Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
475 lines
13 KiB
475 lines
13 KiB
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] */ |
|
|
|
#include <openssl/base64.h> |
|
|
|
#include <assert.h> |
|
#include <limits.h> |
|
#include <string.h> |
|
|
|
#include "../internal.h" |
|
|
|
|
|
// constant_time_lt_args_8 behaves like |constant_time_lt_8| but takes |uint8_t| |
|
// arguments for a slightly simpler implementation. |
|
static inline uint8_t constant_time_lt_args_8(uint8_t a, uint8_t b) { |
|
crypto_word_t aw = a; |
|
crypto_word_t bw = b; |
|
// |crypto_word_t| is larger than |uint8_t|, so |aw| and |bw| have the same |
|
// MSB. |aw| < |bw| iff MSB(|aw| - |bw|) is 1. |
|
return constant_time_msb_w(aw - bw); |
|
} |
|
|
|
// constant_time_in_range_8 returns |CONSTTIME_TRUE_8| if |min| <= |a| <= |max| |
|
// and |CONSTTIME_FALSE_8| otherwise. |
|
static inline uint8_t constant_time_in_range_8(uint8_t a, uint8_t min, |
|
uint8_t max) { |
|
a -= min; |
|
return constant_time_lt_args_8(a, max - min + 1); |
|
} |
|
|
|
// Encoding. |
|
|
|
static uint8_t conv_bin2ascii(uint8_t a) { |
|
// Since PEM is sometimes used to carry private keys, we encode base64 data |
|
// itself in constant-time. |
|
a &= 0x3f; |
|
uint8_t ret = constant_time_select_8(constant_time_eq_8(a, 62), '+', '/'); |
|
ret = |
|
constant_time_select_8(constant_time_lt_args_8(a, 62), a - 52 + '0', ret); |
|
ret = |
|
constant_time_select_8(constant_time_lt_args_8(a, 52), a - 26 + 'a', ret); |
|
ret = constant_time_select_8(constant_time_lt_args_8(a, 26), a + 'A', ret); |
|
return ret; |
|
} |
|
|
|
static_assert(sizeof(((EVP_ENCODE_CTX *)(NULL))->data) % 3 == 0, |
|
"data length must be a multiple of base64 chunk size"); |
|
|
|
int EVP_EncodedLength(size_t *out_len, size_t len) { |
|
if (len + 2 < len) { |
|
return 0; |
|
} |
|
len += 2; |
|
len /= 3; |
|
|
|
if (((len << 2) >> 2) != len) { |
|
return 0; |
|
} |
|
len <<= 2; |
|
|
|
if (len + 1 < len) { |
|
return 0; |
|
} |
|
len++; |
|
|
|
*out_len = len; |
|
return 1; |
|
} |
|
|
|
EVP_ENCODE_CTX *EVP_ENCODE_CTX_new(void) { |
|
return OPENSSL_zalloc(sizeof(EVP_ENCODE_CTX)); |
|
} |
|
|
|
void EVP_ENCODE_CTX_free(EVP_ENCODE_CTX *ctx) { |
|
OPENSSL_free(ctx); |
|
} |
|
|
|
void EVP_EncodeInit(EVP_ENCODE_CTX *ctx) { |
|
OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX)); |
|
} |
|
|
|
void EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len, |
|
const uint8_t *in, size_t in_len) { |
|
size_t total = 0; |
|
|
|
*out_len = 0; |
|
if (in_len == 0) { |
|
return; |
|
} |
|
|
|
assert(ctx->data_used < sizeof(ctx->data)); |
|
|
|
if (sizeof(ctx->data) - ctx->data_used > in_len) { |
|
OPENSSL_memcpy(&ctx->data[ctx->data_used], in, in_len); |
|
ctx->data_used += (unsigned)in_len; |
|
return; |
|
} |
|
|
|
if (ctx->data_used != 0) { |
|
const size_t todo = sizeof(ctx->data) - ctx->data_used; |
|
OPENSSL_memcpy(&ctx->data[ctx->data_used], in, todo); |
|
in += todo; |
|
in_len -= todo; |
|
|
|
size_t encoded = EVP_EncodeBlock(out, ctx->data, sizeof(ctx->data)); |
|
ctx->data_used = 0; |
|
|
|
out += encoded; |
|
*(out++) = '\n'; |
|
*out = '\0'; |
|
|
|
total = encoded + 1; |
|
} |
|
|
|
while (in_len >= sizeof(ctx->data)) { |
|
size_t encoded = EVP_EncodeBlock(out, in, sizeof(ctx->data)); |
|
in += sizeof(ctx->data); |
|
in_len -= sizeof(ctx->data); |
|
|
|
out += encoded; |
|
*(out++) = '\n'; |
|
*out = '\0'; |
|
|
|
if (total + encoded + 1 < total) { |
|
*out_len = 0; |
|
return; |
|
} |
|
|
|
total += encoded + 1; |
|
} |
|
|
|
if (in_len != 0) { |
|
OPENSSL_memcpy(ctx->data, in, in_len); |
|
} |
|
|
|
ctx->data_used = (unsigned)in_len; |
|
|
|
if (total > INT_MAX) { |
|
// We cannot signal an error, but we can at least avoid making *out_len |
|
// negative. |
|
total = 0; |
|
} |
|
*out_len = (int)total; |
|
} |
|
|
|
void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) { |
|
if (ctx->data_used == 0) { |
|
*out_len = 0; |
|
return; |
|
} |
|
|
|
size_t encoded = EVP_EncodeBlock(out, ctx->data, ctx->data_used); |
|
out[encoded++] = '\n'; |
|
out[encoded] = '\0'; |
|
ctx->data_used = 0; |
|
|
|
// ctx->data_used is bounded by sizeof(ctx->data), so this does not |
|
// overflow. |
|
assert(encoded <= INT_MAX); |
|
*out_len = (int)encoded; |
|
} |
|
|
|
size_t EVP_EncodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) { |
|
uint32_t l; |
|
size_t remaining = src_len, ret = 0; |
|
|
|
while (remaining) { |
|
if (remaining >= 3) { |
|
l = (((uint32_t)src[0]) << 16L) | (((uint32_t)src[1]) << 8L) | src[2]; |
|
*(dst++) = conv_bin2ascii(l >> 18L); |
|
*(dst++) = conv_bin2ascii(l >> 12L); |
|
*(dst++) = conv_bin2ascii(l >> 6L); |
|
*(dst++) = conv_bin2ascii(l); |
|
remaining -= 3; |
|
} else { |
|
l = ((uint32_t)src[0]) << 16L; |
|
if (remaining == 2) { |
|
l |= ((uint32_t)src[1] << 8L); |
|
} |
|
|
|
*(dst++) = conv_bin2ascii(l >> 18L); |
|
*(dst++) = conv_bin2ascii(l >> 12L); |
|
*(dst++) = (remaining == 1) ? '=' : conv_bin2ascii(l >> 6L); |
|
*(dst++) = '='; |
|
remaining = 0; |
|
} |
|
ret += 4; |
|
src += 3; |
|
} |
|
|
|
*dst = '\0'; |
|
return ret; |
|
} |
|
|
|
|
|
// Decoding. |
|
|
|
int EVP_DecodedLength(size_t *out_len, size_t len) { |
|
if (len % 4 != 0) { |
|
return 0; |
|
} |
|
|
|
*out_len = (len / 4) * 3; |
|
return 1; |
|
} |
|
|
|
void EVP_DecodeInit(EVP_ENCODE_CTX *ctx) { |
|
OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX)); |
|
} |
|
|
|
static uint8_t base64_ascii_to_bin(uint8_t a) { |
|
// Since PEM is sometimes used to carry private keys, we decode base64 data |
|
// itself in constant-time. |
|
const uint8_t is_upper = constant_time_in_range_8(a, 'A', 'Z'); |
|
const uint8_t is_lower = constant_time_in_range_8(a, 'a', 'z'); |
|
const uint8_t is_digit = constant_time_in_range_8(a, '0', '9'); |
|
const uint8_t is_plus = constant_time_eq_8(a, '+'); |
|
const uint8_t is_slash = constant_time_eq_8(a, '/'); |
|
const uint8_t is_equals = constant_time_eq_8(a, '='); |
|
|
|
uint8_t ret = 0; |
|
ret |= is_upper & (a - 'A'); // [0,26) |
|
ret |= is_lower & (a - 'a' + 26); // [26,52) |
|
ret |= is_digit & (a - '0' + 52); // [52,62) |
|
ret |= is_plus & 62; |
|
ret |= is_slash & 63; |
|
// Invalid inputs, 'A', and '=' have all been mapped to zero. Map invalid |
|
// inputs to 0xff. Note '=' is padding and handled separately by the caller. |
|
const uint8_t is_valid = |
|
is_upper | is_lower | is_digit | is_plus | is_slash | is_equals; |
|
ret |= ~is_valid; |
|
return ret; |
|
} |
|
|
|
// base64_decode_quad decodes a single “quad” (i.e. four characters) of base64 |
|
// data and writes up to three bytes to |out|. It sets |*out_num_bytes| to the |
|
// number of bytes written, which will be less than three if the quad ended |
|
// with padding. It returns one on success or zero on error. |
|
static int base64_decode_quad(uint8_t *out, size_t *out_num_bytes, |
|
const uint8_t *in) { |
|
const uint8_t a = base64_ascii_to_bin(in[0]); |
|
const uint8_t b = base64_ascii_to_bin(in[1]); |
|
const uint8_t c = base64_ascii_to_bin(in[2]); |
|
const uint8_t d = base64_ascii_to_bin(in[3]); |
|
if (a == 0xff || b == 0xff || c == 0xff || d == 0xff) { |
|
return 0; |
|
} |
|
|
|
const uint32_t v = ((uint32_t)a) << 18 | ((uint32_t)b) << 12 | |
|
((uint32_t)c) << 6 | (uint32_t)d; |
|
|
|
const unsigned padding_pattern = (in[0] == '=') << 3 | |
|
(in[1] == '=') << 2 | |
|
(in[2] == '=') << 1 | |
|
(in[3] == '='); |
|
|
|
switch (padding_pattern) { |
|
case 0: |
|
// The common case of no padding. |
|
*out_num_bytes = 3; |
|
out[0] = v >> 16; |
|
out[1] = v >> 8; |
|
out[2] = v; |
|
break; |
|
|
|
case 1: // xxx= |
|
*out_num_bytes = 2; |
|
out[0] = v >> 16; |
|
out[1] = v >> 8; |
|
break; |
|
|
|
case 3: // xx== |
|
*out_num_bytes = 1; |
|
out[0] = v >> 16; |
|
break; |
|
|
|
default: |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len, |
|
const uint8_t *in, size_t in_len) { |
|
*out_len = 0; |
|
|
|
if (ctx->error_encountered) { |
|
return -1; |
|
} |
|
|
|
size_t bytes_out = 0, i; |
|
for (i = 0; i < in_len; i++) { |
|
const char c = in[i]; |
|
switch (c) { |
|
case ' ': |
|
case '\t': |
|
case '\r': |
|
case '\n': |
|
continue; |
|
} |
|
|
|
if (ctx->eof_seen) { |
|
ctx->error_encountered = 1; |
|
return -1; |
|
} |
|
|
|
ctx->data[ctx->data_used++] = c; |
|
if (ctx->data_used == 4) { |
|
size_t num_bytes_resulting; |
|
if (!base64_decode_quad(out, &num_bytes_resulting, ctx->data)) { |
|
ctx->error_encountered = 1; |
|
return -1; |
|
} |
|
|
|
ctx->data_used = 0; |
|
bytes_out += num_bytes_resulting; |
|
out += num_bytes_resulting; |
|
|
|
if (num_bytes_resulting < 3) { |
|
ctx->eof_seen = 1; |
|
} |
|
} |
|
} |
|
|
|
if (bytes_out > INT_MAX) { |
|
ctx->error_encountered = 1; |
|
*out_len = 0; |
|
return -1; |
|
} |
|
*out_len = (int)bytes_out; |
|
|
|
if (ctx->eof_seen) { |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) { |
|
*out_len = 0; |
|
if (ctx->error_encountered || ctx->data_used != 0) { |
|
return -1; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
int EVP_DecodeBase64(uint8_t *out, size_t *out_len, size_t max_out, |
|
const uint8_t *in, size_t in_len) { |
|
*out_len = 0; |
|
|
|
if (in_len % 4 != 0) { |
|
return 0; |
|
} |
|
|
|
size_t max_len; |
|
if (!EVP_DecodedLength(&max_len, in_len) || |
|
max_out < max_len) { |
|
return 0; |
|
} |
|
|
|
size_t i, bytes_out = 0; |
|
for (i = 0; i < in_len; i += 4) { |
|
size_t num_bytes_resulting; |
|
|
|
if (!base64_decode_quad(out, &num_bytes_resulting, &in[i])) { |
|
return 0; |
|
} |
|
|
|
bytes_out += num_bytes_resulting; |
|
out += num_bytes_resulting; |
|
if (num_bytes_resulting != 3 && i != in_len - 4) { |
|
return 0; |
|
} |
|
} |
|
|
|
*out_len = bytes_out; |
|
return 1; |
|
} |
|
|
|
int EVP_DecodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) { |
|
// Trim spaces and tabs from the beginning of the input. |
|
while (src_len > 0) { |
|
if (src[0] != ' ' && src[0] != '\t') { |
|
break; |
|
} |
|
|
|
src++; |
|
src_len--; |
|
} |
|
|
|
// Trim newlines, spaces and tabs from the end of the line. |
|
while (src_len > 0) { |
|
switch (src[src_len-1]) { |
|
case ' ': |
|
case '\t': |
|
case '\r': |
|
case '\n': |
|
src_len--; |
|
continue; |
|
} |
|
|
|
break; |
|
} |
|
|
|
size_t dst_len; |
|
if (!EVP_DecodedLength(&dst_len, src_len) || |
|
dst_len > INT_MAX || |
|
!EVP_DecodeBase64(dst, &dst_len, dst_len, src, src_len)) { |
|
return -1; |
|
} |
|
|
|
// EVP_DecodeBlock does not take padding into account, so put the |
|
// NULs back in... so the caller can strip them back out. |
|
while (dst_len % 3 != 0) { |
|
dst[dst_len++] = '\0'; |
|
} |
|
assert(dst_len <= INT_MAX); |
|
|
|
return (int)dst_len; |
|
}
|
|
|