Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
488 lines
20 KiB
488 lines
20 KiB
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] */ |
|
|
|
#ifndef OPENSSL_HEADER_CIPHER_H |
|
#define OPENSSL_HEADER_CIPHER_H |
|
|
|
#include <openssl/base.h> |
|
|
|
#if defined(__cplusplus) |
|
extern "C" { |
|
#endif |
|
|
|
|
|
/* Ciphers. */ |
|
|
|
|
|
/* Cipher primitives. |
|
* |
|
* The following functions return |EVP_CIPHER| objects that implement the named |
|
* cipher algorithm. */ |
|
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_rc4(void); |
|
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_des_cbc(void); |
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_des_ede3_cbc(void); |
|
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_ecb(void); |
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_cbc(void); |
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_ctr(void); |
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_gcm(void); |
|
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_ecb(void); |
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_cbc(void); |
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_ctr(void); |
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_gcm(void); |
|
|
|
/* EVP_enc_null returns a 'cipher' that passes plaintext through as |
|
* ciphertext. */ |
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_enc_null(void); |
|
|
|
/* EVP_get_cipherbynid returns the cipher corresponding to the given NID, or |
|
* NULL if no such cipher is known. */ |
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_get_cipherbynid(int nid); |
|
|
|
|
|
/* Cipher context allocation. |
|
* |
|
* An |EVP_CIPHER_CTX| represents the state of an encryption or decryption in |
|
* progress. */ |
|
|
|
/* EVP_CIPHER_CTX_init initialises an, already allocated, |EVP_CIPHER_CTX|. */ |
|
OPENSSL_EXPORT void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx); |
|
|
|
/* EVP_CIPHER_CTX_new allocates a fresh |EVP_CIPHER_CTX|, calls |
|
* |EVP_CIPHER_CTX_init| and returns it, or NULL on allocation failure. */ |
|
OPENSSL_EXPORT EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void); |
|
|
|
/* EVP_CIPHER_CTX_cleanup frees any memory referenced by |ctx|. It returns one |
|
* on success and zero otherwise. */ |
|
OPENSSL_EXPORT int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *ctx); |
|
|
|
/* EVP_CIPHER_CTX_free calls |EVP_CIPHER_CTX_cleanup| on |ctx| and then frees |
|
* |ctx| itself. */ |
|
OPENSSL_EXPORT void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx); |
|
|
|
/* EVP_CIPHER_CTX_copy sets |out| to be a duplicate of the current state of |
|
* |in|. The |out| argument must have been previously initialised. */ |
|
OPENSSL_EXPORT int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, |
|
const EVP_CIPHER_CTX *in); |
|
|
|
|
|
/* Cipher context configuration. */ |
|
|
|
/* EVP_CipherInit_ex configures |ctx| for a fresh encryption (or decryption, if |
|
* |enc| is zero) operation using |cipher|. If |ctx| has been previously |
|
* configured with a cipher then |cipher|, |key| and |iv| may be |NULL| and |
|
* |enc| may be -1 to reuse the previous values. The operation will use |key| |
|
* as the key and |iv| as the IV (if any). These should have the correct |
|
* lengths given by |EVP_CIPHER_key_length| and |EVP_CIPHER_iv_length|. It |
|
* returns one on success and zero on error. */ |
|
OPENSSL_EXPORT int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, |
|
const EVP_CIPHER *cipher, ENGINE *engine, |
|
const uint8_t *key, const uint8_t *iv, |
|
int enc); |
|
|
|
/* EVP_EncryptInit_ex calls |EVP_CipherInit_ex| with |enc| equal to one. */ |
|
OPENSSL_EXPORT int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, |
|
const EVP_CIPHER *cipher, ENGINE *impl, |
|
const uint8_t *key, const uint8_t *iv); |
|
|
|
/* EVP_DecryptInit_ex calls |EVP_CipherInit_ex| with |enc| equal to zero. */ |
|
OPENSSL_EXPORT int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, |
|
const EVP_CIPHER *cipher, ENGINE *impl, |
|
const uint8_t *key, const uint8_t *iv); |
|
|
|
|
|
/* Cipher operations. */ |
|
|
|
/* EVP_EncryptUpdate encrypts |in_len| bytes from |in| to |out|. The number |
|
* of output bytes may be up to |in_len| plus the block length minus one and |
|
* |out| must have sufficient space. The number of bytes actually output is |
|
* written to |*out_len|. It returns one on success and zero otherwise. */ |
|
OPENSSL_EXPORT int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, |
|
int *out_len, const uint8_t *in, |
|
int in_len); |
|
|
|
/* EVP_EncryptFinal_ex writes at most a block of ciphertext to |out| and sets |
|
* |*out_len| to the number of bytes written. If padding is enabled (the |
|
* default) then standard padding is applied to create the final block. If |
|
* padding is disabled (with |EVP_CIPHER_CTX_set_padding|) then any partial |
|
* block remaining will cause an error. The function returns one on success and |
|
* zero otherwise. */ |
|
OPENSSL_EXPORT int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, |
|
int *out_len); |
|
|
|
/* EVP_DecryptUpdate decrypts |in_len| bytes from |in| to |out|. The number of |
|
* output bytes may be up to |in_len| plus the block length minus one and |out| |
|
* must have sufficient space. The number of bytes actually output is written |
|
* to |*out_len|. It returns one on success and zero otherwise. */ |
|
OPENSSL_EXPORT int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, |
|
int *out_len, const uint8_t *in, |
|
int in_len); |
|
|
|
/* EVP_DecryptFinal_ex writes at most a block of ciphertext to |out| and sets |
|
* |*out_len| to the number of bytes written. If padding is enabled (the |
|
* default) then padding is removed from the final block. |
|
* |
|
* WARNING: it is unsafe to call this function with unauthenticted |
|
* ciphertext if padding is enabled. */ |
|
OPENSSL_EXPORT int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, |
|
int *out_len); |
|
|
|
/* EVP_Cipher performs a one-shot encryption/decryption operation. No partial |
|
* blocks etc are maintained between calls. It returns the number of bytes |
|
* written or -1 on error. |
|
* |
|
* WARNING: this differs from the usual return value convention. */ |
|
OPENSSL_EXPORT int EVP_Cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, |
|
const uint8_t *in, size_t in_len); |
|
|
|
/* EVP_CipherUpdate calls either |EVP_EncryptUpdate| or |EVP_DecryptUpdate| |
|
* depending on how |ctx| has been setup. */ |
|
OPENSSL_EXPORT int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, |
|
int *out_len, const uint8_t *in, |
|
int in_len); |
|
|
|
/* EVP_CipherFinal_ex calls either |EVP_EncryptFinal_ex| or |
|
* |EVP_DecryptFinal_ex| depending on how |ctx| has been setup. */ |
|
OPENSSL_EXPORT int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, |
|
int *out_len); |
|
|
|
|
|
/* Cipher context accessors. */ |
|
|
|
/* EVP_CIPHER_CTX_cipher returns the |EVP_CIPHER| underlying |ctx|, or NULL if |
|
* none has been set. */ |
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_CIPHER_CTX_cipher( |
|
const EVP_CIPHER_CTX *ctx); |
|
|
|
/* EVP_CIPHER_CTX_nid returns a NID identifying the |EVP_CIPHER| underlying |
|
* |ctx| (e.g. |NID_rc4|). It will crash if no cipher has been configured. */ |
|
OPENSSL_EXPORT int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx); |
|
|
|
/* EVP_CIPHER_CTX_block_size returns the block size, in bytes, of the cipher |
|
* underlying |ctx|, or one if the cipher is a stream cipher. It will crash if |
|
* no cipher has been configured. */ |
|
OPENSSL_EXPORT unsigned EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx); |
|
|
|
/* EVP_CIPHER_CTX_key_length returns the key size, in bytes, of the cipher |
|
* underlying |ctx| or zero if no cipher has been configured. */ |
|
OPENSSL_EXPORT unsigned EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx); |
|
|
|
/* EVP_CIPHER_CTX_iv_length returns the IV size, in bytes, of the cipher |
|
* underlying |ctx|. It will crash if no cipher has been configured. */ |
|
OPENSSL_EXPORT unsigned EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx); |
|
|
|
/* EVP_CIPHER_CTX_get_app_data returns the opaque, application data pointer for |
|
* |ctx|, or NULL if none has been set. */ |
|
OPENSSL_EXPORT void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx); |
|
|
|
/* EVP_CIPHER_CTX_set_app_data sets the opaque, application data pointer for |
|
* |ctx| to |data|. */ |
|
OPENSSL_EXPORT void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, |
|
void *data); |
|
|
|
/* EVP_CIPHER_CTX_flags returns a value which is the OR of zero or more |
|
* |EVP_CIPH_*| flags. It will crash if no cipher has been configured. */ |
|
OPENSSL_EXPORT uint32_t EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx); |
|
|
|
/* EVP_CIPHER_CTX_mode returns one of the |EVP_CIPH_*| cipher mode values |
|
* enumerated below. It will crash if no cipher has been configured. */ |
|
OPENSSL_EXPORT uint32_t EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx); |
|
|
|
/* EVP_CIPHER_CTX_ctrl is an |ioctl| like function. The |command| argument |
|
* should be one of the |EVP_CTRL_*| values. The |arg| and |ptr| arguments are |
|
* specific to the command in question. */ |
|
OPENSSL_EXPORT int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int command, |
|
int arg, void *ptr); |
|
|
|
/* EVP_CIPHER_CTX_set_padding sets whether padding is enabled for |ctx| and |
|
* returns one. Pass a non-zero |pad| to enable padding (the default) or zero |
|
* to disable. */ |
|
OPENSSL_EXPORT int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad); |
|
|
|
|
|
/* Cipher accessors. */ |
|
|
|
/* EVP_CIPHER_nid returns a NID identifing |cipher|. (For example, |
|
* |NID_rc4|.) */ |
|
OPENSSL_EXPORT int EVP_CIPHER_nid(const EVP_CIPHER *cipher); |
|
|
|
/* EVP_CIPHER_name returns the short name for |cipher| or NULL if no name is |
|
* known. */ |
|
OPENSSL_EXPORT const char *EVP_CIPHER_name(const EVP_CIPHER *cipher); |
|
|
|
/* EVP_CIPHER_block_size returns the block size, in bytes, for |cipher|, or one |
|
* if |cipher| is a stream cipher. */ |
|
OPENSSL_EXPORT unsigned EVP_CIPHER_block_size(const EVP_CIPHER *cipher); |
|
|
|
/* EVP_CIPHER_key_length returns the key size, in bytes, for |cipher|. If |
|
* |cipher| can take a variable key length then this function returns the |
|
* default key length and |EVP_CIPHER_flags| will return a value with |
|
* |EVP_CIPH_VARIABLE_LENGTH| set. */ |
|
OPENSSL_EXPORT unsigned EVP_CIPHER_key_length(const EVP_CIPHER *cipher); |
|
|
|
/* EVP_CIPHER_iv_length returns the IV size, in bytes, of |cipher|, or zero if |
|
* |cipher| doesn't take an IV. */ |
|
OPENSSL_EXPORT unsigned EVP_CIPHER_iv_length(const EVP_CIPHER *cipher); |
|
|
|
/* EVP_CIPHER_flags returns a value which is the OR of zero or more |
|
* |EVP_CIPH_*| flags. */ |
|
OPENSSL_EXPORT uint32_t EVP_CIPHER_flags(const EVP_CIPHER *cipher); |
|
|
|
/* EVP_CIPHER_mode returns one of the cipher mode values enumerated below. */ |
|
OPENSSL_EXPORT uint32_t EVP_CIPHER_mode(const EVP_CIPHER *cipher); |
|
|
|
|
|
/* Key derivation. */ |
|
|
|
/* EVP_BytesToKey generates a key and IV for the cipher |type| by iterating |
|
* |md| |count| times using |data| and |salt|. On entry, the |key| and |iv| |
|
* buffers must have enough space to hold a key and IV for |type|. It returns |
|
* the length of the key on success or zero on error. */ |
|
OPENSSL_EXPORT int EVP_BytesToKey(const EVP_CIPHER *type, const EVP_MD *md, |
|
const uint8_t *salt, const uint8_t *data, |
|
size_t data_len, unsigned count, uint8_t *key, |
|
uint8_t *iv); |
|
|
|
|
|
/* Cipher modes (for |EVP_CIPHER_mode|). */ |
|
|
|
#define EVP_CIPH_STREAM_CIPHER 0x0 |
|
#define EVP_CIPH_ECB_MODE 0x1 |
|
#define EVP_CIPH_CBC_MODE 0x2 |
|
#define EVP_CIPH_CFB_MODE 0x3 |
|
#define EVP_CIPH_OFB_MODE 0x4 |
|
#define EVP_CIPH_CTR_MODE 0x5 |
|
#define EVP_CIPH_GCM_MODE 0x6 |
|
|
|
|
|
/* Cipher flags (for |EVP_CIPHER_flags|). */ |
|
|
|
/* EVP_CIPH_VARIABLE_LENGTH indicates that the cipher takes a variable length |
|
* key. */ |
|
#define EVP_CIPH_VARIABLE_LENGTH 0x40 |
|
|
|
/* EVP_CIPH_ALWAYS_CALL_INIT indicates that the |init| function for the cipher |
|
* should always be called when initialising a new operation, even if the key |
|
* is NULL to indicate that the same key is being used. */ |
|
#define EVP_CIPH_ALWAYS_CALL_INIT 0x80 |
|
|
|
/* EVP_CIPH_CUSTOM_IV indicates that the cipher manages the IV itself rather |
|
* than keeping it in the |iv| member of |EVP_CIPHER_CTX|. */ |
|
#define EVP_CIPH_CUSTOM_IV 0x100 |
|
|
|
/* EVP_CIPH_CTRL_INIT indicates that EVP_CTRL_INIT should be used when |
|
* initialising an |EVP_CIPHER_CTX|. */ |
|
#define EVP_CIPH_CTRL_INIT 0x200 |
|
|
|
/* EVP_CIPH_FLAG_CUSTOM_CIPHER indicates that the cipher manages blocking |
|
* itself. This causes EVP_(En|De)crypt_ex to be simple wrapper functions. */ |
|
#define EVP_CIPH_FLAG_CUSTOM_CIPHER 0x400 |
|
|
|
/* EVP_CIPH_FLAG_AEAD_CIPHER specifies that the cipher is an AEAD. This is an |
|
* older version of the proper AEAD interface. See aead.h for the current |
|
* one. */ |
|
#define EVP_CIPH_FLAG_AEAD_CIPHER 0x800 |
|
|
|
/* EVP_CIPH_CUSTOM_COPY indicates that the |ctrl| callback should be called |
|
* with |EVP_CTRL_COPY| at the end of normal |EVP_CIPHER_CTX_copy| |
|
* processing. */ |
|
#define EVP_CIPH_CUSTOM_COPY 0x1000 |
|
|
|
|
|
/* Private functions. */ |
|
|
|
/* EVP_CIPH_NO_PADDING disables padding in block ciphers. */ |
|
#define EVP_CIPH_NO_PADDING 0x800 |
|
|
|
/* EVP_CIPHER_CTX_ctrl commands. */ |
|
#define EVP_CTRL_INIT 0x0 |
|
#define EVP_CTRL_SET_KEY_LENGTH 0x1 |
|
#define EVP_CTRL_GET_RC2_KEY_BITS 0x2 |
|
#define EVP_CTRL_SET_RC2_KEY_BITS 0x3 |
|
#define EVP_CTRL_GET_RC5_ROUNDS 0x4 |
|
#define EVP_CTRL_SET_RC5_ROUNDS 0x5 |
|
#define EVP_CTRL_RAND_KEY 0x6 |
|
#define EVP_CTRL_PBE_PRF_NID 0x7 |
|
#define EVP_CTRL_COPY 0x8 |
|
#define EVP_CTRL_GCM_SET_IVLEN 0x9 |
|
#define EVP_CTRL_GCM_GET_TAG 0x10 |
|
#define EVP_CTRL_GCM_SET_TAG 0x11 |
|
#define EVP_CTRL_GCM_SET_IV_FIXED 0x12 |
|
#define EVP_CTRL_GCM_IV_GEN 0x13 |
|
#define EVP_CTRL_AEAD_SET_MAC_KEY 0x17 |
|
/* Set the GCM invocation field, decrypt only */ |
|
#define EVP_CTRL_GCM_SET_IV_INV 0x18 |
|
|
|
/* GCM TLS constants */ |
|
/* Length of fixed part of IV derived from PRF */ |
|
#define EVP_GCM_TLS_FIXED_IV_LEN 4 |
|
/* Length of explicit part of IV part of TLS records */ |
|
#define EVP_GCM_TLS_EXPLICIT_IV_LEN 8 |
|
/* Length of tag for TLS */ |
|
#define EVP_GCM_TLS_TAG_LEN 16 |
|
|
|
#define EVP_MAX_KEY_LENGTH 64 |
|
#define EVP_MAX_IV_LENGTH 16 |
|
#define EVP_MAX_BLOCK_LENGTH 32 |
|
|
|
struct evp_cipher_ctx_st { |
|
/* cipher contains the underlying cipher for this context. */ |
|
const EVP_CIPHER *cipher; |
|
|
|
/* app_data is a pointer to opaque, user data. */ |
|
void *app_data; /* application stuff */ |
|
|
|
/* cipher_data points to the |cipher| specific state. */ |
|
void *cipher_data; |
|
|
|
/* key_len contains the length of the key, which may differ from |
|
* |cipher->key_len| if the cipher can take a variable key length. */ |
|
unsigned key_len; |
|
|
|
/* encrypt is one if encrypting and zero if decrypting. */ |
|
int encrypt; |
|
|
|
/* flags contains the OR of zero or more |EVP_CIPH_*| flags, above. */ |
|
uint32_t flags; |
|
|
|
/* oiv contains the original IV value. */ |
|
uint8_t oiv[EVP_MAX_IV_LENGTH]; |
|
|
|
/* iv contains the current IV value, which may have been updated. */ |
|
uint8_t iv[EVP_MAX_IV_LENGTH]; |
|
|
|
/* buf contains a partial block which is used by, for example, CTR mode to |
|
* store unused keystream bytes. */ |
|
uint8_t buf[EVP_MAX_BLOCK_LENGTH]; |
|
|
|
/* buf_len contains the number of bytes of a partial block contained in |
|
* |buf|. */ |
|
int buf_len; |
|
|
|
/* num contains the number of bytes of |iv| which are valid for modes that |
|
* manage partial blocks themselves. */ |
|
int num; |
|
|
|
/* final_used is non-zero if the |final| buffer contains plaintext. */ |
|
int final_used; |
|
|
|
/* block_mask contains |cipher->block_size| minus one. (The block size |
|
* assumed to be a power of two.) */ |
|
int block_mask; |
|
|
|
uint8_t final[EVP_MAX_BLOCK_LENGTH]; /* possible final block */ |
|
} /* EVP_CIPHER_CTX */; |
|
|
|
typedef struct evp_cipher_info_st { |
|
const EVP_CIPHER *cipher; |
|
unsigned char iv[EVP_MAX_IV_LENGTH]; |
|
} EVP_CIPHER_INFO; |
|
|
|
|
|
#if defined(__cplusplus) |
|
} /* extern C */ |
|
#endif |
|
|
|
#define CIPHER_F_EVP_CipherInit_ex 100 |
|
#define CIPHER_F_EVP_EncryptFinal_ex 101 |
|
#define CIPHER_F_EVP_DecryptFinal_ex 102 |
|
#define CIPHER_F_EVP_CIPHER_CTX_ctrl 103 |
|
#define CIPHER_F_aes_init_key 104 |
|
#define CIPHER_F_aesni_init_key 105 |
|
#define CIPHER_F_EVP_CIPHER_CTX_copy 106 |
|
#define CIPHER_F_EVP_AEAD_CTX_open 107 |
|
#define CIPHER_F_EVP_AEAD_CTX_init 108 |
|
#define CIPHER_F_EVP_AEAD_CTX_seal 109 |
|
#define CIPHER_F_aead_aes_gcm_seal 110 |
|
#define CIPHER_F_aead_aes_gcm_open 111 |
|
#define CIPHER_F_aead_aes_gcm_init 112 |
|
#define CIPHER_F_aead_chacha20_poly1305_init 113 |
|
#define CIPHER_F_aead_chacha20_poly1305_open 114 |
|
#define CIPHER_F_aead_chacha20_poly1305_seal 115 |
|
#define CIPHER_F_aead_rc4_md5_tls_init 116 |
|
#define CIPHER_F_aead_rc4_md5_tls_seal 117 |
|
#define CIPHER_F_aead_rc4_md5_tls_open 118 |
|
#define CIPHER_F_aead_aes_key_wrap_seal 119 |
|
#define CIPHER_F_aead_aes_key_wrap_init 120 |
|
#define CIPHER_F_aead_aes_key_wrap_open 121 |
|
#define CIPHER_R_WRAP_MODE_NOT_ALLOWED 100 |
|
#define CIPHER_R_AES_KEY_SETUP_FAILED 101 |
|
#define CIPHER_R_INPUT_NOT_INITIALIZED 102 |
|
#define CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH 103 |
|
#define CIPHER_R_INITIALIZATION_ERROR 104 |
|
#define CIPHER_R_CTRL_NOT_IMPLEMENTED 105 |
|
#define CIPHER_R_NO_CIPHER_SET 106 |
|
#define CIPHER_R_BAD_DECRYPT 107 |
|
#define CIPHER_R_WRONG_FINAL_BLOCK_LENGTH 108 |
|
#define CIPHER_R_CTRL_OPERATION_NOT_IMPLEMENTED 109 |
|
#define CIPHER_R_TAG_TOO_LARGE 110 |
|
#define CIPHER_R_BAD_KEY_LENGTH 111 |
|
#define CIPHER_R_BUFFER_TOO_SMALL 112 |
|
#define CIPHER_R_OUTPUT_ALIASES_INPUT 113 |
|
#define CIPHER_R_UNSUPPORTED_KEY_SIZE 114 |
|
#define CIPHER_R_TOO_LARGE 115 |
|
#define CIPHER_R_IV_TOO_LARGE 116 |
|
#define CIPHER_R_INVALID_AD_SIZE 117 |
|
#define CIPHER_R_INVALID_AD 118 |
|
#define CIPHER_R_UNSUPPORTED_TAG_SIZE 119 |
|
#define CIPHER_R_UNSUPPORTED_INPUT_SIZE 120 |
|
#define CIPHER_R_UNSUPPORTED_AD_SIZE 121 |
|
#define CIPHER_R_UNSUPPORTED_NONCE_SIZE 122 |
|
|
|
#endif /* OPENSSL_HEADER_CIPHER_H */
|
|
|