Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
528 lines
18 KiB
528 lines
18 KiB
/* Copyright (c) 2020, Google Inc. |
|
* |
|
* Permission to use, copy, modify, and/or distribute this software for any |
|
* purpose with or without fee is hereby granted, provided that the above |
|
* copyright notice and this permission notice appear in all copies. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
|
|
|
#include <openssl/hpke.h> |
|
|
|
#include <cstdint> |
|
#include <limits> |
|
#include <string> |
|
#include <vector> |
|
|
|
#include <gtest/gtest.h> |
|
|
|
#include <openssl/base.h> |
|
#include <openssl/curve25519.h> |
|
#include <openssl/digest.h> |
|
#include <openssl/err.h> |
|
#include <openssl/evp.h> |
|
#include <openssl/rand.h> |
|
#include <openssl/sha.h> |
|
#include <openssl/span.h> |
|
|
|
#include "../test/file_test.h" |
|
#include "../test/test_util.h" |
|
|
|
|
|
namespace bssl { |
|
namespace { |
|
|
|
const decltype(&EVP_hpke_aes_128_gcm) kAllAEADs[] = { |
|
&EVP_hpke_aes_128_gcm, |
|
&EVP_hpke_aes_256_gcm, |
|
&EVP_hpke_chacha20_poly1305, |
|
}; |
|
|
|
const decltype(&EVP_hpke_hkdf_sha256) kAllKDFs[] = { |
|
&EVP_hpke_hkdf_sha256, |
|
}; |
|
|
|
// HPKETestVector corresponds to one array member in the published |
|
// test-vectors.json. |
|
class HPKETestVector { |
|
public: |
|
explicit HPKETestVector() = default; |
|
~HPKETestVector() = default; |
|
|
|
bool ReadFromFileTest(FileTest *t); |
|
|
|
void Verify() const { |
|
const EVP_HPKE_KEM *kem = EVP_hpke_x25519_hkdf_sha256(); |
|
const EVP_HPKE_AEAD *aead = GetAEAD(); |
|
ASSERT_TRUE(aead); |
|
const EVP_HPKE_KDF *kdf = GetKDF(); |
|
ASSERT_TRUE(kdf); |
|
|
|
// Test the sender. |
|
ScopedEVP_HPKE_CTX sender_ctx; |
|
uint8_t enc[EVP_HPKE_MAX_ENC_LENGTH]; |
|
size_t enc_len; |
|
ASSERT_TRUE(EVP_HPKE_CTX_setup_sender_with_seed_for_testing( |
|
sender_ctx.get(), enc, &enc_len, sizeof(enc), kem, kdf, aead, |
|
public_key_r_.data(), public_key_r_.size(), info_.data(), info_.size(), |
|
secret_key_e_.data(), secret_key_e_.size())); |
|
EXPECT_EQ(Bytes(enc, enc_len), Bytes(public_key_e_)); |
|
VerifySender(sender_ctx.get()); |
|
|
|
// Test the recipient. |
|
ScopedEVP_HPKE_KEY base_key; |
|
ASSERT_TRUE(EVP_HPKE_KEY_init(base_key.get(), kem, secret_key_r_.data(), |
|
secret_key_r_.size())); |
|
for (bool copy : {false, true}) { |
|
SCOPED_TRACE(copy); |
|
const EVP_HPKE_KEY *key = base_key.get(); |
|
ScopedEVP_HPKE_KEY key_copy; |
|
if (copy) { |
|
ASSERT_TRUE(EVP_HPKE_KEY_copy(key_copy.get(), base_key.get())); |
|
key = key_copy.get(); |
|
} |
|
|
|
uint8_t public_key[EVP_HPKE_MAX_PUBLIC_KEY_LENGTH]; |
|
size_t public_key_len; |
|
ASSERT_TRUE(EVP_HPKE_KEY_public_key(key, public_key, &public_key_len, |
|
sizeof(public_key))); |
|
EXPECT_EQ(Bytes(public_key, public_key_len), Bytes(public_key_r_)); |
|
|
|
uint8_t private_key[EVP_HPKE_MAX_PRIVATE_KEY_LENGTH]; |
|
size_t private_key_len; |
|
ASSERT_TRUE(EVP_HPKE_KEY_private_key(key, private_key, &private_key_len, |
|
sizeof(private_key))); |
|
EXPECT_EQ(Bytes(private_key, private_key_len), Bytes(secret_key_r_)); |
|
|
|
// Set up the recipient. |
|
ScopedEVP_HPKE_CTX recipient_ctx; |
|
ASSERT_TRUE(EVP_HPKE_CTX_setup_recipient(recipient_ctx.get(), key, kdf, |
|
aead, enc, enc_len, info_.data(), |
|
info_.size())); |
|
|
|
VerifyRecipient(recipient_ctx.get()); |
|
} |
|
} |
|
|
|
private: |
|
const EVP_HPKE_AEAD *GetAEAD() const { |
|
for (const auto aead : kAllAEADs) { |
|
if (EVP_HPKE_AEAD_id(aead()) == aead_id_) { |
|
return aead(); |
|
} |
|
} |
|
return nullptr; |
|
} |
|
|
|
const EVP_HPKE_KDF *GetKDF() const { |
|
for (const auto kdf : kAllKDFs) { |
|
if (EVP_HPKE_KDF_id(kdf()) == kdf_id_) { |
|
return kdf(); |
|
} |
|
} |
|
return nullptr; |
|
} |
|
|
|
void VerifySender(EVP_HPKE_CTX *ctx) const { |
|
for (const Encryption &task : encryptions_) { |
|
std::vector<uint8_t> encrypted(task.plaintext.size() + |
|
EVP_HPKE_CTX_max_overhead(ctx)); |
|
size_t encrypted_len; |
|
ASSERT_TRUE(EVP_HPKE_CTX_seal(ctx, encrypted.data(), &encrypted_len, |
|
encrypted.size(), task.plaintext.data(), |
|
task.plaintext.size(), task.aad.data(), |
|
task.aad.size())); |
|
|
|
ASSERT_EQ(Bytes(encrypted.data(), encrypted_len), Bytes(task.ciphertext)); |
|
} |
|
VerifyExports(ctx); |
|
} |
|
|
|
void VerifyRecipient(EVP_HPKE_CTX *ctx) const { |
|
for (const Encryption &task : encryptions_) { |
|
std::vector<uint8_t> decrypted(task.ciphertext.size()); |
|
size_t decrypted_len; |
|
ASSERT_TRUE(EVP_HPKE_CTX_open(ctx, decrypted.data(), &decrypted_len, |
|
decrypted.size(), task.ciphertext.data(), |
|
task.ciphertext.size(), task.aad.data(), |
|
task.aad.size())); |
|
|
|
ASSERT_EQ(Bytes(decrypted.data(), decrypted_len), Bytes(task.plaintext)); |
|
} |
|
VerifyExports(ctx); |
|
} |
|
|
|
void VerifyExports(EVP_HPKE_CTX *ctx) const { |
|
for (const Export &task : exports_) { |
|
std::vector<uint8_t> exported_secret(task.export_length); |
|
|
|
ASSERT_TRUE(EVP_HPKE_CTX_export( |
|
ctx, exported_secret.data(), exported_secret.size(), |
|
task.exporter_context.data(), task.exporter_context.size())); |
|
ASSERT_EQ(Bytes(exported_secret), Bytes(task.exported_value)); |
|
} |
|
} |
|
|
|
struct Encryption { |
|
std::vector<uint8_t> aad; |
|
std::vector<uint8_t> ciphertext; |
|
std::vector<uint8_t> plaintext; |
|
}; |
|
|
|
struct Export { |
|
std::vector<uint8_t> exporter_context; |
|
size_t export_length; |
|
std::vector<uint8_t> exported_value; |
|
}; |
|
|
|
uint16_t kdf_id_; |
|
uint16_t aead_id_; |
|
std::vector<uint8_t> context_; |
|
std::vector<uint8_t> info_; |
|
std::vector<uint8_t> public_key_e_; |
|
std::vector<uint8_t> secret_key_e_; |
|
std::vector<uint8_t> public_key_r_; |
|
std::vector<uint8_t> secret_key_r_; |
|
std::vector<Encryption> encryptions_; |
|
std::vector<Export> exports_; |
|
}; |
|
|
|
// Match FileTest's naming scheme for duplicated attribute names. |
|
std::string BuildAttrName(const std::string &name, int iter) { |
|
return iter == 1 ? name : name + "/" + std::to_string(iter); |
|
} |
|
|
|
// Parses |s| as an unsigned integer of type T and writes the value to |out|. |
|
// Returns true on success. If the integer value exceeds the maximum T value, |
|
// returns false. |
|
template <typename T> |
|
bool ParseIntSafe(T *out, const std::string &s) { |
|
T value = 0; |
|
for (char c : s) { |
|
if (c < '0' || c > '9') { |
|
return false; |
|
} |
|
if (value > (std::numeric_limits<T>::max() - (c - '0')) / 10) { |
|
return false; |
|
} |
|
value = 10 * value + (c - '0'); |
|
} |
|
*out = value; |
|
return true; |
|
} |
|
|
|
// Read the |key| attribute from |file_test| and convert it to an integer. |
|
template <typename T> |
|
bool FileTestReadInt(FileTest *file_test, T *out, const std::string &key) { |
|
std::string s; |
|
return file_test->GetAttribute(&s, key) && ParseIntSafe(out, s); |
|
} |
|
|
|
|
|
bool HPKETestVector::ReadFromFileTest(FileTest *t) { |
|
uint8_t mode = 0; |
|
if (!FileTestReadInt(t, &mode, "mode") || |
|
mode != 0 /* mode_base */ || |
|
!FileTestReadInt(t, &kdf_id_, "kdf_id") || |
|
!FileTestReadInt(t, &aead_id_, "aead_id") || |
|
!t->GetBytes(&info_, "info") || |
|
!t->GetBytes(&secret_key_r_, "skRm") || |
|
!t->GetBytes(&public_key_r_, "pkRm") || |
|
!t->GetBytes(&secret_key_e_, "skEm") || |
|
!t->GetBytes(&public_key_e_, "pkEm")) { |
|
return false; |
|
} |
|
|
|
for (int i = 1; t->HasAttribute(BuildAttrName("aad", i)); i++) { |
|
Encryption encryption; |
|
if (!t->GetBytes(&encryption.aad, BuildAttrName("aad", i)) || |
|
!t->GetBytes(&encryption.ciphertext, BuildAttrName("ct", i)) || |
|
!t->GetBytes(&encryption.plaintext, BuildAttrName("pt", i))) { |
|
return false; |
|
} |
|
encryptions_.push_back(std::move(encryption)); |
|
} |
|
|
|
for (int i = 1; t->HasAttribute(BuildAttrName("exporter_context", i)); i++) { |
|
Export exp; |
|
if (!t->GetBytes(&exp.exporter_context, |
|
BuildAttrName("exporter_context", i)) || |
|
!FileTestReadInt(t, &exp.export_length, BuildAttrName("L", i)) || |
|
!t->GetBytes(&exp.exported_value, BuildAttrName("exported_value", i))) { |
|
return false; |
|
} |
|
exports_.push_back(std::move(exp)); |
|
} |
|
return true; |
|
} |
|
|
|
} // namespace |
|
|
|
TEST(HPKETest, VerifyTestVectors) { |
|
FileTestGTest("crypto/hpke/hpke_test_vectors.txt", [](FileTest *t) { |
|
HPKETestVector test_vec; |
|
EXPECT_TRUE(test_vec.ReadFromFileTest(t)); |
|
test_vec.Verify(); |
|
}); |
|
} |
|
|
|
// The test vectors used fixed sender ephemeral keys, while HPKE itself |
|
// generates new keys for each context. Test this codepath by checking we can |
|
// decrypt our own messages. |
|
TEST(HPKETest, RoundTrip) { |
|
const uint8_t info_a[] = {1, 1, 2, 3, 5, 8}; |
|
const uint8_t info_b[] = {42, 42, 42}; |
|
const uint8_t ad_a[] = {1, 2, 4, 8, 16}; |
|
const uint8_t ad_b[] = {7}; |
|
Span<const uint8_t> info_values[] = {{nullptr, 0}, info_a, info_b}; |
|
Span<const uint8_t> ad_values[] = {{nullptr, 0}, ad_a, ad_b}; |
|
|
|
// Generate the recipient's keypair. |
|
ScopedEVP_HPKE_KEY key; |
|
ASSERT_TRUE(EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); |
|
uint8_t public_key_r[X25519_PUBLIC_VALUE_LEN]; |
|
size_t public_key_r_len; |
|
ASSERT_TRUE(EVP_HPKE_KEY_public_key(key.get(), public_key_r, |
|
&public_key_r_len, sizeof(public_key_r))); |
|
|
|
for (const auto kdf : kAllKDFs) { |
|
SCOPED_TRACE(EVP_HPKE_KDF_id(kdf())); |
|
for (const auto aead : kAllAEADs) { |
|
SCOPED_TRACE(EVP_HPKE_AEAD_id(aead())); |
|
for (const Span<const uint8_t> &info : info_values) { |
|
SCOPED_TRACE(Bytes(info)); |
|
for (const Span<const uint8_t> &ad : ad_values) { |
|
SCOPED_TRACE(Bytes(ad)); |
|
// Set up the sender. |
|
ScopedEVP_HPKE_CTX sender_ctx; |
|
uint8_t enc[X25519_PUBLIC_VALUE_LEN]; |
|
size_t enc_len; |
|
ASSERT_TRUE(EVP_HPKE_CTX_setup_sender( |
|
sender_ctx.get(), enc, &enc_len, sizeof(enc), |
|
EVP_hpke_x25519_hkdf_sha256(), kdf(), aead(), public_key_r, |
|
public_key_r_len, info.data(), info.size())); |
|
|
|
// Set up the recipient. |
|
ScopedEVP_HPKE_CTX recipient_ctx; |
|
ASSERT_TRUE(EVP_HPKE_CTX_setup_recipient( |
|
recipient_ctx.get(), key.get(), kdf(), aead(), enc, enc_len, |
|
info.data(), info.size())); |
|
|
|
const char kCleartextPayload[] = "foobar"; |
|
|
|
// Have sender encrypt message for the recipient. |
|
std::vector<uint8_t> ciphertext( |
|
sizeof(kCleartextPayload) + |
|
EVP_HPKE_CTX_max_overhead(sender_ctx.get())); |
|
size_t ciphertext_len; |
|
ASSERT_TRUE(EVP_HPKE_CTX_seal( |
|
sender_ctx.get(), ciphertext.data(), &ciphertext_len, |
|
ciphertext.size(), |
|
reinterpret_cast<const uint8_t *>(kCleartextPayload), |
|
sizeof(kCleartextPayload), ad.data(), ad.size())); |
|
|
|
// Have recipient decrypt the message. |
|
std::vector<uint8_t> cleartext(ciphertext.size()); |
|
size_t cleartext_len; |
|
ASSERT_TRUE(EVP_HPKE_CTX_open(recipient_ctx.get(), cleartext.data(), |
|
&cleartext_len, cleartext.size(), |
|
ciphertext.data(), ciphertext_len, |
|
ad.data(), ad.size())); |
|
|
|
// Verify that decrypted message matches the original. |
|
ASSERT_EQ(Bytes(cleartext.data(), cleartext_len), |
|
Bytes(kCleartextPayload, sizeof(kCleartextPayload))); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Verify that the DH operations inside Encap() and Decap() both fail when the |
|
// public key is on a small-order point in the curve. |
|
TEST(HPKETest, X25519EncapSmallOrderPoint) { |
|
// Borrowed from X25519Test.SmallOrder. |
|
static const uint8_t kSmallOrderPoint[32] = { |
|
0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae, 0x16, 0x56, 0xe3, |
|
0xfa, 0xf1, 0x9f, 0xc4, 0x6a, 0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, |
|
0xb1, 0xfd, 0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, |
|
}; |
|
|
|
ScopedEVP_HPKE_KEY key; |
|
ASSERT_TRUE(EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); |
|
|
|
for (const auto kdf : kAllKDFs) { |
|
SCOPED_TRACE(EVP_HPKE_KDF_id(kdf())); |
|
for (const auto aead : kAllAEADs) { |
|
SCOPED_TRACE(EVP_HPKE_AEAD_id(aead())); |
|
// Set up the sender, passing in kSmallOrderPoint as |peer_public_key|. |
|
ScopedEVP_HPKE_CTX sender_ctx; |
|
uint8_t enc[X25519_PUBLIC_VALUE_LEN]; |
|
size_t enc_len; |
|
ASSERT_FALSE(EVP_HPKE_CTX_setup_sender( |
|
sender_ctx.get(), enc, &enc_len, sizeof(enc), |
|
EVP_hpke_x25519_hkdf_sha256(), kdf(), aead(), kSmallOrderPoint, |
|
sizeof(kSmallOrderPoint), nullptr, 0)); |
|
|
|
// Set up the recipient, passing in kSmallOrderPoint as |enc|. |
|
ScopedEVP_HPKE_CTX recipient_ctx; |
|
ASSERT_FALSE(EVP_HPKE_CTX_setup_recipient( |
|
recipient_ctx.get(), key.get(), kdf(), aead(), kSmallOrderPoint, |
|
sizeof(kSmallOrderPoint), nullptr, 0)); |
|
} |
|
} |
|
} |
|
|
|
// Test that Seal() fails when the context has been initialized as a recipient. |
|
TEST(HPKETest, RecipientInvalidSeal) { |
|
const uint8_t kMockEnc[X25519_PUBLIC_VALUE_LEN] = {0xff}; |
|
const char kCleartextPayload[] = "foobar"; |
|
|
|
ScopedEVP_HPKE_KEY key; |
|
ASSERT_TRUE(EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); |
|
|
|
// Set up the recipient. |
|
ScopedEVP_HPKE_CTX recipient_ctx; |
|
ASSERT_TRUE(EVP_HPKE_CTX_setup_recipient( |
|
recipient_ctx.get(), key.get(), EVP_hpke_hkdf_sha256(), |
|
EVP_hpke_aes_128_gcm(), kMockEnc, sizeof(kMockEnc), nullptr, 0)); |
|
|
|
// Call Seal() on the recipient. |
|
size_t ciphertext_len; |
|
uint8_t ciphertext[100]; |
|
ASSERT_FALSE(EVP_HPKE_CTX_seal( |
|
recipient_ctx.get(), ciphertext, &ciphertext_len, sizeof(ciphertext), |
|
reinterpret_cast<const uint8_t *>(kCleartextPayload), |
|
sizeof(kCleartextPayload), nullptr, 0)); |
|
} |
|
|
|
// Test that Open() fails when the context has been initialized as a sender. |
|
TEST(HPKETest, SenderInvalidOpen) { |
|
const uint8_t kMockCiphertext[100] = {0xff}; |
|
const size_t kMockCiphertextLen = 80; |
|
|
|
// Generate the recipient's keypair. |
|
uint8_t secret_key_r[X25519_PRIVATE_KEY_LEN]; |
|
uint8_t public_key_r[X25519_PUBLIC_VALUE_LEN]; |
|
X25519_keypair(public_key_r, secret_key_r); |
|
|
|
// Set up the sender. |
|
ScopedEVP_HPKE_CTX sender_ctx; |
|
uint8_t enc[X25519_PUBLIC_VALUE_LEN]; |
|
size_t enc_len; |
|
ASSERT_TRUE(EVP_HPKE_CTX_setup_sender( |
|
sender_ctx.get(), enc, &enc_len, sizeof(enc), |
|
EVP_hpke_x25519_hkdf_sha256(), EVP_hpke_hkdf_sha256(), |
|
EVP_hpke_aes_128_gcm(), public_key_r, sizeof(public_key_r), nullptr, 0)); |
|
|
|
// Call Open() on the sender. |
|
uint8_t cleartext[128]; |
|
size_t cleartext_len; |
|
ASSERT_FALSE(EVP_HPKE_CTX_open(sender_ctx.get(), cleartext, &cleartext_len, |
|
sizeof(cleartext), kMockCiphertext, |
|
kMockCiphertextLen, nullptr, 0)); |
|
} |
|
|
|
TEST(HPKETest, SetupSenderBufferTooSmall) { |
|
uint8_t secret_key_r[X25519_PRIVATE_KEY_LEN]; |
|
uint8_t public_key_r[X25519_PUBLIC_VALUE_LEN]; |
|
X25519_keypair(public_key_r, secret_key_r); |
|
|
|
ScopedEVP_HPKE_CTX sender_ctx; |
|
uint8_t enc[X25519_PUBLIC_VALUE_LEN - 1]; |
|
size_t enc_len; |
|
ASSERT_FALSE(EVP_HPKE_CTX_setup_sender( |
|
sender_ctx.get(), enc, &enc_len, sizeof(enc), |
|
EVP_hpke_x25519_hkdf_sha256(), EVP_hpke_hkdf_sha256(), |
|
EVP_hpke_aes_128_gcm(), public_key_r, sizeof(public_key_r), nullptr, 0)); |
|
uint32_t err = ERR_get_error(); |
|
EXPECT_EQ(ERR_LIB_EVP, ERR_GET_LIB(err)); |
|
EXPECT_EQ(EVP_R_INVALID_BUFFER_SIZE, ERR_GET_REASON(err)); |
|
ERR_clear_error(); |
|
} |
|
|
|
TEST(HPKETest, SetupSenderBufferTooLarge) { |
|
uint8_t secret_key_r[X25519_PRIVATE_KEY_LEN]; |
|
uint8_t public_key_r[X25519_PUBLIC_VALUE_LEN]; |
|
X25519_keypair(public_key_r, secret_key_r); |
|
|
|
// Too large of an output buffer is fine because the function reports the |
|
// actual length. |
|
ScopedEVP_HPKE_CTX sender_ctx; |
|
uint8_t enc[X25519_PUBLIC_VALUE_LEN + 1]; |
|
size_t enc_len; |
|
EXPECT_TRUE(EVP_HPKE_CTX_setup_sender( |
|
sender_ctx.get(), enc, &enc_len, sizeof(enc), |
|
EVP_hpke_x25519_hkdf_sha256(), EVP_hpke_hkdf_sha256(), |
|
EVP_hpke_aes_128_gcm(), public_key_r, sizeof(public_key_r), nullptr, 0)); |
|
EXPECT_EQ(size_t{X25519_PUBLIC_VALUE_LEN}, enc_len); |
|
} |
|
|
|
TEST(HPKETest, SetupRecipientWrongLengthEnc) { |
|
ScopedEVP_HPKE_KEY key; |
|
ASSERT_TRUE(EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); |
|
|
|
const uint8_t bogus_enc[X25519_PUBLIC_VALUE_LEN + 5] = {0xff}; |
|
|
|
ScopedEVP_HPKE_CTX recipient_ctx; |
|
ASSERT_FALSE(EVP_HPKE_CTX_setup_recipient( |
|
recipient_ctx.get(), key.get(), EVP_hpke_hkdf_sha256(), |
|
EVP_hpke_aes_128_gcm(), bogus_enc, sizeof(bogus_enc), nullptr, 0)); |
|
uint32_t err = ERR_get_error(); |
|
EXPECT_EQ(ERR_LIB_EVP, ERR_GET_LIB(err)); |
|
EXPECT_EQ(EVP_R_INVALID_PEER_KEY, ERR_GET_REASON(err)); |
|
ERR_clear_error(); |
|
} |
|
|
|
TEST(HPKETest, SetupSenderWrongLengthPeerPublicValue) { |
|
const uint8_t bogus_public_key_r[X25519_PRIVATE_KEY_LEN + 5] = {0xff}; |
|
ScopedEVP_HPKE_CTX sender_ctx; |
|
uint8_t enc[X25519_PUBLIC_VALUE_LEN]; |
|
size_t enc_len; |
|
ASSERT_FALSE(EVP_HPKE_CTX_setup_sender( |
|
sender_ctx.get(), enc, &enc_len, sizeof(enc), |
|
EVP_hpke_x25519_hkdf_sha256(), EVP_hpke_hkdf_sha256(), |
|
EVP_hpke_aes_128_gcm(), bogus_public_key_r, sizeof(bogus_public_key_r), |
|
nullptr, 0)); |
|
uint32_t err = ERR_get_error(); |
|
EXPECT_EQ(ERR_LIB_EVP, ERR_GET_LIB(err)); |
|
EXPECT_EQ(EVP_R_INVALID_PEER_KEY, ERR_GET_REASON(err)); |
|
ERR_clear_error(); |
|
} |
|
|
|
TEST(HPKETest, InvalidRecipientKey) { |
|
const uint8_t private_key[X25519_PUBLIC_VALUE_LEN + 5] = {0xff}; |
|
ScopedEVP_HPKE_KEY key; |
|
EXPECT_FALSE(EVP_HPKE_KEY_init(key.get(), EVP_hpke_x25519_hkdf_sha256(), |
|
private_key, sizeof(private_key))); |
|
} |
|
|
|
TEST(HPKETest, InternalParseIntSafe) { |
|
uint8_t u8 = 0xff; |
|
ASSERT_FALSE(ParseIntSafe(&u8, "-1")); |
|
|
|
ASSERT_TRUE(ParseIntSafe(&u8, "0")); |
|
ASSERT_EQ(u8, 0); |
|
|
|
ASSERT_TRUE(ParseIntSafe(&u8, "255")); |
|
ASSERT_EQ(u8, 255); |
|
|
|
ASSERT_FALSE(ParseIntSafe(&u8, "256")); |
|
|
|
uint16_t u16 = 0xffff; |
|
ASSERT_TRUE(ParseIntSafe(&u16, "257")); |
|
ASSERT_EQ(u16, 257); |
|
|
|
ASSERT_TRUE(ParseIntSafe(&u16, "65535")); |
|
ASSERT_EQ(u16, 65535); |
|
|
|
ASSERT_FALSE(ParseIntSafe(&u16, "65536")); |
|
} |
|
|
|
|
|
} // namespace bssl
|
|
|