Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1495 lines
50 KiB
1495 lines
50 KiB
/* Copyright (c) 2014, Google Inc. |
|
* |
|
* Permission to use, copy, modify, and/or distribute this software for any |
|
* purpose with or without fee is hereby granted, provided that the above |
|
* copyright notice and this permission notice appear in all copies. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
|
|
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
#include <vector> |
|
|
|
#include <gtest/gtest.h> |
|
|
|
#include <openssl/bytestring.h> |
|
#include <openssl/crypto.h> |
|
#include <openssl/span.h> |
|
|
|
#include "internal.h" |
|
#include "../internal.h" |
|
#include "../test/test_util.h" |
|
|
|
|
|
TEST(CBSTest, Skip) { |
|
static const uint8_t kData[] = {1, 2, 3}; |
|
CBS data; |
|
|
|
CBS_init(&data, kData, sizeof(kData)); |
|
EXPECT_EQ(3u, CBS_len(&data)); |
|
EXPECT_TRUE(CBS_skip(&data, 1)); |
|
EXPECT_EQ(2u, CBS_len(&data)); |
|
EXPECT_TRUE(CBS_skip(&data, 2)); |
|
EXPECT_EQ(0u, CBS_len(&data)); |
|
EXPECT_FALSE(CBS_skip(&data, 1)); |
|
} |
|
|
|
TEST(CBSTest, GetUint) { |
|
static const uint8_t kData[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, |
|
11, 12, 13, 14, 15, 16, 17, 18, 19, 20}; |
|
uint8_t u8; |
|
uint16_t u16; |
|
uint32_t u32; |
|
uint64_t u64; |
|
CBS data; |
|
|
|
CBS_init(&data, kData, sizeof(kData)); |
|
ASSERT_TRUE(CBS_get_u8(&data, &u8)); |
|
EXPECT_EQ(1u, u8); |
|
ASSERT_TRUE(CBS_get_u16(&data, &u16)); |
|
EXPECT_EQ(0x203u, u16); |
|
ASSERT_TRUE(CBS_get_u24(&data, &u32)); |
|
EXPECT_EQ(0x40506u, u32); |
|
ASSERT_TRUE(CBS_get_u32(&data, &u32)); |
|
EXPECT_EQ(0x708090au, u32); |
|
ASSERT_TRUE(CBS_get_u64(&data, &u64)); |
|
EXPECT_EQ(0xb0c0d0e0f101112u, u64); |
|
ASSERT_TRUE(CBS_get_last_u8(&data, &u8)); |
|
EXPECT_EQ(0x14u, u8); |
|
ASSERT_TRUE(CBS_get_last_u8(&data, &u8)); |
|
EXPECT_EQ(0x13u, u8); |
|
EXPECT_FALSE(CBS_get_u8(&data, &u8)); |
|
EXPECT_FALSE(CBS_get_last_u8(&data, &u8)); |
|
|
|
CBS_init(&data, kData, sizeof(kData)); |
|
ASSERT_TRUE(CBS_get_u16le(&data, &u16)); |
|
EXPECT_EQ(0x0201u, u16); |
|
ASSERT_TRUE(CBS_get_u32le(&data, &u32)); |
|
EXPECT_EQ(0x06050403u, u32); |
|
ASSERT_TRUE(CBS_get_u64le(&data, &u64)); |
|
EXPECT_EQ(0x0e0d0c0b0a090807u, u64); |
|
} |
|
|
|
TEST(CBSTest, GetPrefixed) { |
|
static const uint8_t kData[] = {1, 2, 0, 2, 3, 4, 0, 0, 3, 3, 2, 1}; |
|
uint8_t u8; |
|
uint16_t u16; |
|
uint32_t u32; |
|
CBS data, prefixed; |
|
|
|
CBS_init(&data, kData, sizeof(kData)); |
|
ASSERT_TRUE(CBS_get_u8_length_prefixed(&data, &prefixed)); |
|
EXPECT_EQ(1u, CBS_len(&prefixed)); |
|
ASSERT_TRUE(CBS_get_u8(&prefixed, &u8)); |
|
EXPECT_EQ(2u, u8); |
|
ASSERT_TRUE(CBS_get_u16_length_prefixed(&data, &prefixed)); |
|
EXPECT_EQ(2u, CBS_len(&prefixed)); |
|
ASSERT_TRUE(CBS_get_u16(&prefixed, &u16)); |
|
EXPECT_EQ(0x304u, u16); |
|
ASSERT_TRUE(CBS_get_u24_length_prefixed(&data, &prefixed)); |
|
EXPECT_EQ(3u, CBS_len(&prefixed)); |
|
ASSERT_TRUE(CBS_get_u24(&prefixed, &u32)); |
|
EXPECT_EQ(0x30201u, u32); |
|
} |
|
|
|
TEST(CBSTest, GetPrefixedBad) { |
|
static const uint8_t kData1[] = {2, 1}; |
|
static const uint8_t kData2[] = {0, 2, 1}; |
|
static const uint8_t kData3[] = {0, 0, 2, 1}; |
|
CBS data, prefixed; |
|
|
|
CBS_init(&data, kData1, sizeof(kData1)); |
|
EXPECT_FALSE(CBS_get_u8_length_prefixed(&data, &prefixed)); |
|
|
|
CBS_init(&data, kData2, sizeof(kData2)); |
|
EXPECT_FALSE(CBS_get_u16_length_prefixed(&data, &prefixed)); |
|
|
|
CBS_init(&data, kData3, sizeof(kData3)); |
|
EXPECT_FALSE(CBS_get_u24_length_prefixed(&data, &prefixed)); |
|
} |
|
|
|
TEST(CBSTest, GetUntilFirst) { |
|
static const uint8_t kData[] = {0, 1, 2, 3, 0, 1, 2, 3}; |
|
CBS data; |
|
CBS_init(&data, kData, sizeof(kData)); |
|
|
|
CBS prefix; |
|
EXPECT_FALSE(CBS_get_until_first(&data, &prefix, 4)); |
|
EXPECT_EQ(CBS_data(&data), kData); |
|
EXPECT_EQ(CBS_len(&data), sizeof(kData)); |
|
|
|
ASSERT_TRUE(CBS_get_until_first(&data, &prefix, 0)); |
|
EXPECT_EQ(CBS_len(&prefix), 0u); |
|
EXPECT_EQ(CBS_data(&data), kData); |
|
EXPECT_EQ(CBS_len(&data), sizeof(kData)); |
|
|
|
ASSERT_TRUE(CBS_get_until_first(&data, &prefix, 2)); |
|
EXPECT_EQ(CBS_data(&prefix), kData); |
|
EXPECT_EQ(CBS_len(&prefix), 2u); |
|
EXPECT_EQ(CBS_data(&data), kData + 2); |
|
EXPECT_EQ(CBS_len(&data), sizeof(kData) - 2); |
|
} |
|
|
|
TEST(CBSTest, GetASN1) { |
|
static const uint8_t kData1[] = {0x30, 2, 1, 2}; |
|
static const uint8_t kData2[] = {0x30, 3, 1, 2}; |
|
static const uint8_t kData3[] = {0x30, 0x80}; |
|
static const uint8_t kData4[] = {0x30, 0x81, 1, 1}; |
|
static const uint8_t kData5[4 + 0x80] = {0x30, 0x82, 0, 0x80}; |
|
static const uint8_t kData6[] = {0xa1, 3, 0x4, 1, 1}; |
|
static const uint8_t kData7[] = {0xa1, 3, 0x4, 2, 1}; |
|
static const uint8_t kData8[] = {0xa1, 3, 0x2, 1, 1}; |
|
static const uint8_t kData9[] = {0xa1, 3, 0x2, 1, 0xff}; |
|
|
|
CBS data, contents; |
|
int present; |
|
uint64_t value; |
|
|
|
CBS_init(&data, kData1, sizeof(kData1)); |
|
EXPECT_FALSE(CBS_peek_asn1_tag(&data, CBS_ASN1_BOOLEAN)); |
|
EXPECT_TRUE(CBS_peek_asn1_tag(&data, CBS_ASN1_SEQUENCE)); |
|
|
|
ASSERT_TRUE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE)); |
|
EXPECT_EQ(Bytes("\x01\x02"), Bytes(CBS_data(&contents), CBS_len(&contents))); |
|
|
|
CBS_init(&data, kData2, sizeof(kData2)); |
|
// data is truncated |
|
EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE)); |
|
|
|
CBS_init(&data, kData3, sizeof(kData3)); |
|
// zero byte length of length |
|
EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE)); |
|
|
|
CBS_init(&data, kData4, sizeof(kData4)); |
|
// long form mistakenly used. |
|
EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE)); |
|
|
|
CBS_init(&data, kData5, sizeof(kData5)); |
|
// length takes too many bytes. |
|
EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE)); |
|
|
|
CBS_init(&data, kData1, sizeof(kData1)); |
|
// wrong tag. |
|
EXPECT_FALSE(CBS_get_asn1(&data, &contents, 0x31)); |
|
|
|
CBS_init(&data, NULL, 0); |
|
// peek at empty data. |
|
EXPECT_FALSE(CBS_peek_asn1_tag(&data, CBS_ASN1_SEQUENCE)); |
|
|
|
CBS_init(&data, NULL, 0); |
|
// optional elements at empty data. |
|
ASSERT_TRUE(CBS_get_optional_asn1( |
|
&data, &contents, &present, |
|
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)); |
|
EXPECT_FALSE(present); |
|
ASSERT_TRUE(CBS_get_optional_asn1_octet_string( |
|
&data, &contents, &present, |
|
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)); |
|
EXPECT_FALSE(present); |
|
EXPECT_EQ(0u, CBS_len(&contents)); |
|
ASSERT_TRUE(CBS_get_optional_asn1_octet_string( |
|
&data, &contents, NULL, |
|
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)); |
|
EXPECT_EQ(0u, CBS_len(&contents)); |
|
ASSERT_TRUE(CBS_get_optional_asn1_uint64( |
|
&data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0, 42)); |
|
EXPECT_EQ(42u, value); |
|
|
|
CBS_init(&data, kData6, sizeof(kData6)); |
|
// optional element. |
|
ASSERT_TRUE(CBS_get_optional_asn1( |
|
&data, &contents, &present, |
|
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)); |
|
EXPECT_FALSE(present); |
|
ASSERT_TRUE(CBS_get_optional_asn1( |
|
&data, &contents, &present, |
|
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1)); |
|
EXPECT_TRUE(present); |
|
EXPECT_EQ(Bytes("\x04\x01\x01"), |
|
Bytes(CBS_data(&contents), CBS_len(&contents))); |
|
|
|
CBS_init(&data, kData6, sizeof(kData6)); |
|
// optional octet string. |
|
ASSERT_TRUE(CBS_get_optional_asn1_octet_string( |
|
&data, &contents, &present, |
|
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)); |
|
EXPECT_FALSE(present); |
|
EXPECT_EQ(0u, CBS_len(&contents)); |
|
ASSERT_TRUE(CBS_get_optional_asn1_octet_string( |
|
&data, &contents, &present, |
|
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1)); |
|
EXPECT_TRUE(present); |
|
EXPECT_EQ(Bytes("\x01"), Bytes(CBS_data(&contents), CBS_len(&contents))); |
|
|
|
CBS_init(&data, kData7, sizeof(kData7)); |
|
// invalid optional octet string. |
|
EXPECT_FALSE(CBS_get_optional_asn1_octet_string( |
|
&data, &contents, &present, |
|
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1)); |
|
|
|
CBS_init(&data, kData8, sizeof(kData8)); |
|
// optional integer. |
|
ASSERT_TRUE(CBS_get_optional_asn1_uint64( |
|
&data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0, 42)); |
|
EXPECT_EQ(42u, value); |
|
ASSERT_TRUE(CBS_get_optional_asn1_uint64( |
|
&data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1, 42)); |
|
EXPECT_EQ(1u, value); |
|
|
|
CBS_init(&data, kData9, sizeof(kData9)); |
|
// invalid optional integer. |
|
EXPECT_FALSE(CBS_get_optional_asn1_uint64( |
|
&data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1, 42)); |
|
|
|
unsigned tag; |
|
CBS_init(&data, kData1, sizeof(kData1)); |
|
ASSERT_TRUE(CBS_get_any_asn1(&data, &contents, &tag)); |
|
EXPECT_EQ(CBS_ASN1_SEQUENCE, tag); |
|
EXPECT_EQ(Bytes("\x01\x02"), Bytes(CBS_data(&contents), CBS_len(&contents))); |
|
|
|
size_t header_len; |
|
CBS_init(&data, kData1, sizeof(kData1)); |
|
ASSERT_TRUE(CBS_get_any_asn1_element(&data, &contents, &tag, &header_len)); |
|
EXPECT_EQ(CBS_ASN1_SEQUENCE, tag); |
|
EXPECT_EQ(2u, header_len); |
|
EXPECT_EQ(Bytes("\x30\x02\x01\x02"), |
|
Bytes(CBS_data(&contents), CBS_len(&contents))); |
|
} |
|
|
|
TEST(CBSTest, ParseASN1Tag) { |
|
const struct { |
|
bool ok; |
|
unsigned tag; |
|
std::vector<uint8_t> in; |
|
} kTests[] = { |
|
{true, CBS_ASN1_SEQUENCE, {0x30, 0}}, |
|
{true, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 4, {0xa4, 0}}, |
|
{true, CBS_ASN1_APPLICATION | 30, {0x5e, 0}}, |
|
{true, CBS_ASN1_APPLICATION | 31, {0x5f, 0x1f, 0}}, |
|
{true, CBS_ASN1_APPLICATION | 32, {0x5f, 0x20, 0}}, |
|
{true, |
|
CBS_ASN1_PRIVATE | CBS_ASN1_CONSTRUCTED | 0x1fffffff, |
|
{0xff, 0x81, 0xff, 0xff, 0xff, 0x7f, 0}}, |
|
// Tag number fits in unsigned but not |CBS_ASN1_TAG_NUMBER_MASK|. |
|
{false, 0, {0xff, 0x82, 0xff, 0xff, 0xff, 0x7f, 0}}, |
|
// Tag number does not fit in unsigned. |
|
{false, 0, {0xff, 0x90, 0x80, 0x80, 0x80, 0, 0}}, |
|
// Tag number is not minimally-encoded |
|
{false, 0, {0x5f, 0x80, 0x1f, 0}}, |
|
// Tag number should have used short form. |
|
{false, 0, {0x5f, 0x80, 0x1e, 0}}, |
|
}; |
|
for (const auto &t : kTests) { |
|
SCOPED_TRACE(Bytes(t.in)); |
|
unsigned tag; |
|
CBS cbs, child; |
|
CBS_init(&cbs, t.in.data(), t.in.size()); |
|
ASSERT_EQ(t.ok, !!CBS_get_any_asn1(&cbs, &child, &tag)); |
|
if (t.ok) { |
|
EXPECT_EQ(t.tag, tag); |
|
EXPECT_EQ(0u, CBS_len(&child)); |
|
EXPECT_EQ(0u, CBS_len(&cbs)); |
|
|
|
CBS_init(&cbs, t.in.data(), t.in.size()); |
|
EXPECT_TRUE(CBS_peek_asn1_tag(&cbs, t.tag)); |
|
EXPECT_FALSE(CBS_peek_asn1_tag(&cbs, t.tag + 1)); |
|
|
|
EXPECT_TRUE(CBS_get_asn1(&cbs, &child, t.tag)); |
|
EXPECT_EQ(0u, CBS_len(&child)); |
|
EXPECT_EQ(0u, CBS_len(&cbs)); |
|
|
|
CBS_init(&cbs, t.in.data(), t.in.size()); |
|
EXPECT_FALSE(CBS_get_asn1(&cbs, &child, t.tag + 1)); |
|
} |
|
} |
|
} |
|
|
|
TEST(CBSTest, GetOptionalASN1Bool) { |
|
static const uint8_t kTrue[] = {0x0a, 3, CBS_ASN1_BOOLEAN, 1, 0xff}; |
|
static const uint8_t kFalse[] = {0x0a, 3, CBS_ASN1_BOOLEAN, 1, 0x00}; |
|
static const uint8_t kInvalid[] = {0x0a, 3, CBS_ASN1_BOOLEAN, 1, 0x01}; |
|
|
|
CBS data; |
|
CBS_init(&data, NULL, 0); |
|
int val = 2; |
|
ASSERT_TRUE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 0)); |
|
EXPECT_EQ(0, val); |
|
|
|
CBS_init(&data, kTrue, sizeof(kTrue)); |
|
val = 2; |
|
ASSERT_TRUE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 0)); |
|
EXPECT_EQ(1, val); |
|
|
|
CBS_init(&data, kFalse, sizeof(kFalse)); |
|
val = 2; |
|
ASSERT_TRUE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 1)); |
|
EXPECT_EQ(0, val); |
|
|
|
CBS_init(&data, kInvalid, sizeof(kInvalid)); |
|
EXPECT_FALSE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 1)); |
|
} |
|
|
|
// Test that CBB_init may be used on an uninitialized input. |
|
TEST(CBBTest, InitUninitialized) { |
|
CBB cbb; |
|
ASSERT_TRUE(CBB_init(&cbb, 100)); |
|
CBB_cleanup(&cbb); |
|
} |
|
|
|
TEST(CBBTest, Basic) { |
|
static const uint8_t kExpected[] = { |
|
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, |
|
0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, |
|
0x03, 0x02, 0x0a, 0x09, 0x08, 0x07, 0x12, 0x11, 0x10, 0x0f, |
|
0x0e, 0x0d, 0x0c, 0x0b, 0x00, 0x00, 0x00, 0x00}; |
|
uint8_t *buf; |
|
size_t buf_len; |
|
|
|
bssl::ScopedCBB cbb; |
|
ASSERT_TRUE(CBB_init(cbb.get(), 100)); |
|
cbb.Reset(); |
|
|
|
ASSERT_TRUE(CBB_init(cbb.get(), 0)); |
|
ASSERT_TRUE(CBB_add_zeros(cbb.get(), 0)); |
|
ASSERT_TRUE(CBB_add_u8(cbb.get(), 1)); |
|
ASSERT_TRUE(CBB_add_u16(cbb.get(), 0x203)); |
|
ASSERT_TRUE(CBB_add_u24(cbb.get(), 0x40506)); |
|
ASSERT_TRUE(CBB_add_u32(cbb.get(), 0x708090a)); |
|
ASSERT_TRUE(CBB_add_u64(cbb.get(), 0xb0c0d0e0f101112)); |
|
ASSERT_TRUE(CBB_add_bytes(cbb.get(), (const uint8_t *)"\x13\x14", 2)); |
|
ASSERT_TRUE(CBB_add_u16le(cbb.get(), 0x203)); |
|
ASSERT_TRUE(CBB_add_u32le(cbb.get(), 0x708090a)); |
|
ASSERT_TRUE(CBB_add_u64le(cbb.get(), 0xb0c0d0e0f101112)); |
|
ASSERT_TRUE(CBB_add_zeros(cbb.get(), 4)); |
|
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len)); |
|
|
|
bssl::UniquePtr<uint8_t> scoper(buf); |
|
EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len)); |
|
} |
|
|
|
TEST(CBBTest, Fixed) { |
|
bssl::ScopedCBB cbb; |
|
uint8_t buf[1]; |
|
uint8_t *out_buf; |
|
size_t out_size; |
|
|
|
ASSERT_TRUE(CBB_init_fixed(cbb.get(), NULL, 0)); |
|
ASSERT_TRUE(CBB_finish(cbb.get(), &out_buf, &out_size)); |
|
EXPECT_EQ(NULL, out_buf); |
|
EXPECT_EQ(0u, out_size); |
|
|
|
cbb.Reset(); |
|
ASSERT_TRUE(CBB_init_fixed(cbb.get(), buf, 1)); |
|
ASSERT_TRUE(CBB_add_u8(cbb.get(), 1)); |
|
ASSERT_TRUE(CBB_finish(cbb.get(), &out_buf, &out_size)); |
|
EXPECT_EQ(buf, out_buf); |
|
EXPECT_EQ(1u, out_size); |
|
EXPECT_EQ(1u, buf[0]); |
|
|
|
cbb.Reset(); |
|
ASSERT_TRUE(CBB_init_fixed(cbb.get(), buf, 1)); |
|
ASSERT_TRUE(CBB_add_u8(cbb.get(), 1)); |
|
EXPECT_FALSE(CBB_add_u8(cbb.get(), 2)); |
|
} |
|
|
|
// Test that calling CBB_finish on a child does nothing. |
|
TEST(CBBTest, FinishChild) { |
|
CBB child; |
|
uint8_t *out_buf; |
|
size_t out_size; |
|
|
|
bssl::ScopedCBB cbb; |
|
ASSERT_TRUE(CBB_init(cbb.get(), 16)); |
|
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &child)); |
|
|
|
EXPECT_FALSE(CBB_finish(&child, &out_buf, &out_size)); |
|
|
|
ASSERT_TRUE(CBB_finish(cbb.get(), &out_buf, &out_size)); |
|
bssl::UniquePtr<uint8_t> scoper(out_buf); |
|
ASSERT_EQ(1u, out_size); |
|
EXPECT_EQ(0u, out_buf[0]); |
|
} |
|
|
|
TEST(CBBTest, Prefixed) { |
|
static const uint8_t kExpected[] = {0, 1, 1, 0, 2, 2, 3, 0, 0, 3, |
|
4, 5, 6, 5, 4, 1, 0, 1, 2}; |
|
uint8_t *buf; |
|
size_t buf_len; |
|
bssl::ScopedCBB cbb; |
|
CBB contents, inner_contents, inner_inner_contents; |
|
ASSERT_TRUE(CBB_init(cbb.get(), 0)); |
|
EXPECT_EQ(0u, CBB_len(cbb.get())); |
|
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents)); |
|
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents)); |
|
ASSERT_TRUE(CBB_add_u8(&contents, 1)); |
|
EXPECT_EQ(1u, CBB_len(&contents)); |
|
ASSERT_TRUE(CBB_flush(cbb.get())); |
|
EXPECT_EQ(3u, CBB_len(cbb.get())); |
|
ASSERT_TRUE(CBB_add_u16_length_prefixed(cbb.get(), &contents)); |
|
ASSERT_TRUE(CBB_add_u16(&contents, 0x203)); |
|
ASSERT_TRUE(CBB_add_u24_length_prefixed(cbb.get(), &contents)); |
|
ASSERT_TRUE(CBB_add_u24(&contents, 0x40506)); |
|
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents)); |
|
ASSERT_TRUE(CBB_add_u8_length_prefixed(&contents, &inner_contents)); |
|
ASSERT_TRUE(CBB_add_u8(&inner_contents, 1)); |
|
ASSERT_TRUE( |
|
CBB_add_u16_length_prefixed(&inner_contents, &inner_inner_contents)); |
|
ASSERT_TRUE(CBB_add_u8(&inner_inner_contents, 2)); |
|
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len)); |
|
|
|
bssl::UniquePtr<uint8_t> scoper(buf); |
|
EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len)); |
|
} |
|
|
|
TEST(CBBTest, DiscardChild) { |
|
bssl::ScopedCBB cbb; |
|
CBB contents, inner_contents, inner_inner_contents; |
|
|
|
ASSERT_TRUE(CBB_init(cbb.get(), 0)); |
|
ASSERT_TRUE(CBB_add_u8(cbb.get(), 0xaa)); |
|
|
|
// Discarding |cbb|'s children preserves the byte written. |
|
CBB_discard_child(cbb.get()); |
|
|
|
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents)); |
|
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents)); |
|
ASSERT_TRUE(CBB_add_u8(&contents, 0xbb)); |
|
ASSERT_TRUE(CBB_add_u16_length_prefixed(cbb.get(), &contents)); |
|
ASSERT_TRUE(CBB_add_u16(&contents, 0xcccc)); |
|
ASSERT_TRUE(CBB_add_u24_length_prefixed(cbb.get(), &contents)); |
|
ASSERT_TRUE(CBB_add_u24(&contents, 0xdddddd)); |
|
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents)); |
|
ASSERT_TRUE(CBB_add_u8(&contents, 0xff)); |
|
ASSERT_TRUE(CBB_add_u8_length_prefixed(&contents, &inner_contents)); |
|
ASSERT_TRUE(CBB_add_u8(&inner_contents, 0x42)); |
|
ASSERT_TRUE( |
|
CBB_add_u16_length_prefixed(&inner_contents, &inner_inner_contents)); |
|
ASSERT_TRUE(CBB_add_u8(&inner_inner_contents, 0x99)); |
|
|
|
// Discard everything from |inner_contents| down. |
|
CBB_discard_child(&contents); |
|
|
|
uint8_t *buf; |
|
size_t buf_len; |
|
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len)); |
|
bssl::UniquePtr<uint8_t> scoper(buf); |
|
|
|
static const uint8_t kExpected[] = { |
|
0xaa, |
|
0, |
|
1, 0xbb, |
|
0, 2, 0xcc, 0xcc, |
|
0, 0, 3, 0xdd, 0xdd, 0xdd, |
|
1, 0xff, |
|
}; |
|
EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len)); |
|
} |
|
|
|
TEST(CBBTest, Misuse) { |
|
bssl::ScopedCBB cbb; |
|
CBB child, contents; |
|
uint8_t *buf; |
|
size_t buf_len; |
|
|
|
ASSERT_TRUE(CBB_init(cbb.get(), 0)); |
|
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &child)); |
|
ASSERT_TRUE(CBB_add_u8(&child, 1)); |
|
ASSERT_TRUE(CBB_add_u8(cbb.get(), 2)); |
|
|
|
// Since we wrote to |cbb|, |child| is now invalid and attempts to write to |
|
// it should fail. |
|
EXPECT_FALSE(CBB_add_u8(&child, 1)); |
|
EXPECT_FALSE(CBB_add_u16(&child, 1)); |
|
EXPECT_FALSE(CBB_add_u24(&child, 1)); |
|
EXPECT_FALSE(CBB_add_u8_length_prefixed(&child, &contents)); |
|
EXPECT_FALSE(CBB_add_u16_length_prefixed(&child, &contents)); |
|
EXPECT_FALSE(CBB_add_asn1(&child, &contents, 1)); |
|
EXPECT_FALSE(CBB_add_bytes(&child, (const uint8_t*) "a", 1)); |
|
|
|
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len)); |
|
bssl::UniquePtr<uint8_t> scoper(buf); |
|
|
|
EXPECT_EQ(Bytes("\x01\x01\x02"), Bytes(buf, buf_len)); |
|
} |
|
|
|
TEST(CBBTest, ASN1) { |
|
static const uint8_t kExpected[] = { |
|
// SEQUENCE { 1 2 3 } |
|
0x30, 3, 1, 2, 3, |
|
// [4 CONSTRUCTED] { 4 5 6 } |
|
0xa4, 3, 4, 5, 6, |
|
// [APPLICATION 30 PRIMITIVE] { 7 8 9 } |
|
0x5e, 3, 7, 8, 9, |
|
// [APPLICATION 31 PRIMITIVE] { 10 11 12 } |
|
0x5f, 0x1f, 3, 10, 11, 12, |
|
// [PRIVATE 2^29-1 CONSTRUCTED] { 13 14 15 } |
|
0xff, 0x81, 0xff, 0xff, 0xff, 0x7f, 3, 13, 14, 15, |
|
}; |
|
uint8_t *buf; |
|
size_t buf_len; |
|
bssl::ScopedCBB cbb; |
|
CBB contents, inner_contents; |
|
|
|
ASSERT_TRUE(CBB_init(cbb.get(), 0)); |
|
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE)); |
|
ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x01\x02\x03", 3)); |
|
ASSERT_TRUE( |
|
CBB_add_asn1(cbb.get(), &contents, |
|
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 4)); |
|
ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x04\x05\x06", 3)); |
|
ASSERT_TRUE( |
|
CBB_add_asn1(cbb.get(), &contents, |
|
CBS_ASN1_APPLICATION | 30)); |
|
ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x07\x08\x09", 3)); |
|
ASSERT_TRUE( |
|
CBB_add_asn1(cbb.get(), &contents, |
|
CBS_ASN1_APPLICATION | 31)); |
|
ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x0a\x0b\x0c", 3)); |
|
ASSERT_TRUE( |
|
CBB_add_asn1(cbb.get(), &contents, |
|
CBS_ASN1_PRIVATE | CBS_ASN1_CONSTRUCTED | 0x1fffffff)); |
|
ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x0d\x0e\x0f", 3)); |
|
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len)); |
|
bssl::UniquePtr<uint8_t> scoper(buf); |
|
|
|
EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len)); |
|
|
|
std::vector<uint8_t> test_data(100000, 0x42); |
|
ASSERT_TRUE(CBB_init(cbb.get(), 0)); |
|
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE)); |
|
ASSERT_TRUE(CBB_add_bytes(&contents, test_data.data(), 130)); |
|
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len)); |
|
scoper.reset(buf); |
|
|
|
ASSERT_EQ(3u + 130u, buf_len); |
|
EXPECT_EQ(Bytes("\x30\x81\x82"), Bytes(buf, 3)); |
|
EXPECT_EQ(Bytes(test_data.data(), 130), Bytes(buf + 3, 130)); |
|
|
|
ASSERT_TRUE(CBB_init(cbb.get(), 0)); |
|
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE)); |
|
ASSERT_TRUE(CBB_add_bytes(&contents, test_data.data(), 1000)); |
|
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len)); |
|
scoper.reset(buf); |
|
|
|
ASSERT_EQ(4u + 1000u, buf_len); |
|
EXPECT_EQ(Bytes("\x30\x82\x03\xe8"), Bytes(buf, 4)); |
|
EXPECT_EQ(Bytes(test_data.data(), 1000), Bytes(buf + 4, 1000)); |
|
|
|
ASSERT_TRUE(CBB_init(cbb.get(), 0)); |
|
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE)); |
|
ASSERT_TRUE(CBB_add_asn1(&contents, &inner_contents, CBS_ASN1_SEQUENCE)); |
|
ASSERT_TRUE(CBB_add_bytes(&inner_contents, test_data.data(), 100000)); |
|
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len)); |
|
scoper.reset(buf); |
|
|
|
ASSERT_EQ(5u + 5u + 100000u, buf_len); |
|
EXPECT_EQ(Bytes("\x30\x83\x01\x86\xa5\x30\x83\x01\x86\xa0"), Bytes(buf, 10)); |
|
EXPECT_EQ(Bytes(test_data.data(), test_data.size()), Bytes(buf + 10, 100000)); |
|
} |
|
|
|
static void ExpectBerConvert(const char *name, |
|
bssl::Span<const uint8_t> der_expected, |
|
bssl::Span<const uint8_t> ber) { |
|
SCOPED_TRACE(name); |
|
CBS in, out; |
|
uint8_t *storage; |
|
|
|
CBS_init(&in, ber.data(), ber.size()); |
|
ASSERT_TRUE(CBS_asn1_ber_to_der(&in, &out, &storage)); |
|
bssl::UniquePtr<uint8_t> scoper(storage); |
|
|
|
EXPECT_EQ(Bytes(der_expected), Bytes(CBS_data(&out), CBS_len(&out))); |
|
if (storage != nullptr) { |
|
EXPECT_NE(Bytes(der_expected), Bytes(ber)); |
|
} else { |
|
EXPECT_EQ(Bytes(der_expected), Bytes(ber)); |
|
} |
|
} |
|
|
|
TEST(CBSTest, BerConvert) { |
|
static const uint8_t kSimpleBER[] = {0x01, 0x01, 0x00}; |
|
|
|
// kNonMinimalLengthBER has a non-minimally encoded length. |
|
static const uint8_t kNonMinimalLengthBER[] = {0x02, 0x82, 0x00, 0x01, 0x01}; |
|
static const uint8_t kNonMinimalLengthDER[] = {0x02, 0x01, 0x01}; |
|
|
|
// kIndefBER contains a SEQUENCE with an indefinite length. |
|
static const uint8_t kIndefBER[] = {0x30, 0x80, 0x01, 0x01, 0x02, 0x00, 0x00}; |
|
static const uint8_t kIndefDER[] = {0x30, 0x03, 0x01, 0x01, 0x02}; |
|
|
|
// kIndefBER2 contains a constructed [APPLICATION 31] with an indefinite |
|
// length. |
|
static const uint8_t kIndefBER2[] = {0x7f, 0x1f, 0x80, 0x01, |
|
0x01, 0x02, 0x00, 0x00}; |
|
static const uint8_t kIndefDER2[] = {0x7f, 0x1f, 0x03, 0x01, 0x01, 0x02}; |
|
|
|
// kOctetStringBER contains an indefinite length OCTET STRING with two parts. |
|
// These parts need to be concatenated in DER form. |
|
static const uint8_t kOctetStringBER[] = {0x24, 0x80, 0x04, 0x02, 0, 1, |
|
0x04, 0x02, 2, 3, 0x00, 0x00}; |
|
static const uint8_t kOctetStringDER[] = {0x04, 0x04, 0, 1, 2, 3}; |
|
|
|
// kNSSBER is part of a PKCS#12 message generated by NSS that uses indefinite |
|
// length elements extensively. |
|
static const uint8_t kNSSBER[] = { |
|
0x30, 0x80, 0x02, 0x01, 0x03, 0x30, 0x80, 0x06, 0x09, 0x2a, 0x86, 0x48, |
|
0x86, 0xf7, 0x0d, 0x01, 0x07, 0x01, 0xa0, 0x80, 0x24, 0x80, 0x04, 0x04, |
|
0x01, 0x02, 0x03, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x39, |
|
0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, |
|
0x00, 0x04, 0x14, 0x84, 0x98, 0xfc, 0x66, 0x33, 0xee, 0xba, 0xe7, 0x90, |
|
0xc1, 0xb6, 0xe8, 0x8f, 0xfe, 0x1d, 0xc5, 0xa5, 0x97, 0x93, 0x3e, 0x04, |
|
0x10, 0x38, 0x62, 0xc6, 0x44, 0x12, 0xd5, 0x30, 0x00, 0xf8, 0xf2, 0x1b, |
|
0xf0, 0x6e, 0x10, 0x9b, 0xb8, 0x02, 0x02, 0x07, 0xd0, 0x00, 0x00, |
|
}; |
|
|
|
static const uint8_t kNSSDER[] = { |
|
0x30, 0x53, 0x02, 0x01, 0x03, 0x30, 0x13, 0x06, 0x09, 0x2a, 0x86, |
|
0x48, 0x86, 0xf7, 0x0d, 0x01, 0x07, 0x01, 0xa0, 0x06, 0x04, 0x04, |
|
0x01, 0x02, 0x03, 0x04, 0x30, 0x39, 0x30, 0x21, 0x30, 0x09, 0x06, |
|
0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14, 0x84, |
|
0x98, 0xfc, 0x66, 0x33, 0xee, 0xba, 0xe7, 0x90, 0xc1, 0xb6, 0xe8, |
|
0x8f, 0xfe, 0x1d, 0xc5, 0xa5, 0x97, 0x93, 0x3e, 0x04, 0x10, 0x38, |
|
0x62, 0xc6, 0x44, 0x12, 0xd5, 0x30, 0x00, 0xf8, 0xf2, 0x1b, 0xf0, |
|
0x6e, 0x10, 0x9b, 0xb8, 0x02, 0x02, 0x07, 0xd0, |
|
}; |
|
|
|
// kConstructedStringBER contains a deeply-nested constructed OCTET STRING. |
|
// The BER conversion collapses this to one level deep, but not completely. |
|
static const uint8_t kConstructedStringBER[] = { |
|
0xa0, 0x10, 0x24, 0x06, 0x04, 0x01, 0x00, 0x04, 0x01, |
|
0x01, 0x24, 0x06, 0x04, 0x01, 0x02, 0x04, 0x01, 0x03, |
|
}; |
|
static const uint8_t kConstructedStringDER[] = { |
|
0xa0, 0x08, 0x04, 0x02, 0x00, 0x01, 0x04, 0x02, 0x02, 0x03, |
|
}; |
|
|
|
// kConstructedBitString contains a BER constructed BIT STRING. These are not |
|
// supported and thus are left unchanged. |
|
static const uint8_t kConstructedBitStringBER[] = { |
|
0x23, 0x0a, 0x03, 0x03, 0x00, 0x12, 0x34, 0x03, 0x03, 0x00, 0x56, 0x78}; |
|
|
|
ExpectBerConvert("kSimpleBER", kSimpleBER, kSimpleBER); |
|
ExpectBerConvert("kNonMinimalLengthBER", kNonMinimalLengthDER, |
|
kNonMinimalLengthBER); |
|
ExpectBerConvert("kIndefBER", kIndefDER, kIndefBER); |
|
ExpectBerConvert("kIndefBER2", kIndefDER2, kIndefBER2); |
|
ExpectBerConvert("kOctetStringBER", kOctetStringDER, kOctetStringBER); |
|
ExpectBerConvert("kNSSBER", kNSSDER, kNSSBER); |
|
ExpectBerConvert("kConstructedStringBER", kConstructedStringDER, |
|
kConstructedStringBER); |
|
ExpectBerConvert("kConstructedBitStringBER", kConstructedBitStringBER, |
|
kConstructedBitStringBER); |
|
} |
|
|
|
struct BERTest { |
|
const char *in_hex; |
|
bool ok; |
|
bool ber_found; |
|
bool indefinite; |
|
unsigned tag; |
|
}; |
|
|
|
static const BERTest kBERTests[] = { |
|
// Trivial cases, also valid DER. |
|
{"0100", true, false, false, 1}, |
|
{"020101", true, false, false, 2}, |
|
|
|
// Non-minimally encoded lengths. |
|
{"02810101", true, true, false, 2}, |
|
{"0282000101", true, true, false, 2}, |
|
{"028300000101", true, true, false, 2}, |
|
{"02840000000101", true, true, false, 2}, |
|
// Technically valid BER, but not handled. |
|
{"02850000000101", false, false, false, 0}, |
|
|
|
// Indefinite length, but not constructed. |
|
{"0280", false, false, false, 0}, |
|
// Indefinite length. |
|
{"2280", true, true, true, CBS_ASN1_CONSTRUCTED | 2}, |
|
// Indefinite length with multi-byte tag. |
|
{"bf1f80", true, true, true, |
|
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 31}, |
|
// Invalid extended tag zero (X.690 8.1.2.4.2.c) |
|
{"3f0000", false, false, false, 0}, |
|
// Should be a low-number tag form, even in BER. |
|
{"1f0100", false, false, false, 0}, |
|
{"1f4000", true, false, false, 0x40}, |
|
// Non-minimal tags are invalid, even in BER. |
|
{"1f804000", false, false, false, 0}, |
|
|
|
// EOCs and other forms of tag [UNIVERSAL 0] are rejected as elements. |
|
{"0000", false, false, false, 0}, |
|
{"000100", false, false, false, 0}, |
|
{"00800000", false, false, false, 0}, |
|
{"2000", false, false, false, 0}, |
|
}; |
|
|
|
TEST(CBSTest, BERElementTest) { |
|
for (const auto &test : kBERTests) { |
|
SCOPED_TRACE(test.in_hex); |
|
|
|
std::vector<uint8_t> in_bytes; |
|
ASSERT_TRUE(DecodeHex(&in_bytes, test.in_hex)); |
|
CBS in(in_bytes); |
|
CBS out; |
|
unsigned tag; |
|
size_t header_len; |
|
int ber_found; |
|
int indefinite; |
|
int ok = CBS_get_any_ber_asn1_element(&in, &out, &tag, &header_len, |
|
&ber_found, &indefinite); |
|
ASSERT_TRUE((ok == 1) == test.ok); |
|
if (!test.ok) { |
|
continue; |
|
} |
|
|
|
EXPECT_EQ(test.ber_found ? 1 : 0, ber_found); |
|
EXPECT_EQ(test.indefinite ? 1 : 0, indefinite); |
|
EXPECT_LE(header_len, in_bytes.size()); |
|
EXPECT_EQ(CBS_len(&out), in_bytes.size()); |
|
EXPECT_EQ(CBS_len(&in), 0u); |
|
EXPECT_EQ(Bytes(out), Bytes(in_bytes)); |
|
EXPECT_EQ(tag, test.tag); |
|
} |
|
} |
|
|
|
struct ImplicitStringTest { |
|
const char *in; |
|
size_t in_len; |
|
bool ok; |
|
const char *out; |
|
size_t out_len; |
|
}; |
|
|
|
static const ImplicitStringTest kImplicitStringTests[] = { |
|
// A properly-encoded string. |
|
{"\x80\x03\x61\x61\x61", 5, true, "aaa", 3}, |
|
// An implicit-tagged string. |
|
{"\xa0\x09\x04\x01\x61\x04\x01\x61\x04\x01\x61", 11, true, "aaa", 3}, |
|
// |CBS_get_asn1_implicit_string| only accepts one level deep of nesting. |
|
{"\xa0\x0b\x24\x06\x04\x01\x61\x04\x01\x61\x04\x01\x61", 13, false, nullptr, |
|
0}, |
|
// The outer tag must match. |
|
{"\x81\x03\x61\x61\x61", 5, false, nullptr, 0}, |
|
{"\xa1\x09\x04\x01\x61\x04\x01\x61\x04\x01\x61", 11, false, nullptr, 0}, |
|
// The inner tag must match. |
|
{"\xa1\x09\x0c\x01\x61\x0c\x01\x61\x0c\x01\x61", 11, false, nullptr, 0}, |
|
}; |
|
|
|
TEST(CBSTest, ImplicitString) { |
|
for (const auto &test : kImplicitStringTests) { |
|
SCOPED_TRACE(Bytes(test.in, test.in_len)); |
|
uint8_t *storage = nullptr; |
|
CBS in, out; |
|
CBS_init(&in, reinterpret_cast<const uint8_t *>(test.in), test.in_len); |
|
int ok = CBS_get_asn1_implicit_string(&in, &out, &storage, |
|
CBS_ASN1_CONTEXT_SPECIFIC | 0, |
|
CBS_ASN1_OCTETSTRING); |
|
bssl::UniquePtr<uint8_t> scoper(storage); |
|
EXPECT_EQ(test.ok, static_cast<bool>(ok)); |
|
|
|
if (ok) { |
|
EXPECT_EQ(Bytes(test.out, test.out_len), |
|
Bytes(CBS_data(&out), CBS_len(&out))); |
|
} |
|
} |
|
} |
|
|
|
struct ASN1Uint64Test { |
|
uint64_t value; |
|
const char *encoding; |
|
size_t encoding_len; |
|
}; |
|
|
|
static const ASN1Uint64Test kASN1Uint64Tests[] = { |
|
{0, "\x02\x01\x00", 3}, |
|
{1, "\x02\x01\x01", 3}, |
|
{127, "\x02\x01\x7f", 3}, |
|
{128, "\x02\x02\x00\x80", 4}, |
|
{0xdeadbeef, "\x02\x05\x00\xde\xad\xbe\xef", 7}, |
|
{UINT64_C(0x0102030405060708), |
|
"\x02\x08\x01\x02\x03\x04\x05\x06\x07\x08", 10}, |
|
{UINT64_C(0xffffffffffffffff), |
|
"\x02\x09\x00\xff\xff\xff\xff\xff\xff\xff\xff", 11}, |
|
}; |
|
|
|
struct ASN1InvalidUint64Test { |
|
const char *encoding; |
|
size_t encoding_len; |
|
bool overflow; |
|
}; |
|
|
|
static const ASN1InvalidUint64Test kASN1InvalidUint64Tests[] = { |
|
// Bad tag. |
|
{"\x03\x01\x00", 3, false}, |
|
// Empty contents. |
|
{"\x02\x00", 2, false}, |
|
// Negative number. |
|
{"\x02\x01\x80", 3, false}, |
|
// Overflow. |
|
{"\x02\x09\x01\x00\x00\x00\x00\x00\x00\x00\x00", 11, true}, |
|
// Leading zeros. |
|
{"\x02\x02\x00\x01", 4, false}, |
|
}; |
|
|
|
TEST(CBSTest, ASN1Uint64) { |
|
for (const ASN1Uint64Test &test : kASN1Uint64Tests) { |
|
SCOPED_TRACE(Bytes(test.encoding, test.encoding_len)); |
|
SCOPED_TRACE(test.value); |
|
CBS cbs; |
|
uint64_t value; |
|
uint8_t *out; |
|
size_t len; |
|
|
|
CBS_init(&cbs, (const uint8_t *)test.encoding, test.encoding_len); |
|
ASSERT_TRUE(CBS_get_asn1_uint64(&cbs, &value)); |
|
EXPECT_EQ(0u, CBS_len(&cbs)); |
|
EXPECT_EQ(test.value, value); |
|
|
|
CBS child; |
|
int is_negative; |
|
CBS_init(&cbs, (const uint8_t *)test.encoding, test.encoding_len); |
|
ASSERT_TRUE(CBS_get_asn1(&cbs, &child, CBS_ASN1_INTEGER)); |
|
EXPECT_TRUE(CBS_is_valid_asn1_integer(&child, &is_negative)); |
|
EXPECT_EQ(0, is_negative); |
|
EXPECT_TRUE(CBS_is_unsigned_asn1_integer(&child)); |
|
|
|
bssl::ScopedCBB cbb; |
|
ASSERT_TRUE(CBB_init(cbb.get(), 0)); |
|
ASSERT_TRUE(CBB_add_asn1_uint64(cbb.get(), test.value)); |
|
ASSERT_TRUE(CBB_finish(cbb.get(), &out, &len)); |
|
bssl::UniquePtr<uint8_t> scoper(out); |
|
EXPECT_EQ(Bytes(test.encoding, test.encoding_len), Bytes(out, len)); |
|
} |
|
|
|
for (const ASN1InvalidUint64Test &test : kASN1InvalidUint64Tests) { |
|
SCOPED_TRACE(Bytes(test.encoding, test.encoding_len)); |
|
CBS cbs; |
|
uint64_t value; |
|
|
|
CBS_init(&cbs, (const uint8_t *)test.encoding, test.encoding_len); |
|
EXPECT_FALSE(CBS_get_asn1_uint64(&cbs, &value)); |
|
|
|
CBS_init(&cbs, (const uint8_t *)test.encoding, test.encoding_len); |
|
CBS child; |
|
if (CBS_get_asn1(&cbs, &child, CBS_ASN1_INTEGER)) { |
|
EXPECT_EQ(test.overflow, !!CBS_is_unsigned_asn1_integer(&child)); |
|
} |
|
} |
|
} |
|
|
|
struct ASN1Int64Test { |
|
int64_t value; |
|
const char *encoding; |
|
size_t encoding_len; |
|
}; |
|
|
|
static const ASN1Int64Test kASN1Int64Tests[] = { |
|
{0, "\x02\x01\x00", 3}, |
|
{1, "\x02\x01\x01", 3}, |
|
{-1, "\x02\x01\xff", 3}, |
|
{127, "\x02\x01\x7f", 3}, |
|
{-127, "\x02\x01\x81", 3}, |
|
{128, "\x02\x02\x00\x80", 4}, |
|
{-128, "\x02\x01\x80", 3}, |
|
{129, "\x02\x02\x00\x81", 4}, |
|
{-129, "\x02\x02\xff\x7f", 4}, |
|
{0xdeadbeef, "\x02\x05\x00\xde\xad\xbe\xef", 7}, |
|
{INT64_C(0x0102030405060708), "\x02\x08\x01\x02\x03\x04\x05\x06\x07\x08", |
|
10}, |
|
{INT64_MIN, "\x02\x08\x80\x00\x00\x00\x00\x00\x00\x00", 10}, |
|
{INT64_MAX, "\x02\x08\x7f\xff\xff\xff\xff\xff\xff\xff", 10}, |
|
}; |
|
|
|
struct ASN1InvalidInt64Test { |
|
const char *encoding; |
|
size_t encoding_len; |
|
bool overflow; |
|
}; |
|
|
|
static const ASN1InvalidInt64Test kASN1InvalidInt64Tests[] = { |
|
// Bad tag. |
|
{"\x03\x01\x00", 3, false}, |
|
// Empty contents. |
|
{"\x02\x00", 2, false}, |
|
// Overflow. |
|
{"\x02\x09\x01\x00\x00\x00\x00\x00\x00\x00\x00", 11, true}, |
|
// Underflow. |
|
{"\x02\x09\x08\xff\xff\xff\xff\xff\xff\xff\xff", 11, true}, |
|
// Leading zeros. |
|
{"\x02\x02\x00\x01", 4, false}, |
|
// Leading 0xff. |
|
{"\x02\x02\xff\xff", 4, false}, |
|
}; |
|
|
|
TEST(CBSTest, ASN1Int64) { |
|
for (const ASN1Int64Test &test : kASN1Int64Tests) { |
|
SCOPED_TRACE(Bytes(test.encoding, test.encoding_len)); |
|
SCOPED_TRACE(test.value); |
|
CBS cbs; |
|
int64_t value; |
|
uint8_t *out; |
|
size_t len; |
|
|
|
CBS_init(&cbs, (const uint8_t *)test.encoding, test.encoding_len); |
|
ASSERT_TRUE(CBS_get_asn1_int64(&cbs, &value)); |
|
EXPECT_EQ(0u, CBS_len(&cbs)); |
|
EXPECT_EQ(test.value, value); |
|
|
|
CBS child; |
|
int is_negative; |
|
CBS_init(&cbs, (const uint8_t *)test.encoding, test.encoding_len); |
|
ASSERT_TRUE(CBS_get_asn1(&cbs, &child, CBS_ASN1_INTEGER)); |
|
EXPECT_TRUE(CBS_is_valid_asn1_integer(&child, &is_negative)); |
|
EXPECT_EQ(test.value < 0, !!is_negative); |
|
EXPECT_EQ(test.value >= 0, !!CBS_is_unsigned_asn1_integer(&child)); |
|
|
|
bssl::ScopedCBB cbb; |
|
ASSERT_TRUE(CBB_init(cbb.get(), 0)); |
|
ASSERT_TRUE(CBB_add_asn1_int64(cbb.get(), test.value)); |
|
ASSERT_TRUE(CBB_finish(cbb.get(), &out, &len)); |
|
bssl::UniquePtr<uint8_t> scoper(out); |
|
EXPECT_EQ(Bytes(test.encoding, test.encoding_len), Bytes(out, len)); |
|
} |
|
|
|
for (const ASN1InvalidInt64Test &test : kASN1InvalidInt64Tests) { |
|
SCOPED_TRACE(Bytes(test.encoding, test.encoding_len)); |
|
CBS cbs; |
|
int64_t value; |
|
|
|
CBS_init(&cbs, (const uint8_t *)test.encoding, test.encoding_len); |
|
EXPECT_FALSE(CBS_get_asn1_int64(&cbs, &value)); |
|
|
|
CBS_init(&cbs, (const uint8_t *)test.encoding, test.encoding_len); |
|
CBS child; |
|
if (CBS_get_asn1(&cbs, &child, CBS_ASN1_INTEGER)) { |
|
EXPECT_EQ(test.overflow, !!CBS_is_valid_asn1_integer(&child, NULL)); |
|
} |
|
} |
|
} |
|
|
|
TEST(CBBTest, Zero) { |
|
CBB cbb; |
|
CBB_zero(&cbb); |
|
// Calling |CBB_cleanup| on a zero-state |CBB| must not crash. |
|
CBB_cleanup(&cbb); |
|
} |
|
|
|
TEST(CBBTest, Reserve) { |
|
uint8_t buf[10]; |
|
uint8_t *ptr; |
|
size_t len; |
|
bssl::ScopedCBB cbb; |
|
ASSERT_TRUE(CBB_init_fixed(cbb.get(), buf, sizeof(buf))); |
|
// Too large. |
|
EXPECT_FALSE(CBB_reserve(cbb.get(), &ptr, 11)); |
|
|
|
cbb.Reset(); |
|
ASSERT_TRUE(CBB_init_fixed(cbb.get(), buf, sizeof(buf))); |
|
// Successfully reserve the entire space. |
|
ASSERT_TRUE(CBB_reserve(cbb.get(), &ptr, 10)); |
|
EXPECT_EQ(buf, ptr); |
|
// Advancing under the maximum bytes is legal. |
|
ASSERT_TRUE(CBB_did_write(cbb.get(), 5)); |
|
ASSERT_TRUE(CBB_finish(cbb.get(), NULL, &len)); |
|
EXPECT_EQ(5u, len); |
|
} |
|
|
|
// Test that CBB errors are sticky; once on operation on CBB fails, all |
|
// subsequent ones do. |
|
TEST(CBBTest, StickyError) { |
|
// Write an input that exceeds the limit for its length prefix. |
|
bssl::ScopedCBB cbb; |
|
CBB child; |
|
static const uint8_t kZeros[256] = {0}; |
|
ASSERT_TRUE(CBB_init(cbb.get(), 0)); |
|
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &child)); |
|
ASSERT_TRUE(CBB_add_bytes(&child, kZeros, sizeof(kZeros))); |
|
ASSERT_FALSE(CBB_flush(cbb.get())); |
|
|
|
// All future operations should fail. |
|
uint8_t *ptr; |
|
size_t len; |
|
EXPECT_FALSE(CBB_add_u8(cbb.get(), 0)); |
|
EXPECT_FALSE(CBB_finish(cbb.get(), &ptr, &len)); |
|
|
|
// Write an input that cannot fit in a fixed CBB. |
|
cbb.Reset(); |
|
uint8_t buf; |
|
ASSERT_TRUE(CBB_init_fixed(cbb.get(), &buf, 1)); |
|
ASSERT_FALSE(CBB_add_bytes(cbb.get(), kZeros, sizeof(kZeros))); |
|
|
|
// All future operations should fail. |
|
EXPECT_FALSE(CBB_add_u8(cbb.get(), 0)); |
|
EXPECT_FALSE(CBB_finish(cbb.get(), &ptr, &len)); |
|
|
|
// Write a u32 that cannot fit in a u24. |
|
cbb.Reset(); |
|
ASSERT_TRUE(CBB_init(cbb.get(), 0)); |
|
ASSERT_FALSE(CBB_add_u24(cbb.get(), 1u << 24)); |
|
|
|
// All future operations should fail. |
|
EXPECT_FALSE(CBB_add_u8(cbb.get(), 0)); |
|
EXPECT_FALSE(CBB_finish(cbb.get(), &ptr, &len)); |
|
} |
|
|
|
TEST(CBSTest, BitString) { |
|
static const std::vector<uint8_t> kValidBitStrings[] = { |
|
{0x00}, // 0 bits |
|
{0x07, 0x80}, // 1 bit |
|
{0x04, 0xf0}, // 4 bits |
|
{0x00, 0xff}, // 8 bits |
|
{0x06, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc0}, // 42 bits |
|
}; |
|
for (const auto& test : kValidBitStrings) { |
|
SCOPED_TRACE(Bytes(test.data(), test.size())); |
|
CBS cbs; |
|
CBS_init(&cbs, test.data(), test.size()); |
|
EXPECT_TRUE(CBS_is_valid_asn1_bitstring(&cbs)); |
|
} |
|
|
|
static const std::vector<uint8_t> kInvalidBitStrings[] = { |
|
// BIT STRINGs always have a leading byte. |
|
std::vector<uint8_t>{}, |
|
// It's not possible to take an unused bit off the empty string. |
|
{0x01}, |
|
// There can be at most 7 unused bits. |
|
{0x08, 0xff}, |
|
{0xff, 0xff}, |
|
// All unused bits must be cleared. |
|
{0x06, 0xff, 0xc1}, |
|
}; |
|
for (const auto& test : kInvalidBitStrings) { |
|
SCOPED_TRACE(Bytes(test.data(), test.size())); |
|
CBS cbs; |
|
CBS_init(&cbs, test.data(), test.size()); |
|
EXPECT_FALSE(CBS_is_valid_asn1_bitstring(&cbs)); |
|
|
|
// CBS_asn1_bitstring_has_bit returns false on invalid inputs. |
|
EXPECT_FALSE(CBS_asn1_bitstring_has_bit(&cbs, 0)); |
|
} |
|
|
|
static const struct { |
|
std::vector<uint8_t> in; |
|
unsigned bit; |
|
bool bit_set; |
|
} kBitTests[] = { |
|
// Basic tests. |
|
{{0x00}, 0, false}, |
|
{{0x07, 0x80}, 0, true}, |
|
{{0x06, 0x0f, 0x40}, 0, false}, |
|
{{0x06, 0x0f, 0x40}, 1, false}, |
|
{{0x06, 0x0f, 0x40}, 2, false}, |
|
{{0x06, 0x0f, 0x40}, 3, false}, |
|
{{0x06, 0x0f, 0x40}, 4, true}, |
|
{{0x06, 0x0f, 0x40}, 5, true}, |
|
{{0x06, 0x0f, 0x40}, 6, true}, |
|
{{0x06, 0x0f, 0x40}, 7, true}, |
|
{{0x06, 0x0f, 0x40}, 8, false}, |
|
{{0x06, 0x0f, 0x40}, 9, true}, |
|
// Out-of-bounds bits return 0. |
|
{{0x06, 0x0f, 0x40}, 10, false}, |
|
{{0x06, 0x0f, 0x40}, 15, false}, |
|
{{0x06, 0x0f, 0x40}, 16, false}, |
|
{{0x06, 0x0f, 0x40}, 1000, false}, |
|
}; |
|
for (const auto& test : kBitTests) { |
|
SCOPED_TRACE(Bytes(test.in.data(), test.in.size())); |
|
SCOPED_TRACE(test.bit); |
|
CBS cbs; |
|
CBS_init(&cbs, test.in.data(), test.in.size()); |
|
EXPECT_EQ(static_cast<int>(test.bit_set), |
|
CBS_asn1_bitstring_has_bit(&cbs, test.bit)); |
|
} |
|
} |
|
|
|
TEST(CBBTest, AddOIDFromText) { |
|
const struct { |
|
const char *text; |
|
std::vector<uint8_t> der; |
|
} kValidOIDs[] = { |
|
// Some valid values. |
|
{"0.0", {0x00}}, |
|
{"0.2.3.4", {0x2, 0x3, 0x4}}, |
|
{"1.2.3.4", {0x2a, 0x3, 0x4}}, |
|
{"2.2.3.4", {0x52, 0x3, 0x4}}, |
|
{"1.2.840.113554.4.1.72585", |
|
{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, 0x09}}, |
|
// Test edge cases around the first component. |
|
{"0.39", {0x27}}, |
|
{"1.0", {0x28}}, |
|
{"1.39", {0x4f}}, |
|
{"2.0", {0x50}}, |
|
{"2.1", {0x51}}, |
|
{"2.40", {0x78}}, |
|
// Edge cases near an overflow. |
|
{"1.2.18446744073709551615", |
|
{0x2a, 0x81, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f}}, |
|
{"2.18446744073709551535", |
|
{0x81, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f}}, |
|
}; |
|
|
|
const char *kInvalidTexts[] = { |
|
// Invalid second component. |
|
"0.40", |
|
"1.40", |
|
// Invalid first component. |
|
"3.1", |
|
// The empty string is not an OID. |
|
"", |
|
// No empty components. |
|
".1.2.3.4.5", |
|
"1..2.3.4.5", |
|
"1.2.3.4.5.", |
|
// There must be at least two components. |
|
"1", |
|
// No extra leading zeros. |
|
"00.1.2.3.4", |
|
"01.1.2.3.4", |
|
// Overflow for both components or 40*A + B. |
|
"1.2.18446744073709551616", |
|
"2.18446744073709551536", |
|
}; |
|
|
|
const std::vector<uint8_t> kInvalidDER[] = { |
|
// The empty string is not an OID. |
|
{}, |
|
// Non-minimal representation. |
|
{0x80, 0x01}, |
|
// Overflow. This is the DER representation of |
|
// 1.2.840.113554.4.1.72585.18446744073709551616. (The final value is |
|
// 2^64.) |
|
{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, |
|
0x82, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x00}, |
|
}; |
|
|
|
for (const auto &t : kValidOIDs) { |
|
SCOPED_TRACE(t.text); |
|
|
|
bssl::ScopedCBB cbb; |
|
ASSERT_TRUE(CBB_init(cbb.get(), 0)); |
|
ASSERT_TRUE(CBB_add_asn1_oid_from_text(cbb.get(), t.text, strlen(t.text))); |
|
uint8_t *out; |
|
size_t len; |
|
ASSERT_TRUE(CBB_finish(cbb.get(), &out, &len)); |
|
bssl::UniquePtr<uint8_t> free_out(out); |
|
EXPECT_EQ(Bytes(t.der), Bytes(out, len)); |
|
|
|
CBS cbs; |
|
CBS_init(&cbs, t.der.data(), t.der.size()); |
|
bssl::UniquePtr<char> text(CBS_asn1_oid_to_text(&cbs)); |
|
ASSERT_TRUE(text.get()); |
|
EXPECT_STREQ(t.text, text.get()); |
|
} |
|
|
|
for (const char *t : kInvalidTexts) { |
|
SCOPED_TRACE(t); |
|
bssl::ScopedCBB cbb; |
|
ASSERT_TRUE(CBB_init(cbb.get(), 0)); |
|
EXPECT_FALSE(CBB_add_asn1_oid_from_text(cbb.get(), t, strlen(t))); |
|
} |
|
|
|
for (const auto &t : kInvalidDER) { |
|
SCOPED_TRACE(Bytes(t)); |
|
CBS cbs; |
|
CBS_init(&cbs, t.data(), t.size()); |
|
bssl::UniquePtr<char> text(CBS_asn1_oid_to_text(&cbs)); |
|
EXPECT_FALSE(text); |
|
} |
|
} |
|
|
|
TEST(CBBTest, FlushASN1SetOf) { |
|
const struct { |
|
std::vector<uint8_t> in, out; |
|
} kValidInputs[] = { |
|
// No elements. |
|
{{}, {}}, |
|
// One element. |
|
{{0x30, 0x00}, {0x30, 0x00}}, |
|
// Two identical elements. |
|
{{0x30, 0x00, 0x30, 0x00}, {0x30, 0x00, 0x30, 0x00}}, |
|
// clang-format off |
|
{{0x30, 0x02, 0x00, 0x00, |
|
0x30, 0x00, |
|
0x01, 0x00, |
|
0x30, 0x02, 0x00, 0x00, |
|
0x30, 0x03, 0x00, 0x00, 0x00, |
|
0x30, 0x00, |
|
0x30, 0x03, 0x00, 0x00, 0x01, |
|
0x30, 0x01, 0x00, |
|
0x01, 0x01, 0x00}, |
|
{0x01, 0x00, |
|
0x01, 0x01, 0x00, |
|
0x30, 0x00, |
|
0x30, 0x00, |
|
0x30, 0x01, 0x00, |
|
0x30, 0x02, 0x00, 0x00, |
|
0x30, 0x02, 0x00, 0x00, |
|
0x30, 0x03, 0x00, 0x00, 0x00, |
|
0x30, 0x03, 0x00, 0x00, 0x01}}, |
|
// clang-format on |
|
}; |
|
|
|
for (const auto &t : kValidInputs) { |
|
SCOPED_TRACE(Bytes(t.in)); |
|
|
|
bssl::ScopedCBB cbb; |
|
CBB child; |
|
ASSERT_TRUE(CBB_init(cbb.get(), 0)); |
|
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &child, CBS_ASN1_SET)); |
|
ASSERT_TRUE(CBB_add_bytes(&child, t.in.data(), t.in.size())); |
|
ASSERT_TRUE(CBB_flush_asn1_set_of(&child)); |
|
EXPECT_EQ(Bytes(t.out), Bytes(CBB_data(&child), CBB_len(&child))); |
|
|
|
// Running it again should be idempotent. |
|
ASSERT_TRUE(CBB_flush_asn1_set_of(&child)); |
|
EXPECT_EQ(Bytes(t.out), Bytes(CBB_data(&child), CBB_len(&child))); |
|
|
|
// The ASN.1 header remain intact. |
|
ASSERT_TRUE(CBB_flush(cbb.get())); |
|
EXPECT_EQ(0x31, CBB_data(cbb.get())[0]); |
|
} |
|
|
|
const std::vector<uint8_t> kInvalidInputs[] = { |
|
{0x30}, |
|
{0x30, 0x01}, |
|
{0x30, 0x00, 0x30, 0x00, 0x30, 0x01}, |
|
}; |
|
|
|
for (const auto &t : kInvalidInputs) { |
|
SCOPED_TRACE(Bytes(t)); |
|
|
|
bssl::ScopedCBB cbb; |
|
CBB child; |
|
ASSERT_TRUE(CBB_init(cbb.get(), 0)); |
|
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &child, CBS_ASN1_SET)); |
|
ASSERT_TRUE(CBB_add_bytes(&child, t.data(), t.size())); |
|
EXPECT_FALSE(CBB_flush_asn1_set_of(&child)); |
|
} |
|
} |
|
|
|
template <class T> |
|
static std::vector<uint8_t> LiteralToBytes(const T *str) { |
|
std::vector<uint8_t> ret; |
|
for (; *str != 0; str++) { |
|
for (size_t i = 0; i < sizeof(T); i++) { |
|
ret.push_back(static_cast<uint8_t>(*str >> (8 * (sizeof(T) - 1 - i)))); |
|
} |
|
} |
|
return ret; |
|
} |
|
|
|
static std::vector<uint32_t> LiteralToCodePoints(const char32_t *str) { |
|
std::vector<uint32_t> ret; |
|
for (; *str != 0; str++) { |
|
ret.push_back(static_cast<uint32_t>(*str)); |
|
} |
|
return ret; |
|
} |
|
|
|
TEST(CBBTest, Unicode) { |
|
struct { |
|
int (*decode)(CBS *, uint32_t *); |
|
int (*encode)(CBB *, uint32_t); |
|
std::vector<uint8_t> in; |
|
std::vector<uint32_t> out; |
|
bool ok; |
|
} kTests[] = { |
|
{cbs_get_utf8, cbb_add_utf8, |
|
// This test string captures all four cases in UTF-8. |
|
LiteralToBytes(u8"Hello, 世界! ¡Hola, 🌎!"), |
|
LiteralToCodePoints(U"Hello, 世界! ¡Hola, 🌎!"), true}, |
|
|
|
// Some invalid inputs adapted from |
|
// http://www.cl.cam.ac.uk/~mgk25/ucs/examples/UTF-8-test.txt |
|
// 2.1 First possible sequence of a certain length. (5- and 6-bit |
|
// sequences no longer exist.) |
|
{cbs_get_utf8, cbb_add_utf8, {0xf8, 0x88, 0x80, 0x80, 0x80}, {}, false}, |
|
{cbs_get_utf8, |
|
cbb_add_utf8, |
|
{0xfc, 0x84, 0x80, 0x80, 0x80, 0x80}, |
|
{}, |
|
false}, |
|
// 3.1 Unexpected continuation bytes. |
|
{cbs_get_utf8, cbb_add_utf8, {0x80}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xbf}, {}, false}, |
|
// 3.2 Lonely start characters. |
|
{cbs_get_utf8, cbb_add_utf8, {0xc0, ' '}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xe0, ' '}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xf0, ' '}, {}, false}, |
|
// 3.3 Sequences with last continuation byte missing |
|
{cbs_get_utf8, cbb_add_utf8, {0xc0}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xe0, 0x80}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xf0, 0x80, 0x80}, {}, false}, |
|
// Variation of the above with unexpected spaces. |
|
{cbs_get_utf8, cbb_add_utf8, {0xe0, 0x80, ' '}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xf0, 0x80, 0x80, ' '}, {}, false}, |
|
// 4.1 Examples of an overlong ASCII character |
|
{cbs_get_utf8, cbb_add_utf8, {0xc0, 0xaf}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xe0, 0x80, 0xaf}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xf0, 0x80, 0x80, 0xaf}, {}, false}, |
|
// 4.2 Maximum overlong sequences |
|
{cbs_get_utf8, cbb_add_utf8, {0xc1, 0xbf}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xe0, 0x9f, 0xbf}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xf0, 0x8f, 0xbf, 0xbf}, {}, false}, |
|
// 4.3 Overlong representation of the NUL character |
|
{cbs_get_utf8, cbb_add_utf8, {0xc0, 0x80}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xe0, 0x80, 0x80}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xf0, 0x80, 0x80, 0x80}, {}, false}, |
|
// 5.1 Single UTF-16 surrogates |
|
{cbs_get_utf8, cbb_add_utf8, {0xed, 0xa0, 0x80}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xed, 0xad, 0xbf}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xed, 0xae, 0x80}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xed, 0xb0, 0x80}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xed, 0xbe, 0x80}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xed, 0xbf, 0xbf}, {}, false}, |
|
// 5.2 Paired UTF-16 surrogates |
|
{cbs_get_utf8, |
|
cbb_add_utf8, |
|
{0xed, 0xa0, 0x80, 0xed, 0xb0, 0x80}, |
|
{}, |
|
false}, |
|
{cbs_get_utf8, |
|
cbb_add_utf8, |
|
{0xed, 0xa0, 0x80, 0xed, 0xbf, 0xbf}, |
|
{}, |
|
false}, |
|
{cbs_get_utf8, |
|
cbb_add_utf8, |
|
{0xed, 0xad, 0xbf, 0xed, 0xb0, 0x80}, |
|
{}, |
|
false}, |
|
{cbs_get_utf8, |
|
cbb_add_utf8, |
|
{0xed, 0xad, 0xbf, 0xed, 0xbf, 0xbf}, |
|
{}, |
|
false}, |
|
{cbs_get_utf8, |
|
cbb_add_utf8, |
|
{0xed, 0xae, 0x80, 0xed, 0xb0, 0x80}, |
|
{}, |
|
false}, |
|
{cbs_get_utf8, |
|
cbb_add_utf8, |
|
{0xed, 0xae, 0x80, 0xed, 0xbf, 0xbf}, |
|
{}, |
|
false}, |
|
{cbs_get_utf8, |
|
cbb_add_utf8, |
|
{0xed, 0xaf, 0xbf, 0xed, 0xb0, 0x80}, |
|
{}, |
|
false}, |
|
{cbs_get_utf8, |
|
cbb_add_utf8, |
|
{0xed, 0xaf, 0xbf, 0xed, 0xbf, 0xbf}, |
|
{}, |
|
false}, |
|
// 5.3 Noncharacter code positions |
|
{cbs_get_utf8, cbb_add_utf8, {0xef, 0xbf, 0xbe}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xef, 0xbf, 0xbf}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xef, 0xb7, 0x90}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xef, 0xb7, 0xaf}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xf0, 0x9f, 0xbf, 0xbe}, {}, false}, |
|
{cbs_get_utf8, cbb_add_utf8, {0xf0, 0x9f, 0xbf, 0xbf}, {}, false}, |
|
|
|
{cbs_get_latin1, cbb_add_latin1, LiteralToBytes("\xa1Hola!"), |
|
LiteralToCodePoints(U"¡Hola!"), true}, |
|
|
|
// UCS-2 matches UTF-16 on the BMP. |
|
{cbs_get_ucs2_be, cbb_add_ucs2_be, LiteralToBytes(u"Hello, 世界!"), |
|
LiteralToCodePoints(U"Hello, 世界!"), true}, |
|
// It does not support characters beyond the BMP. |
|
{cbs_get_ucs2_be, cbb_add_ucs2_be, |
|
LiteralToBytes(u"Hello, 世界! ¡Hola, 🌎!"), |
|
LiteralToCodePoints(U"Hello, 世界! ¡Hola, "), false}, |
|
// Unpaired surrogates and non-characters are also rejected. |
|
{cbs_get_ucs2_be, cbb_add_ucs2_be, {0xd8, 0x00}, {}, false}, |
|
{cbs_get_ucs2_be, cbb_add_ucs2_be, {0xff, 0xfe}, {}, false}, |
|
|
|
{cbs_get_utf32_be, cbb_add_utf32_be, |
|
LiteralToBytes(U"Hello, 世界! ¡Hola, 🌎!"), |
|
LiteralToCodePoints(U"Hello, 世界! ¡Hola, 🌎!"), true}, |
|
// Unpaired surrogates and non-characters are rejected. |
|
{cbs_get_utf32_be, cbb_add_utf32_be, {0x00, 0x00, 0xd8, 0x00}, {}, false}, |
|
{cbs_get_utf32_be, cbb_add_utf32_be, {0x00, 0x00, 0xff, 0xfe}, {}, false}, |
|
|
|
// Test that the NUL character can be encoded. |
|
{cbs_get_latin1, cbb_add_latin1, {0}, {0}, true}, |
|
{cbs_get_utf8, cbb_add_utf8, {0}, {0}, true}, |
|
{cbs_get_ucs2_be, cbb_add_ucs2_be, {0, 0}, {0}, true}, |
|
{cbs_get_utf32_be, cbb_add_utf32_be, {0, 0, 0, 0}, {0}, true}, |
|
}; |
|
for (const auto &t : kTests) { |
|
SCOPED_TRACE(Bytes(t.in)); |
|
|
|
// Test decoding. |
|
CBS cbs; |
|
CBS_init(&cbs, t.in.data(), t.in.size()); |
|
std::vector<uint32_t> out; |
|
bool ok = true; |
|
while (CBS_len(&cbs) != 0) { |
|
uint32_t u; |
|
if (!t.decode(&cbs, &u)) { |
|
ok = false; |
|
break; |
|
} |
|
out.push_back(u); |
|
} |
|
EXPECT_EQ(t.ok, ok); |
|
EXPECT_EQ(t.out, out); |
|
|
|
// Test encoding. |
|
if (t.ok) { |
|
bssl::ScopedCBB cbb; |
|
ASSERT_TRUE(CBB_init(cbb.get(), 0)); |
|
for (uint32_t u : t.out) { |
|
ASSERT_TRUE(t.encode(cbb.get(), u)); |
|
} |
|
EXPECT_EQ(Bytes(t.in), Bytes(CBB_data(cbb.get()), CBB_len(cbb.get()))); |
|
} |
|
} |
|
|
|
static const uint32_t kBadCodePoints[] = { |
|
// Surrogate pairs. |
|
0xd800, |
|
0xdfff, |
|
// Non-characters. |
|
0xfffe, |
|
0xffff, |
|
0xfdd0, |
|
0x1fffe, |
|
0x1ffff, |
|
// Too big. |
|
0x110000, |
|
}; |
|
bssl::ScopedCBB cbb; |
|
ASSERT_TRUE(CBB_init(cbb.get(), 0)); |
|
for (uint32_t v : kBadCodePoints) { |
|
SCOPED_TRACE(v); |
|
EXPECT_FALSE(cbb_add_utf8(cbb.get(), v)); |
|
EXPECT_FALSE(cbb_add_latin1(cbb.get(), v)); |
|
EXPECT_FALSE(cbb_add_ucs2_be(cbb.get(), v)); |
|
EXPECT_FALSE(cbb_add_utf32_be(cbb.get(), v)); |
|
} |
|
|
|
// Additional values that are out of range. |
|
EXPECT_FALSE(cbb_add_latin1(cbb.get(), 0x100)); |
|
EXPECT_FALSE(cbb_add_ucs2_be(cbb.get(), 0x10000)); |
|
|
|
EXPECT_EQ(1u, cbb_get_utf8_len(0)); |
|
EXPECT_EQ(1u, cbb_get_utf8_len(0x7f)); |
|
EXPECT_EQ(2u, cbb_get_utf8_len(0x80)); |
|
EXPECT_EQ(2u, cbb_get_utf8_len(0x7ff)); |
|
EXPECT_EQ(3u, cbb_get_utf8_len(0x800)); |
|
EXPECT_EQ(3u, cbb_get_utf8_len(0xffff)); |
|
EXPECT_EQ(4u, cbb_get_utf8_len(0x10000)); |
|
EXPECT_EQ(4u, cbb_get_utf8_len(0x10ffff)); |
|
}
|
|
|