Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
270 lines
9.6 KiB
270 lines
9.6 KiB
/* Originally written by Bodo Moeller for the OpenSSL project. |
|
* ==================================================================== |
|
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* openssl-core@openssl.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). |
|
* |
|
*/ |
|
/* ==================================================================== |
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
|
* |
|
* Portions of the attached software ("Contribution") are developed by |
|
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
|
* |
|
* The Contribution is licensed pursuant to the OpenSSL open source |
|
* license provided above. |
|
* |
|
* The elliptic curve binary polynomial software is originally written by |
|
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
|
* Laboratories. */ |
|
|
|
#include <openssl/ec.h> |
|
|
|
#include <assert.h> |
|
#include <string.h> |
|
|
|
#include <openssl/bn.h> |
|
#include <openssl/err.h> |
|
#include <openssl/mem.h> |
|
#include <openssl/thread.h> |
|
|
|
#include "internal.h" |
|
#include "../bn/internal.h" |
|
#include "../../internal.h" |
|
|
|
|
|
// This file implements the wNAF-based interleaving multi-exponentiation method |
|
// at: |
|
// http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13 |
|
// http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf |
|
|
|
void ec_compute_wNAF(const EC_GROUP *group, int8_t *out, |
|
const EC_SCALAR *scalar, size_t bits, int w) { |
|
// 'int8_t' can represent integers with absolute values less than 2^7. |
|
assert(0 < w && w <= 7); |
|
assert(bits != 0); |
|
int bit = 1 << w; // 2^w, at most 128 |
|
int next_bit = bit << 1; // 2^(w+1), at most 256 |
|
int mask = next_bit - 1; // at most 255 |
|
|
|
int window_val = scalar->words[0] & mask; |
|
for (size_t j = 0; j < bits + 1; j++) { |
|
assert(0 <= window_val && window_val <= next_bit); |
|
int digit = 0; |
|
if (window_val & 1) { |
|
assert(0 < window_val && window_val < next_bit); |
|
if (window_val & bit) { |
|
digit = window_val - next_bit; |
|
// We know -next_bit < digit < 0 and window_val - digit = next_bit. |
|
|
|
// modified wNAF |
|
if (j + w + 1 >= bits) { |
|
// special case for generating modified wNAFs: |
|
// no new bits will be added into window_val, |
|
// so using a positive digit here will decrease |
|
// the total length of the representation |
|
|
|
digit = window_val & (mask >> 1); |
|
// We know 0 < digit < bit and window_val - digit = bit. |
|
} |
|
} else { |
|
digit = window_val; |
|
// We know 0 < digit < bit and window_val - digit = 0. |
|
} |
|
|
|
window_val -= digit; |
|
|
|
// Now window_val is 0 or 2^(w+1) in standard wNAF generation. |
|
// For modified window NAFs, it may also be 2^w. |
|
// |
|
// See the comments above for the derivation of each of these bounds. |
|
assert(window_val == 0 || window_val == next_bit || window_val == bit); |
|
assert(-bit < digit && digit < bit); |
|
|
|
// window_val was odd, so digit is also odd. |
|
assert(digit & 1); |
|
} |
|
|
|
out[j] = digit; |
|
|
|
// Incorporate the next bit. Previously, |window_val| <= |next_bit|, so if |
|
// we shift and add at most one copy of |bit|, this will continue to hold |
|
// afterwards. |
|
window_val >>= 1; |
|
window_val += |
|
bit * bn_is_bit_set_words(scalar->words, group->order.width, j + w + 1); |
|
assert(window_val <= next_bit); |
|
} |
|
|
|
// bits + 1 entries should be sufficient to consume all bits. |
|
assert(window_val == 0); |
|
} |
|
|
|
// compute_precomp sets |out[i]| to (2*i+1)*p, for i from 0 to |len|. |
|
static void compute_precomp(const EC_GROUP *group, EC_RAW_POINT *out, |
|
const EC_RAW_POINT *p, size_t len) { |
|
ec_GFp_simple_point_copy(&out[0], p); |
|
EC_RAW_POINT two_p; |
|
ec_GFp_mont_dbl(group, &two_p, p); |
|
for (size_t i = 1; i < len; i++) { |
|
ec_GFp_mont_add(group, &out[i], &out[i - 1], &two_p); |
|
} |
|
} |
|
|
|
static void lookup_precomp(const EC_GROUP *group, EC_RAW_POINT *out, |
|
const EC_RAW_POINT *precomp, int digit) { |
|
if (digit < 0) { |
|
digit = -digit; |
|
ec_GFp_simple_point_copy(out, &precomp[digit >> 1]); |
|
ec_GFp_simple_invert(group, out); |
|
} else { |
|
ec_GFp_simple_point_copy(out, &precomp[digit >> 1]); |
|
} |
|
} |
|
|
|
// EC_WNAF_WINDOW_BITS is the window size to use for |ec_GFp_mont_mul_public|. |
|
#define EC_WNAF_WINDOW_BITS 4 |
|
|
|
// EC_WNAF_TABLE_SIZE is the table size to use for |ec_GFp_mont_mul_public|. |
|
#define EC_WNAF_TABLE_SIZE (1 << (EC_WNAF_WINDOW_BITS - 1)) |
|
|
|
// EC_WNAF_STACK is the number of points worth of data to stack-allocate and |
|
// avoid a malloc. |
|
#define EC_WNAF_STACK 3 |
|
|
|
int ec_GFp_mont_mul_public_batch(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_SCALAR *g_scalar, |
|
const EC_RAW_POINT *points, |
|
const EC_SCALAR *scalars, size_t num) { |
|
size_t bits = BN_num_bits(&group->order); |
|
size_t wNAF_len = bits + 1; |
|
|
|
int ret = 0; |
|
int8_t wNAF_stack[EC_WNAF_STACK][EC_MAX_BYTES * 8 + 1]; |
|
int8_t (*wNAF_alloc)[EC_MAX_BYTES * 8 + 1] = NULL; |
|
int8_t (*wNAF)[EC_MAX_BYTES * 8 + 1]; |
|
EC_RAW_POINT precomp_stack[EC_WNAF_STACK][EC_WNAF_TABLE_SIZE]; |
|
EC_RAW_POINT (*precomp_alloc)[EC_WNAF_TABLE_SIZE] = NULL; |
|
EC_RAW_POINT (*precomp)[EC_WNAF_TABLE_SIZE]; |
|
if (num <= EC_WNAF_STACK) { |
|
wNAF = wNAF_stack; |
|
precomp = precomp_stack; |
|
} else { |
|
if (num >= ((size_t)-1) / sizeof(wNAF_alloc[0]) || |
|
num >= ((size_t)-1) / sizeof(precomp_alloc[0])) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_OVERFLOW); |
|
goto err; |
|
} |
|
wNAF_alloc = OPENSSL_malloc(num * sizeof(wNAF_alloc[0])); |
|
precomp_alloc = OPENSSL_malloc(num * sizeof(precomp_alloc[0])); |
|
if (wNAF_alloc == NULL || precomp_alloc == NULL) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); |
|
goto err; |
|
} |
|
wNAF = wNAF_alloc; |
|
precomp = precomp_alloc; |
|
} |
|
|
|
int8_t g_wNAF[EC_MAX_BYTES * 8 + 1]; |
|
EC_RAW_POINT g_precomp[EC_WNAF_TABLE_SIZE]; |
|
assert(wNAF_len <= OPENSSL_ARRAY_SIZE(g_wNAF)); |
|
const EC_RAW_POINT *g = &group->generator->raw; |
|
if (g_scalar != NULL) { |
|
ec_compute_wNAF(group, g_wNAF, g_scalar, bits, EC_WNAF_WINDOW_BITS); |
|
compute_precomp(group, g_precomp, g, EC_WNAF_TABLE_SIZE); |
|
} |
|
|
|
for (size_t i = 0; i < num; i++) { |
|
assert(wNAF_len <= OPENSSL_ARRAY_SIZE(wNAF[i])); |
|
ec_compute_wNAF(group, wNAF[i], &scalars[i], bits, EC_WNAF_WINDOW_BITS); |
|
compute_precomp(group, precomp[i], &points[i], EC_WNAF_TABLE_SIZE); |
|
} |
|
|
|
EC_RAW_POINT tmp; |
|
int r_is_at_infinity = 1; |
|
for (size_t k = wNAF_len - 1; k < wNAF_len; k--) { |
|
if (!r_is_at_infinity) { |
|
ec_GFp_mont_dbl(group, r, r); |
|
} |
|
|
|
if (g_scalar != NULL && g_wNAF[k] != 0) { |
|
lookup_precomp(group, &tmp, g_precomp, g_wNAF[k]); |
|
if (r_is_at_infinity) { |
|
ec_GFp_simple_point_copy(r, &tmp); |
|
r_is_at_infinity = 0; |
|
} else { |
|
ec_GFp_mont_add(group, r, r, &tmp); |
|
} |
|
} |
|
|
|
for (size_t i = 0; i < num; i++) { |
|
if (wNAF[i][k] != 0) { |
|
lookup_precomp(group, &tmp, precomp[i], wNAF[i][k]); |
|
if (r_is_at_infinity) { |
|
ec_GFp_simple_point_copy(r, &tmp); |
|
r_is_at_infinity = 0; |
|
} else { |
|
ec_GFp_mont_add(group, r, r, &tmp); |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (r_is_at_infinity) { |
|
ec_GFp_simple_point_set_to_infinity(group, r); |
|
} |
|
|
|
ret = 1; |
|
|
|
err: |
|
OPENSSL_free(wNAF_alloc); |
|
OPENSSL_free(precomp_alloc); |
|
return ret; |
|
}
|
|
|