |
|
size_t count) { |
|
bssl::ScopedCBB cbb; |
|
std::vector<CBB> cbbs(count); |
|
if (!CBB_init(cbb.get(), 2 * count) || |
|
!CBB_add_asn1(cbb.get(), &cbbs[0], CBS_ASN1_SEQUENCE)) { |
|
return false; |
|
} |
|
for (size_t i = 1; i < count; i++) { |
|
if (!CBB_add_asn1(&cbbs[i - 1], &cbbs[i], CBS_ASN1_SEQUENCE)) { |
|
return false; |
|
} |
|
} |
|
uint8_t *ptr; |
|
if (!CBB_finish(cbb.get(), &ptr, out_len)) { |
|
return false; |
|
} |
|
out->reset(ptr); |
|
return true; |
|
} |
|
|
|
TEST(ASN1Test, Recursive) { |
|
bssl::UniquePtr<uint8_t> data; |
|
size_t len; |
|
|
|
// Sanity-check that MakeLinkedList can be parsed. |
|
ASSERT_TRUE(MakeLinkedList(&data, &len, 5)); |
|
const uint8_t *ptr = data.get(); |
|
ASN1_LINKED_LIST *list = d2i_ASN1_LINKED_LIST(nullptr, &ptr, len); |
|
EXPECT_TRUE(list); |
|
ASN1_LINKED_LIST_free(list); |
|
|
|
// Excessively deep structures are rejected. |
|
ASSERT_TRUE(MakeLinkedList(&data, &len, 100)); |
|
ptr = data.get(); |
|
list = d2i_ASN1_LINKED_LIST(nullptr, &ptr, len); |
|
EXPECT_FALSE(list); |
|
// Note checking the error queue here does not work. The error "stack trace" |
|
// is too deep, so the |ASN1_R_NESTED_TOO_DEEP| entry drops off the queue. |
|
ASN1_LINKED_LIST_free(list); |
|
} |
|
|
|
struct IMPLICIT_CHOICE { |
|
ASN1_STRING *string; |
|
}; |
|
|
|
DECLARE_ASN1_FUNCTIONS(IMPLICIT_CHOICE) |
|
|
|
ASN1_SEQUENCE(IMPLICIT_CHOICE) = { |
|
ASN1_IMP(IMPLICIT_CHOICE, string, DIRECTORYSTRING, 0), |
|
} ASN1_SEQUENCE_END(IMPLICIT_CHOICE) |
|
|
|
IMPLEMENT_ASN1_FUNCTIONS(IMPLICIT_CHOICE) |
|
|
|
// Test that the ASN.1 templates reject types with implicitly-tagged CHOICE |
|
// types. |
|
TEST(ASN1Test, ImplicitChoice) { |
|
// Serializing a type with an implicitly tagged CHOICE should fail. |
|
std::unique_ptr<IMPLICIT_CHOICE, decltype(&IMPLICIT_CHOICE_free)> obj( |
|
IMPLICIT_CHOICE_new(), IMPLICIT_CHOICE_free); |
|
EXPECT_EQ(-1, i2d_IMPLICIT_CHOICE(obj.get(), nullptr)); |
|
|
|
// An implicitly-tagged CHOICE is an error. Depending on the implementation, |
|
// it may be misinterpreted as without the tag, or as clobbering the CHOICE |
|
// tag. Test both inputs and ensure they fail. |
|
|
|
// SEQUENCE { UTF8String {} } |
|
static const uint8_t kInput1[] = {0x30, 0x02, 0x0c, 0x00}; |
|
const uint8_t *ptr = kInput1; |
|
EXPECT_EQ(nullptr, d2i_IMPLICIT_CHOICE(nullptr, &ptr, sizeof(kInput1))); |
|
|
|
// SEQUENCE { [0 PRIMITIVE] {} } |
|
static const uint8_t kInput2[] = {0x30, 0x02, 0x80, 0x00}; |
|
ptr = kInput2; |
|
EXPECT_EQ(nullptr, d2i_IMPLICIT_CHOICE(nullptr, &ptr, sizeof(kInput2))); |
|
} |
|
|
|
struct REQUIRED_FIELD { |
|
ASN1_INTEGER *value; |
|
ASN1_INTEGER *value_imp; |
|
ASN1_INTEGER *value_exp; |
|
STACK_OF(ASN1_INTEGER) *seq; |
|
STACK_OF(ASN1_INTEGER) *seq_imp; |
|
STACK_OF(ASN1_INTEGER) *seq_exp; |
|
ASN1_NULL *null; |
|
ASN1_NULL *null_imp; |
|
ASN1_NULL *null_exp; |
|
}; |
|
|
|
DECLARE_ASN1_FUNCTIONS(REQUIRED_FIELD) |
|
ASN1_SEQUENCE(REQUIRED_FIELD) = { |
|
ASN1_SIMPLE(REQUIRED_FIELD, value, ASN1_INTEGER), |
|
ASN1_IMP(REQUIRED_FIELD, value_imp, ASN1_INTEGER, 0), |
|
ASN1_EXP(REQUIRED_FIELD, value_exp, ASN1_INTEGER, 1), |
|
ASN1_SEQUENCE_OF(REQUIRED_FIELD, seq, ASN1_INTEGER), |
|
ASN1_IMP_SEQUENCE_OF(REQUIRED_FIELD, seq_imp, ASN1_INTEGER, 2), |
|
ASN1_EXP_SEQUENCE_OF(REQUIRED_FIELD, seq_exp, ASN1_INTEGER, 3), |
|
ASN1_SIMPLE(REQUIRED_FIELD, null, ASN1_NULL), |
|
ASN1_IMP(REQUIRED_FIELD, null_imp, ASN1_NULL, 4), |
|
ASN1_EXP(REQUIRED_FIELD, null_exp, ASN1_NULL, 5), |
|
} ASN1_SEQUENCE_END(REQUIRED_FIELD) |
|
IMPLEMENT_ASN1_FUNCTIONS(REQUIRED_FIELD) |
|
|
|
// Test that structures with missing required fields cannot be serialized. Test |
|
// the full combination of tagging and SEQUENCE OF. |
|
TEST(ASN1Test, MissingRequiredField) { |
|
EXPECT_EQ(-1, i2d_REQUIRED_FIELD(nullptr, nullptr)); |
|
|
|
std::unique_ptr<REQUIRED_FIELD, decltype(&REQUIRED_FIELD_free)> obj( |
|
nullptr, REQUIRED_FIELD_free); |
|
for (auto field : {&REQUIRED_FIELD::value, &REQUIRED_FIELD::value_imp, |
|
&REQUIRED_FIELD::value_exp}) { |
|
obj.reset(REQUIRED_FIELD_new()); |
|
ASSERT_TRUE(obj); |
|
ASN1_INTEGER_free((*obj).*field); |
|
(*obj).*field = nullptr; |
|
EXPECT_EQ(-1, i2d_REQUIRED_FIELD(obj.get(), nullptr)); |
|
} |
|
|
|
for (auto field : {&REQUIRED_FIELD::seq, &REQUIRED_FIELD::seq_imp, |
|
&REQUIRED_FIELD::seq_exp}) { |
|
obj.reset(REQUIRED_FIELD_new()); |
|
ASSERT_TRUE(obj); |
|
sk_ASN1_INTEGER_pop_free((*obj).*field, ASN1_INTEGER_free); |
|
(*obj).*field = nullptr; |
|
EXPECT_EQ(-1, i2d_REQUIRED_FIELD(obj.get(), nullptr)); |
|
} |
|
|
|
for (auto field : {&REQUIRED_FIELD::null, &REQUIRED_FIELD::null_imp, |
|
&REQUIRED_FIELD::null_exp}) { |
|
obj.reset(REQUIRED_FIELD_new()); |
|
ASSERT_TRUE(obj); |
|
(*obj).*field = nullptr; |
|
EXPECT_EQ(-1, i2d_REQUIRED_FIELD(obj.get(), nullptr)); |
|
} |
|
} |
|
|
|
#endif // !WINDOWS || !SHARED_LIBRARY
|
|
|