Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
328 lines
10 KiB
328 lines
10 KiB
/* Originally written by Bodo Moeller for the OpenSSL project. |
|
* ==================================================================== |
|
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* openssl-core@openssl.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). |
|
* |
|
*/ |
|
/* ==================================================================== |
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
|
* |
|
* Portions of the attached software ("Contribution") are developed by |
|
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
|
* |
|
* The Contribution is licensed pursuant to the OpenSSL open source |
|
* license provided above. |
|
* |
|
* The elliptic curve binary polynomial software is originally written by |
|
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
|
* Laboratories. */ |
|
|
|
#include <openssl/ec.h> |
|
|
|
#include <openssl/bn.h> |
|
#include <openssl/err.h> |
|
|
|
#include "internal.h" |
|
|
|
|
|
size_t ec_point_to_bytes(const EC_GROUP *group, const EC_AFFINE *point, |
|
point_conversion_form_t form, uint8_t *buf, |
|
size_t len) { |
|
if (form != POINT_CONVERSION_COMPRESSED && |
|
form != POINT_CONVERSION_UNCOMPRESSED) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FORM); |
|
return 0; |
|
} |
|
|
|
const size_t field_len = BN_num_bytes(&group->field); |
|
size_t output_len = 1 /* type byte */ + field_len; |
|
if (form == POINT_CONVERSION_UNCOMPRESSED) { |
|
// Uncompressed points have a second coordinate. |
|
output_len += field_len; |
|
} |
|
|
|
// if 'buf' is NULL, just return required length |
|
if (buf != NULL) { |
|
if (len < output_len) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL); |
|
return 0; |
|
} |
|
|
|
size_t field_len_out; |
|
ec_felem_to_bytes(group, buf + 1, &field_len_out, &point->X); |
|
assert(field_len_out == field_len); |
|
|
|
if (form == POINT_CONVERSION_UNCOMPRESSED) { |
|
ec_felem_to_bytes(group, buf + 1 + field_len, &field_len_out, &point->Y); |
|
assert(field_len_out == field_len); |
|
buf[0] = form; |
|
} else { |
|
uint8_t y_buf[EC_MAX_BYTES]; |
|
ec_felem_to_bytes(group, y_buf, &field_len_out, &point->Y); |
|
buf[0] = form + (y_buf[field_len_out - 1] & 1); |
|
} |
|
} |
|
|
|
return output_len; |
|
} |
|
|
|
int ec_point_from_uncompressed(const EC_GROUP *group, EC_AFFINE *out, |
|
const uint8_t *in, size_t len) { |
|
const size_t field_len = BN_num_bytes(&group->field); |
|
if (len != 1 + 2 * field_len || in[0] != POINT_CONVERSION_UNCOMPRESSED) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING); |
|
return 0; |
|
} |
|
|
|
EC_FELEM x, y; |
|
if (!ec_felem_from_bytes(group, &x, in + 1, field_len) || |
|
!ec_felem_from_bytes(group, &y, in + 1 + field_len, field_len) || |
|
!ec_point_set_affine_coordinates(group, out, &x, &y)) { |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
static int ec_GFp_simple_oct2point(const EC_GROUP *group, EC_POINT *point, |
|
const uint8_t *buf, size_t len, |
|
BN_CTX *ctx) { |
|
if (len == 0) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL); |
|
return 0; |
|
} |
|
|
|
point_conversion_form_t form = buf[0]; |
|
if (form == POINT_CONVERSION_UNCOMPRESSED) { |
|
EC_AFFINE affine; |
|
if (!ec_point_from_uncompressed(group, &affine, buf, len)) { |
|
// In the event of an error, defend against the caller not checking the |
|
// return value by setting a known safe value. |
|
ec_set_to_safe_point(group, &point->raw); |
|
return 0; |
|
} |
|
ec_affine_to_jacobian(group, &point->raw, &affine); |
|
return 1; |
|
} |
|
|
|
const int y_bit = form & 1; |
|
const size_t field_len = BN_num_bytes(&group->field); |
|
form = form & ~1u; |
|
if (form != POINT_CONVERSION_COMPRESSED || |
|
len != 1 /* type byte */ + field_len) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING); |
|
return 0; |
|
} |
|
|
|
// TODO(davidben): Integrate compressed coordinates with the lower-level EC |
|
// abstractions. This requires a way to compute square roots, which is tricky |
|
// for primes which are not 3 (mod 4), namely P-224 and custom curves. P-224's |
|
// prime is particularly inconvenient for compressed coordinates. See |
|
// https://cr.yp.to/papers/sqroot.pdf |
|
BN_CTX *new_ctx = NULL; |
|
if (ctx == NULL) { |
|
ctx = new_ctx = BN_CTX_new(); |
|
if (ctx == NULL) { |
|
return 0; |
|
} |
|
} |
|
|
|
int ret = 0; |
|
BN_CTX_start(ctx); |
|
BIGNUM *x = BN_CTX_get(ctx); |
|
if (x == NULL || !BN_bin2bn(buf + 1, field_len, x)) { |
|
goto err; |
|
} |
|
if (BN_ucmp(x, &group->field) >= 0) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING); |
|
goto err; |
|
} |
|
|
|
if (!EC_POINT_set_compressed_coordinates_GFp(group, point, x, y_bit, ctx)) { |
|
goto err; |
|
} |
|
|
|
ret = 1; |
|
|
|
err: |
|
BN_CTX_end(ctx); |
|
BN_CTX_free(new_ctx); |
|
return ret; |
|
} |
|
|
|
int EC_POINT_oct2point(const EC_GROUP *group, EC_POINT *point, |
|
const uint8_t *buf, size_t len, BN_CTX *ctx) { |
|
if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
|
return 0; |
|
} |
|
return ec_GFp_simple_oct2point(group, point, buf, len, ctx); |
|
} |
|
|
|
size_t EC_POINT_point2oct(const EC_GROUP *group, const EC_POINT *point, |
|
point_conversion_form_t form, uint8_t *buf, |
|
size_t len, BN_CTX *ctx) { |
|
if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
|
return 0; |
|
} |
|
EC_AFFINE affine; |
|
if (!ec_jacobian_to_affine(group, &affine, &point->raw)) { |
|
return 0; |
|
} |
|
return ec_point_to_bytes(group, &affine, form, buf, len); |
|
} |
|
|
|
int EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP *group, |
|
EC_POINT *point, const BIGNUM *x, |
|
int y_bit, BN_CTX *ctx) { |
|
if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
|
return 0; |
|
} |
|
|
|
if (BN_is_negative(x) || BN_cmp(x, &group->field) >= 0) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSED_POINT); |
|
return 0; |
|
} |
|
|
|
BN_CTX *new_ctx = NULL; |
|
int ret = 0; |
|
|
|
ERR_clear_error(); |
|
|
|
if (ctx == NULL) { |
|
ctx = new_ctx = BN_CTX_new(); |
|
if (ctx == NULL) { |
|
return 0; |
|
} |
|
} |
|
|
|
y_bit = (y_bit != 0); |
|
|
|
BN_CTX_start(ctx); |
|
BIGNUM *tmp1 = BN_CTX_get(ctx); |
|
BIGNUM *tmp2 = BN_CTX_get(ctx); |
|
BIGNUM *a = BN_CTX_get(ctx); |
|
BIGNUM *b = BN_CTX_get(ctx); |
|
BIGNUM *y = BN_CTX_get(ctx); |
|
if (y == NULL || |
|
!EC_GROUP_get_curve_GFp(group, NULL, a, b, ctx)) { |
|
goto err; |
|
} |
|
|
|
// Recover y. We have a Weierstrass equation |
|
// y^2 = x^3 + a*x + b, |
|
// so y is one of the square roots of x^3 + a*x + b. |
|
|
|
// tmp1 := x^3 |
|
if (!BN_mod_sqr(tmp2, x, &group->field, ctx) || |
|
!BN_mod_mul(tmp1, tmp2, x, &group->field, ctx)) { |
|
goto err; |
|
} |
|
|
|
// tmp1 := tmp1 + a*x |
|
if (group->a_is_minus3) { |
|
if (!bn_mod_lshift1_consttime(tmp2, x, &group->field, ctx) || |
|
!bn_mod_add_consttime(tmp2, tmp2, x, &group->field, ctx) || |
|
!bn_mod_sub_consttime(tmp1, tmp1, tmp2, &group->field, ctx)) { |
|
goto err; |
|
} |
|
} else { |
|
if (!BN_mod_mul(tmp2, a, x, &group->field, ctx) || |
|
!bn_mod_add_consttime(tmp1, tmp1, tmp2, &group->field, ctx)) { |
|
goto err; |
|
} |
|
} |
|
|
|
// tmp1 := tmp1 + b |
|
if (!bn_mod_add_consttime(tmp1, tmp1, b, &group->field, ctx)) { |
|
goto err; |
|
} |
|
|
|
if (!BN_mod_sqrt(y, tmp1, &group->field, ctx)) { |
|
unsigned long err = ERR_peek_last_error(); |
|
|
|
if (ERR_GET_LIB(err) == ERR_LIB_BN && |
|
ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) { |
|
ERR_clear_error(); |
|
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSED_POINT); |
|
} else { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); |
|
} |
|
goto err; |
|
} |
|
|
|
if (y_bit != BN_is_odd(y)) { |
|
if (BN_is_zero(y)) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSION_BIT); |
|
goto err; |
|
} |
|
if (!BN_usub(y, &group->field, y)) { |
|
goto err; |
|
} |
|
} |
|
if (y_bit != BN_is_odd(y)) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); |
|
goto err; |
|
} |
|
|
|
if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) { |
|
goto err; |
|
} |
|
|
|
ret = 1; |
|
|
|
err: |
|
BN_CTX_end(ctx); |
|
BN_CTX_free(new_ctx); |
|
return ret; |
|
}
|
|
|