Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1252 lines
42 KiB
1252 lines
42 KiB
/* Originally written by Bodo Moeller for the OpenSSL project. |
|
* ==================================================================== |
|
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* openssl-core@openssl.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). |
|
* |
|
*/ |
|
/* ==================================================================== |
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
|
* |
|
* Portions of the attached software ("Contribution") are developed by |
|
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
|
* |
|
* The Contribution is licensed pursuant to the OpenSSL open source |
|
* license provided above. |
|
* |
|
* The elliptic curve binary polynomial software is originally written by |
|
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
|
* Laboratories. */ |
|
|
|
#include <openssl/ec.h> |
|
|
|
#include <assert.h> |
|
#include <string.h> |
|
|
|
#include <openssl/bn.h> |
|
#include <openssl/err.h> |
|
#include <openssl/mem.h> |
|
#include <openssl/nid.h> |
|
|
|
#include "internal.h" |
|
#include "../../internal.h" |
|
#include "../bn/internal.h" |
|
#include "../delocate.h" |
|
|
|
|
|
static void ec_point_free(EC_POINT *point, int free_group); |
|
|
|
static const uint8_t kP224Params[6 * 28] = { |
|
// p = 2^224 - 2^96 + 1 |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x01, |
|
// a |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFE, |
|
// b |
|
0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, 0x32, 0x56, |
|
0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA, 0x27, 0x0B, 0x39, 0x43, |
|
0x23, 0x55, 0xFF, 0xB4, |
|
// x |
|
0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, 0x90, 0xB9, |
|
0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22, 0x34, 0x32, 0x80, 0xD6, |
|
0x11, 0x5C, 0x1D, 0x21, |
|
// y |
|
0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, 0xdf, 0xe6, |
|
0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, 0x44, 0xd5, 0x81, 0x99, |
|
0x85, 0x00, 0x7e, 0x34, |
|
// order |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0x16, 0xA2, 0xE0, 0xB8, 0xF0, 0x3E, 0x13, 0xDD, 0x29, 0x45, |
|
0x5C, 0x5C, 0x2A, 0x3D, |
|
}; |
|
|
|
static const uint8_t kP256Params[6 * 32] = { |
|
// p = 2^256 - 2^224 + 2^192 + 2^96 - 1 |
|
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
// a |
|
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, |
|
// b |
|
0x5A, 0xC6, 0x35, 0xD8, 0xAA, 0x3A, 0x93, 0xE7, 0xB3, 0xEB, 0xBD, 0x55, |
|
0x76, 0x98, 0x86, 0xBC, 0x65, 0x1D, 0x06, 0xB0, 0xCC, 0x53, 0xB0, 0xF6, |
|
0x3B, 0xCE, 0x3C, 0x3E, 0x27, 0xD2, 0x60, 0x4B, |
|
// x |
|
0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8, 0xBC, 0xE6, 0xE5, |
|
0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D, 0x81, 0x2D, 0xEB, 0x33, 0xA0, |
|
0xF4, 0xA1, 0x39, 0x45, 0xD8, 0x98, 0xC2, 0x96, |
|
// y |
|
0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, |
|
0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, |
|
0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, |
|
// order |
|
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84, |
|
0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51, |
|
}; |
|
|
|
static const uint8_t kP384Params[6 * 48] = { |
|
// p = 2^384 - 2^128 - 2^96 + 2^32 - 1 |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, |
|
// a |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFC, |
|
// b |
|
0xB3, 0x31, 0x2F, 0xA7, 0xE2, 0x3E, 0xE7, 0xE4, 0x98, 0x8E, 0x05, 0x6B, |
|
0xE3, 0xF8, 0x2D, 0x19, 0x18, 0x1D, 0x9C, 0x6E, 0xFE, 0x81, 0x41, 0x12, |
|
0x03, 0x14, 0x08, 0x8F, 0x50, 0x13, 0x87, 0x5A, 0xC6, 0x56, 0x39, 0x8D, |
|
0x8A, 0x2E, 0xD1, 0x9D, 0x2A, 0x85, 0xC8, 0xED, 0xD3, 0xEC, 0x2A, 0xEF, |
|
// x |
|
0xAA, 0x87, 0xCA, 0x22, 0xBE, 0x8B, 0x05, 0x37, 0x8E, 0xB1, 0xC7, 0x1E, |
|
0xF3, 0x20, 0xAD, 0x74, 0x6E, 0x1D, 0x3B, 0x62, 0x8B, 0xA7, 0x9B, 0x98, |
|
0x59, 0xF7, 0x41, 0xE0, 0x82, 0x54, 0x2A, 0x38, 0x55, 0x02, 0xF2, 0x5D, |
|
0xBF, 0x55, 0x29, 0x6C, 0x3A, 0x54, 0x5E, 0x38, 0x72, 0x76, 0x0A, 0xB7, |
|
// y |
|
0x36, 0x17, 0xde, 0x4a, 0x96, 0x26, 0x2c, 0x6f, 0x5d, 0x9e, 0x98, 0xbf, |
|
0x92, 0x92, 0xdc, 0x29, 0xf8, 0xf4, 0x1d, 0xbd, 0x28, 0x9a, 0x14, 0x7c, |
|
0xe9, 0xda, 0x31, 0x13, 0xb5, 0xf0, 0xb8, 0xc0, 0x0a, 0x60, 0xb1, 0xce, |
|
0x1d, 0x7e, 0x81, 0x9d, 0x7a, 0x43, 0x1d, 0x7c, 0x90, 0xea, 0x0e, 0x5f, |
|
// order |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xC7, 0x63, 0x4D, 0x81, 0xF4, 0x37, 0x2D, 0xDF, 0x58, 0x1A, 0x0D, 0xB2, |
|
0x48, 0xB0, 0xA7, 0x7A, 0xEC, 0xEC, 0x19, 0x6A, 0xCC, 0xC5, 0x29, 0x73, |
|
}; |
|
|
|
static const uint8_t kP521Params[6 * 66] = { |
|
// p = 2^521 - 1 |
|
0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
// a |
|
0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, |
|
// b |
|
0x00, 0x51, 0x95, 0x3E, 0xB9, 0x61, 0x8E, 0x1C, 0x9A, 0x1F, 0x92, 0x9A, |
|
0x21, 0xA0, 0xB6, 0x85, 0x40, 0xEE, 0xA2, 0xDA, 0x72, 0x5B, 0x99, 0xB3, |
|
0x15, 0xF3, 0xB8, 0xB4, 0x89, 0x91, 0x8E, 0xF1, 0x09, 0xE1, 0x56, 0x19, |
|
0x39, 0x51, 0xEC, 0x7E, 0x93, 0x7B, 0x16, 0x52, 0xC0, 0xBD, 0x3B, 0xB1, |
|
0xBF, 0x07, 0x35, 0x73, 0xDF, 0x88, 0x3D, 0x2C, 0x34, 0xF1, 0xEF, 0x45, |
|
0x1F, 0xD4, 0x6B, 0x50, 0x3F, 0x00, |
|
// x |
|
0x00, 0xC6, 0x85, 0x8E, 0x06, 0xB7, 0x04, 0x04, 0xE9, 0xCD, 0x9E, 0x3E, |
|
0xCB, 0x66, 0x23, 0x95, 0xB4, 0x42, 0x9C, 0x64, 0x81, 0x39, 0x05, 0x3F, |
|
0xB5, 0x21, 0xF8, 0x28, 0xAF, 0x60, 0x6B, 0x4D, 0x3D, 0xBA, 0xA1, 0x4B, |
|
0x5E, 0x77, 0xEF, 0xE7, 0x59, 0x28, 0xFE, 0x1D, 0xC1, 0x27, 0xA2, 0xFF, |
|
0xA8, 0xDE, 0x33, 0x48, 0xB3, 0xC1, 0x85, 0x6A, 0x42, 0x9B, 0xF9, 0x7E, |
|
0x7E, 0x31, 0xC2, 0xE5, 0xBD, 0x66, |
|
// y |
|
0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, 0xc0, 0x04, 0x5c, 0x8a, |
|
0x5f, 0xb4, 0x2c, 0x7d, 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, |
|
0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, 0x66, 0x2c, 0x97, 0xee, |
|
0x72, 0x99, 0x5e, 0xf4, 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, |
|
0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, 0xc2, 0x40, 0x88, 0xbe, |
|
0x94, 0x76, 0x9f, 0xd1, 0x66, 0x50, |
|
// order |
|
0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFA, 0x51, 0x86, |
|
0x87, 0x83, 0xBF, 0x2F, 0x96, 0x6B, 0x7F, 0xCC, 0x01, 0x48, 0xF7, 0x09, |
|
0xA5, 0xD0, 0x3B, 0xB5, 0xC9, 0xB8, 0x89, 0x9C, 0x47, 0xAE, 0xBB, 0x6F, |
|
0xB7, 0x1E, 0x91, 0x38, 0x64, 0x09, |
|
}; |
|
|
|
DEFINE_METHOD_FUNCTION(struct built_in_curves, OPENSSL_built_in_curves) { |
|
// 1.3.132.0.35 |
|
static const uint8_t kOIDP521[] = {0x2b, 0x81, 0x04, 0x00, 0x23}; |
|
out->curves[0].nid = NID_secp521r1; |
|
out->curves[0].oid = kOIDP521; |
|
out->curves[0].oid_len = sizeof(kOIDP521); |
|
out->curves[0].comment = "NIST P-521"; |
|
out->curves[0].param_len = 66; |
|
out->curves[0].params = kP521Params; |
|
out->curves[0].method = EC_GFp_mont_method(); |
|
|
|
// 1.3.132.0.34 |
|
static const uint8_t kOIDP384[] = {0x2b, 0x81, 0x04, 0x00, 0x22}; |
|
out->curves[1].nid = NID_secp384r1; |
|
out->curves[1].oid = kOIDP384; |
|
out->curves[1].oid_len = sizeof(kOIDP384); |
|
out->curves[1].comment = "NIST P-384"; |
|
out->curves[1].param_len = 48; |
|
out->curves[1].params = kP384Params; |
|
out->curves[1].method = EC_GFp_mont_method(); |
|
|
|
// 1.2.840.10045.3.1.7 |
|
static const uint8_t kOIDP256[] = {0x2a, 0x86, 0x48, 0xce, |
|
0x3d, 0x03, 0x01, 0x07}; |
|
out->curves[2].nid = NID_X9_62_prime256v1; |
|
out->curves[2].oid = kOIDP256; |
|
out->curves[2].oid_len = sizeof(kOIDP256); |
|
out->curves[2].comment = "NIST P-256"; |
|
out->curves[2].param_len = 32; |
|
out->curves[2].params = kP256Params; |
|
out->curves[2].method = |
|
#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \ |
|
!defined(OPENSSL_SMALL) |
|
EC_GFp_nistz256_method(); |
|
#else |
|
EC_GFp_nistp256_method(); |
|
#endif |
|
|
|
// 1.3.132.0.33 |
|
static const uint8_t kOIDP224[] = {0x2b, 0x81, 0x04, 0x00, 0x21}; |
|
out->curves[3].nid = NID_secp224r1; |
|
out->curves[3].oid = kOIDP224; |
|
out->curves[3].oid_len = sizeof(kOIDP224); |
|
out->curves[3].comment = "NIST P-224"; |
|
out->curves[3].param_len = 28; |
|
out->curves[3].params = kP224Params; |
|
out->curves[3].method = |
|
#if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL) |
|
EC_GFp_nistp224_method(); |
|
#else |
|
EC_GFp_mont_method(); |
|
#endif |
|
} |
|
|
|
EC_GROUP *ec_group_new(const EC_METHOD *meth) { |
|
EC_GROUP *ret; |
|
|
|
if (meth == NULL) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_SLOT_FULL); |
|
return NULL; |
|
} |
|
|
|
if (meth->group_init == 0) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
|
return NULL; |
|
} |
|
|
|
ret = OPENSSL_malloc(sizeof(EC_GROUP)); |
|
if (ret == NULL) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); |
|
return NULL; |
|
} |
|
OPENSSL_memset(ret, 0, sizeof(EC_GROUP)); |
|
|
|
ret->references = 1; |
|
ret->meth = meth; |
|
BN_init(&ret->order); |
|
|
|
if (!meth->group_init(ret)) { |
|
OPENSSL_free(ret); |
|
return NULL; |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
static int ec_group_set_generator(EC_GROUP *group, const EC_AFFINE *generator, |
|
const BIGNUM *order) { |
|
assert(group->generator == NULL); |
|
|
|
if (!BN_copy(&group->order, order)) { |
|
return 0; |
|
} |
|
// Store the order in minimal form, so it can be used with |BN_ULONG| arrays. |
|
bn_set_minimal_width(&group->order); |
|
|
|
BN_MONT_CTX_free(group->order_mont); |
|
group->order_mont = BN_MONT_CTX_new_for_modulus(&group->order, NULL); |
|
if (group->order_mont == NULL) { |
|
return 0; |
|
} |
|
|
|
group->field_greater_than_order = BN_cmp(&group->field, order) > 0; |
|
if (group->field_greater_than_order) { |
|
BIGNUM tmp; |
|
BN_init(&tmp); |
|
int ok = |
|
BN_sub(&tmp, &group->field, order) && |
|
bn_copy_words(group->field_minus_order.words, group->field.width, &tmp); |
|
BN_free(&tmp); |
|
if (!ok) { |
|
return 0; |
|
} |
|
} |
|
|
|
group->generator = EC_POINT_new(group); |
|
if (group->generator == NULL) { |
|
return 0; |
|
} |
|
ec_affine_to_jacobian(group, &group->generator->raw, generator); |
|
assert(ec_felem_equal(group, &group->one, &group->generator->raw.Z)); |
|
|
|
// Avoid a reference cycle. |group->generator| does not maintain an owning |
|
// pointer to |group|. |
|
int is_zero = CRYPTO_refcount_dec_and_test_zero(&group->references); |
|
|
|
assert(!is_zero); |
|
(void)is_zero; |
|
return 1; |
|
} |
|
|
|
EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, |
|
const BIGNUM *b, BN_CTX *ctx) { |
|
if (BN_num_bytes(p) > EC_MAX_BYTES) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD); |
|
return NULL; |
|
} |
|
|
|
BN_CTX *new_ctx = NULL; |
|
if (ctx == NULL) { |
|
ctx = new_ctx = BN_CTX_new(); |
|
if (ctx == NULL) { |
|
return NULL; |
|
} |
|
} |
|
|
|
// Historically, |a| and |b| were not required to be fully reduced. |
|
// TODO(davidben): Can this be removed? |
|
EC_GROUP *ret = NULL; |
|
BN_CTX_start(ctx); |
|
BIGNUM *a_reduced = BN_CTX_get(ctx); |
|
BIGNUM *b_reduced = BN_CTX_get(ctx); |
|
if (a_reduced == NULL || b_reduced == NULL || |
|
!BN_nnmod(a_reduced, a, p, ctx) || |
|
!BN_nnmod(b_reduced, b, p, ctx)) { |
|
goto err; |
|
} |
|
|
|
ret = ec_group_new(EC_GFp_mont_method()); |
|
if (ret == NULL || |
|
!ret->meth->group_set_curve(ret, p, a_reduced, b_reduced, ctx)) { |
|
EC_GROUP_free(ret); |
|
ret = NULL; |
|
goto err; |
|
} |
|
|
|
err: |
|
BN_CTX_end(ctx); |
|
BN_CTX_free(new_ctx); |
|
return ret; |
|
} |
|
|
|
int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator, |
|
const BIGNUM *order, const BIGNUM *cofactor) { |
|
if (group->curve_name != NID_undef || group->generator != NULL || |
|
generator->group != group) { |
|
// |EC_GROUP_set_generator| may only be used with |EC_GROUP|s returned by |
|
// |EC_GROUP_new_curve_GFp| and may only used once on each group. |
|
// |generator| must have been created from |EC_GROUP_new_curve_GFp|, not a |
|
// copy, so that |generator->group->generator| is set correctly. |
|
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
|
return 0; |
|
} |
|
|
|
if (BN_num_bytes(order) > EC_MAX_BYTES) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_GROUP_ORDER); |
|
return 0; |
|
} |
|
|
|
// Require a cofactor of one for custom curves, which implies prime order. |
|
if (!BN_is_one(cofactor)) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COFACTOR); |
|
return 0; |
|
} |
|
|
|
// Require that p < 2×order. This simplifies some ECDSA operations. |
|
// |
|
// Note any curve which did not satisfy this must have been invalid or use a |
|
// tiny prime (less than 17). See the proof in |field_element_to_scalar| in |
|
// the ECDSA implementation. |
|
int ret = 0; |
|
BIGNUM *tmp = BN_new(); |
|
if (tmp == NULL || |
|
!BN_lshift1(tmp, order)) { |
|
goto err; |
|
} |
|
if (BN_cmp(tmp, &group->field) <= 0) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_GROUP_ORDER); |
|
goto err; |
|
} |
|
|
|
EC_AFFINE affine; |
|
if (!ec_jacobian_to_affine(group, &affine, &generator->raw) || |
|
!ec_group_set_generator(group, &affine, order)) { |
|
goto err; |
|
} |
|
|
|
ret = 1; |
|
|
|
err: |
|
BN_free(tmp); |
|
return ret; |
|
} |
|
|
|
static EC_GROUP *ec_group_new_from_data(const struct built_in_curve *curve) { |
|
EC_GROUP *group = NULL; |
|
BIGNUM *p = NULL, *a = NULL, *b = NULL, *order = NULL; |
|
int ok = 0; |
|
|
|
BN_CTX *ctx = BN_CTX_new(); |
|
if (ctx == NULL) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); |
|
goto err; |
|
} |
|
|
|
const unsigned param_len = curve->param_len; |
|
const uint8_t *params = curve->params; |
|
|
|
if (!(p = BN_bin2bn(params + 0 * param_len, param_len, NULL)) || |
|
!(a = BN_bin2bn(params + 1 * param_len, param_len, NULL)) || |
|
!(b = BN_bin2bn(params + 2 * param_len, param_len, NULL)) || |
|
!(order = BN_bin2bn(params + 5 * param_len, param_len, NULL))) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); |
|
goto err; |
|
} |
|
|
|
group = ec_group_new(curve->method); |
|
if (group == NULL || |
|
!group->meth->group_set_curve(group, p, a, b, ctx)) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_EC_LIB); |
|
goto err; |
|
} |
|
|
|
EC_AFFINE G; |
|
EC_FELEM x, y; |
|
if (!ec_felem_from_bytes(group, &x, params + 3 * param_len, param_len) || |
|
!ec_felem_from_bytes(group, &y, params + 4 * param_len, param_len) || |
|
!ec_point_set_affine_coordinates(group, &G, &x, &y)) { |
|
goto err; |
|
} |
|
|
|
if (!ec_group_set_generator(group, &G, order)) { |
|
goto err; |
|
} |
|
|
|
ok = 1; |
|
|
|
err: |
|
if (!ok) { |
|
EC_GROUP_free(group); |
|
group = NULL; |
|
} |
|
BN_CTX_free(ctx); |
|
BN_free(p); |
|
BN_free(a); |
|
BN_free(b); |
|
BN_free(order); |
|
return group; |
|
} |
|
|
|
// Built-in groups are allocated lazily and static once allocated. |
|
// TODO(davidben): Make these actually static. https://crbug.com/boringssl/20. |
|
struct built_in_groups_st { |
|
EC_GROUP *groups[OPENSSL_NUM_BUILT_IN_CURVES]; |
|
}; |
|
DEFINE_BSS_GET(struct built_in_groups_st, built_in_groups) |
|
DEFINE_STATIC_MUTEX(built_in_groups_lock) |
|
|
|
EC_GROUP *EC_GROUP_new_by_curve_name(int nid) { |
|
struct built_in_groups_st *groups = built_in_groups_bss_get(); |
|
EC_GROUP **group_ptr = NULL; |
|
const struct built_in_curves *const curves = OPENSSL_built_in_curves(); |
|
const struct built_in_curve *curve = NULL; |
|
for (size_t i = 0; i < OPENSSL_NUM_BUILT_IN_CURVES; i++) { |
|
if (curves->curves[i].nid == nid) { |
|
curve = &curves->curves[i]; |
|
group_ptr = &groups->groups[i]; |
|
break; |
|
} |
|
} |
|
|
|
if (curve == NULL) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); |
|
return NULL; |
|
} |
|
|
|
CRYPTO_STATIC_MUTEX_lock_read(built_in_groups_lock_bss_get()); |
|
EC_GROUP *ret = *group_ptr; |
|
CRYPTO_STATIC_MUTEX_unlock_read(built_in_groups_lock_bss_get()); |
|
if (ret != NULL) { |
|
return ret; |
|
} |
|
|
|
ret = ec_group_new_from_data(curve); |
|
if (ret == NULL) { |
|
return NULL; |
|
} |
|
|
|
EC_GROUP *to_free = NULL; |
|
CRYPTO_STATIC_MUTEX_lock_write(built_in_groups_lock_bss_get()); |
|
if (*group_ptr == NULL) { |
|
*group_ptr = ret; |
|
// Filling in |ret->curve_name| makes |EC_GROUP_free| and |EC_GROUP_dup| |
|
// into no-ops. At this point, |ret| is considered static. |
|
ret->curve_name = nid; |
|
} else { |
|
to_free = ret; |
|
ret = *group_ptr; |
|
} |
|
CRYPTO_STATIC_MUTEX_unlock_write(built_in_groups_lock_bss_get()); |
|
|
|
EC_GROUP_free(to_free); |
|
return ret; |
|
} |
|
|
|
void EC_GROUP_free(EC_GROUP *group) { |
|
if (group == NULL || |
|
// Built-in curves are static. |
|
group->curve_name != NID_undef || |
|
!CRYPTO_refcount_dec_and_test_zero(&group->references)) { |
|
return; |
|
} |
|
|
|
if (group->meth->group_finish != NULL) { |
|
group->meth->group_finish(group); |
|
} |
|
|
|
ec_point_free(group->generator, 0 /* don't free group */); |
|
BN_free(&group->order); |
|
BN_MONT_CTX_free(group->order_mont); |
|
|
|
OPENSSL_free(group); |
|
} |
|
|
|
EC_GROUP *EC_GROUP_dup(const EC_GROUP *a) { |
|
if (a == NULL || |
|
// Built-in curves are static. |
|
a->curve_name != NID_undef) { |
|
return (EC_GROUP *)a; |
|
} |
|
|
|
// Groups are logically immutable (but for |EC_GROUP_set_generator| which must |
|
// be called early on), so we simply take a reference. |
|
EC_GROUP *group = (EC_GROUP *)a; |
|
CRYPTO_refcount_inc(&group->references); |
|
return group; |
|
} |
|
|
|
int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ignored) { |
|
// Note this function returns 0 if equal and non-zero otherwise. |
|
if (a == b) { |
|
return 0; |
|
} |
|
if (a->curve_name != b->curve_name) { |
|
return 1; |
|
} |
|
if (a->curve_name != NID_undef) { |
|
// Built-in curves may be compared by curve name alone. |
|
return 0; |
|
} |
|
|
|
// |a| and |b| are both custom curves. We compare the entire curve |
|
// structure. If |a| or |b| is incomplete (due to legacy OpenSSL mistakes, |
|
// custom curve construction is sadly done in two parts) but otherwise not the |
|
// same object, we consider them always unequal. |
|
return a->meth != b->meth || |
|
a->generator == NULL || |
|
b->generator == NULL || |
|
BN_cmp(&a->order, &b->order) != 0 || |
|
BN_cmp(&a->field, &b->field) != 0 || |
|
!ec_felem_equal(a, &a->a, &b->a) || |
|
!ec_felem_equal(a, &a->b, &b->b) || |
|
!ec_GFp_simple_points_equal(a, &a->generator->raw, &b->generator->raw); |
|
} |
|
|
|
const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group) { |
|
return group->generator; |
|
} |
|
|
|
const BIGNUM *EC_GROUP_get0_order(const EC_GROUP *group) { |
|
assert(!BN_is_zero(&group->order)); |
|
return &group->order; |
|
} |
|
|
|
int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx) { |
|
if (BN_copy(order, EC_GROUP_get0_order(group)) == NULL) { |
|
return 0; |
|
} |
|
return 1; |
|
} |
|
|
|
int EC_GROUP_order_bits(const EC_GROUP *group) { |
|
return BN_num_bits(&group->order); |
|
} |
|
|
|
int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, |
|
BN_CTX *ctx) { |
|
// All |EC_GROUP|s have cofactor 1. |
|
return BN_set_word(cofactor, 1); |
|
} |
|
|
|
int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *out_p, BIGNUM *out_a, |
|
BIGNUM *out_b, BN_CTX *ctx) { |
|
return ec_GFp_simple_group_get_curve(group, out_p, out_a, out_b); |
|
} |
|
|
|
int EC_GROUP_get_curve_name(const EC_GROUP *group) { return group->curve_name; } |
|
|
|
unsigned EC_GROUP_get_degree(const EC_GROUP *group) { |
|
return BN_num_bits(&group->field); |
|
} |
|
|
|
const char *EC_curve_nid2nist(int nid) { |
|
switch (nid) { |
|
case NID_secp224r1: |
|
return "P-224"; |
|
case NID_X9_62_prime256v1: |
|
return "P-256"; |
|
case NID_secp384r1: |
|
return "P-384"; |
|
case NID_secp521r1: |
|
return "P-521"; |
|
} |
|
return NULL; |
|
} |
|
|
|
int EC_curve_nist2nid(const char *name) { |
|
if (strcmp(name, "P-224") == 0) { |
|
return NID_secp224r1; |
|
} |
|
if (strcmp(name, "P-256") == 0) { |
|
return NID_X9_62_prime256v1; |
|
} |
|
if (strcmp(name, "P-384") == 0) { |
|
return NID_secp384r1; |
|
} |
|
if (strcmp(name, "P-521") == 0) { |
|
return NID_secp521r1; |
|
} |
|
return NID_undef; |
|
} |
|
|
|
EC_POINT *EC_POINT_new(const EC_GROUP *group) { |
|
if (group == NULL) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
|
return NULL; |
|
} |
|
|
|
EC_POINT *ret = OPENSSL_malloc(sizeof *ret); |
|
if (ret == NULL) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); |
|
return NULL; |
|
} |
|
|
|
ret->group = EC_GROUP_dup(group); |
|
ec_GFp_simple_point_init(&ret->raw); |
|
return ret; |
|
} |
|
|
|
static void ec_point_free(EC_POINT *point, int free_group) { |
|
if (!point) { |
|
return; |
|
} |
|
if (free_group) { |
|
EC_GROUP_free(point->group); |
|
} |
|
OPENSSL_free(point); |
|
} |
|
|
|
void EC_POINT_free(EC_POINT *point) { |
|
ec_point_free(point, 1 /* free group */); |
|
} |
|
|
|
void EC_POINT_clear_free(EC_POINT *point) { EC_POINT_free(point); } |
|
|
|
int EC_POINT_copy(EC_POINT *dest, const EC_POINT *src) { |
|
if (EC_GROUP_cmp(dest->group, src->group, NULL) != 0) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
|
return 0; |
|
} |
|
if (dest == src) { |
|
return 1; |
|
} |
|
ec_GFp_simple_point_copy(&dest->raw, &src->raw); |
|
return 1; |
|
} |
|
|
|
EC_POINT *EC_POINT_dup(const EC_POINT *a, const EC_GROUP *group) { |
|
if (a == NULL) { |
|
return NULL; |
|
} |
|
|
|
EC_POINT *ret = EC_POINT_new(group); |
|
if (ret == NULL || |
|
!EC_POINT_copy(ret, a)) { |
|
EC_POINT_free(ret); |
|
return NULL; |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
int EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point) { |
|
if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
|
return 0; |
|
} |
|
ec_GFp_simple_point_set_to_infinity(group, &point->raw); |
|
return 1; |
|
} |
|
|
|
int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) { |
|
if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
|
return 0; |
|
} |
|
return ec_GFp_simple_is_at_infinity(group, &point->raw); |
|
} |
|
|
|
int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point, |
|
BN_CTX *ctx) { |
|
if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
|
return 0; |
|
} |
|
return ec_GFp_simple_is_on_curve(group, &point->raw); |
|
} |
|
|
|
int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, |
|
BN_CTX *ctx) { |
|
if (EC_GROUP_cmp(group, a->group, NULL) != 0 || |
|
EC_GROUP_cmp(group, b->group, NULL) != 0) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
|
return -1; |
|
} |
|
|
|
// Note |EC_POINT_cmp| returns zero for equality and non-zero for inequality. |
|
return ec_GFp_simple_points_equal(group, &a->raw, &b->raw) ? 0 : 1; |
|
} |
|
|
|
int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, |
|
const EC_POINT *point, BIGNUM *x, |
|
BIGNUM *y, BN_CTX *ctx) { |
|
if (group->meth->point_get_affine_coordinates == 0) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
|
return 0; |
|
} |
|
if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
|
return 0; |
|
} |
|
EC_FELEM x_felem, y_felem; |
|
if (!group->meth->point_get_affine_coordinates(group, &point->raw, |
|
x == NULL ? NULL : &x_felem, |
|
y == NULL ? NULL : &y_felem) || |
|
(x != NULL && !ec_felem_to_bignum(group, x, &x_felem)) || |
|
(y != NULL && !ec_felem_to_bignum(group, y, &y_felem))) { |
|
return 0; |
|
} |
|
return 1; |
|
} |
|
|
|
void ec_affine_to_jacobian(const EC_GROUP *group, EC_RAW_POINT *out, |
|
const EC_AFFINE *p) { |
|
out->X = p->X; |
|
out->Y = p->Y; |
|
out->Z = group->one; |
|
} |
|
|
|
int ec_jacobian_to_affine(const EC_GROUP *group, EC_AFFINE *out, |
|
const EC_RAW_POINT *p) { |
|
return group->meth->point_get_affine_coordinates(group, p, &out->X, &out->Y); |
|
} |
|
|
|
int ec_jacobian_to_affine_batch(const EC_GROUP *group, EC_AFFINE *out, |
|
const EC_RAW_POINT *in, size_t num) { |
|
if (group->meth->jacobian_to_affine_batch == NULL) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
|
return 0; |
|
} |
|
return group->meth->jacobian_to_affine_batch(group, out, in, num); |
|
} |
|
|
|
int ec_point_set_affine_coordinates(const EC_GROUP *group, EC_AFFINE *out, |
|
const EC_FELEM *x, const EC_FELEM *y) { |
|
void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, |
|
const EC_FELEM *b) = group->meth->felem_mul; |
|
void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = |
|
group->meth->felem_sqr; |
|
|
|
// Check if the point is on the curve. |
|
EC_FELEM lhs, rhs; |
|
felem_sqr(group, &lhs, y); // lhs = y^2 |
|
felem_sqr(group, &rhs, x); // rhs = x^2 |
|
ec_felem_add(group, &rhs, &rhs, &group->a); // rhs = x^2 + a |
|
felem_mul(group, &rhs, &rhs, x); // rhs = x^3 + ax |
|
ec_felem_add(group, &rhs, &rhs, &group->b); // rhs = x^3 + ax + b |
|
if (!ec_felem_equal(group, &lhs, &rhs)) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_POINT_IS_NOT_ON_CURVE); |
|
// In the event of an error, defend against the caller not checking the |
|
// return value by setting a known safe value. Note this may not be possible |
|
// if the caller is in the process of constructing an arbitrary group and |
|
// the generator is missing. |
|
if (group->generator != NULL) { |
|
assert(ec_felem_equal(group, &group->one, &group->generator->raw.Z)); |
|
out->X = group->generator->raw.X; |
|
out->Y = group->generator->raw.Y; |
|
} |
|
return 0; |
|
} |
|
|
|
out->X = *x; |
|
out->Y = *y; |
|
return 1; |
|
} |
|
|
|
int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, |
|
const BIGNUM *x, const BIGNUM *y, |
|
BN_CTX *ctx) { |
|
if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
|
return 0; |
|
} |
|
|
|
if (x == NULL || y == NULL) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
|
return 0; |
|
} |
|
|
|
EC_FELEM x_felem, y_felem; |
|
EC_AFFINE affine; |
|
if (!ec_bignum_to_felem(group, &x_felem, x) || |
|
!ec_bignum_to_felem(group, &y_felem, y) || |
|
!ec_point_set_affine_coordinates(group, &affine, &x_felem, &y_felem)) { |
|
// In the event of an error, defend against the caller not checking the |
|
// return value by setting a known safe value. |
|
ec_set_to_safe_point(group, &point->raw); |
|
return 0; |
|
} |
|
|
|
ec_affine_to_jacobian(group, &point->raw, &affine); |
|
return 1; |
|
} |
|
|
|
int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
|
const EC_POINT *b, BN_CTX *ctx) { |
|
if (EC_GROUP_cmp(group, r->group, NULL) != 0 || |
|
EC_GROUP_cmp(group, a->group, NULL) != 0 || |
|
EC_GROUP_cmp(group, b->group, NULL) != 0) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
|
return 0; |
|
} |
|
group->meth->add(group, &r->raw, &a->raw, &b->raw); |
|
return 1; |
|
} |
|
|
|
int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
|
BN_CTX *ctx) { |
|
if (EC_GROUP_cmp(group, r->group, NULL) != 0 || |
|
EC_GROUP_cmp(group, a->group, NULL) != 0) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
|
return 0; |
|
} |
|
group->meth->dbl(group, &r->raw, &a->raw); |
|
return 1; |
|
} |
|
|
|
|
|
int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx) { |
|
if (EC_GROUP_cmp(group, a->group, NULL) != 0) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
|
return 0; |
|
} |
|
ec_GFp_simple_invert(group, &a->raw); |
|
return 1; |
|
} |
|
|
|
static int arbitrary_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out, |
|
const BIGNUM *in, BN_CTX *ctx) { |
|
if (ec_bignum_to_scalar(group, out, in)) { |
|
return 1; |
|
} |
|
|
|
ERR_clear_error(); |
|
|
|
// This is an unusual input, so we do not guarantee constant-time processing. |
|
const BIGNUM *order = &group->order; |
|
BN_CTX_start(ctx); |
|
BIGNUM *tmp = BN_CTX_get(ctx); |
|
int ok = tmp != NULL && |
|
BN_nnmod(tmp, in, order, ctx) && |
|
ec_bignum_to_scalar(group, out, tmp); |
|
BN_CTX_end(ctx); |
|
return ok; |
|
} |
|
|
|
int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, |
|
const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) { |
|
// Previously, this function set |r| to the point at infinity if there was |
|
// nothing to multiply. But, nobody should be calling this function with |
|
// nothing to multiply in the first place. |
|
if ((g_scalar == NULL && p_scalar == NULL) || |
|
(p == NULL) != (p_scalar == NULL)) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
|
return 0; |
|
} |
|
|
|
if (EC_GROUP_cmp(group, r->group, NULL) != 0 || |
|
(p != NULL && EC_GROUP_cmp(group, p->group, NULL) != 0)) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
|
return 0; |
|
} |
|
|
|
int ret = 0; |
|
BN_CTX *new_ctx = NULL; |
|
if (ctx == NULL) { |
|
new_ctx = BN_CTX_new(); |
|
if (new_ctx == NULL) { |
|
goto err; |
|
} |
|
ctx = new_ctx; |
|
} |
|
|
|
// If both |g_scalar| and |p_scalar| are non-NULL, |
|
// |ec_point_mul_scalar_public| would share the doublings between the two |
|
// products, which would be more efficient. However, we conservatively assume |
|
// the caller needs a constant-time operation. (ECDSA verification does not |
|
// use this function.) |
|
// |
|
// Previously, the low-level constant-time multiplication function aligned |
|
// with this function's calling convention, but this was misleading. Curves |
|
// which combined the two multiplications did not avoid the doubling case |
|
// in the incomplete addition formula and were not constant-time. |
|
|
|
if (g_scalar != NULL) { |
|
EC_SCALAR scalar; |
|
if (!arbitrary_bignum_to_scalar(group, &scalar, g_scalar, ctx) || |
|
!ec_point_mul_scalar_base(group, &r->raw, &scalar)) { |
|
goto err; |
|
} |
|
} |
|
|
|
if (p_scalar != NULL) { |
|
EC_SCALAR scalar; |
|
EC_RAW_POINT tmp; |
|
if (!arbitrary_bignum_to_scalar(group, &scalar, p_scalar, ctx) || |
|
!ec_point_mul_scalar(group, &tmp, &p->raw, &scalar)) { |
|
goto err; |
|
} |
|
if (g_scalar == NULL) { |
|
OPENSSL_memcpy(&r->raw, &tmp, sizeof(EC_RAW_POINT)); |
|
} else { |
|
group->meth->add(group, &r->raw, &r->raw, &tmp); |
|
} |
|
} |
|
|
|
ret = 1; |
|
|
|
err: |
|
BN_CTX_free(new_ctx); |
|
return ret; |
|
} |
|
|
|
int ec_point_mul_scalar_public(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, |
|
const EC_SCALAR *p_scalar) { |
|
if (g_scalar == NULL || p_scalar == NULL || p == NULL) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
|
return 0; |
|
} |
|
|
|
if (group->meth->mul_public == NULL) { |
|
return group->meth->mul_public_batch(group, r, g_scalar, p, p_scalar, 1); |
|
} |
|
|
|
group->meth->mul_public(group, r, g_scalar, p, p_scalar); |
|
return 1; |
|
} |
|
|
|
int ec_point_mul_scalar_public_batch(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_SCALAR *g_scalar, |
|
const EC_RAW_POINT *points, |
|
const EC_SCALAR *scalars, size_t num) { |
|
if (group->meth->mul_public_batch == NULL) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
|
return 0; |
|
} |
|
|
|
return group->meth->mul_public_batch(group, r, g_scalar, points, scalars, |
|
num); |
|
} |
|
|
|
int ec_point_mul_scalar(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_RAW_POINT *p, const EC_SCALAR *scalar) { |
|
if (p == NULL || scalar == NULL) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
|
return 0; |
|
} |
|
|
|
group->meth->mul(group, r, p, scalar); |
|
|
|
// Check the result is on the curve to defend against fault attacks or bugs. |
|
// This has negligible cost compared to the multiplication. |
|
if (!ec_GFp_simple_is_on_curve(group, r)) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
int ec_point_mul_scalar_base(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_SCALAR *scalar) { |
|
if (scalar == NULL) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
|
return 0; |
|
} |
|
|
|
group->meth->mul_base(group, r, scalar); |
|
|
|
// Check the result is on the curve to defend against fault attacks or bugs. |
|
// This has negligible cost compared to the multiplication. |
|
if (!ec_GFp_simple_is_on_curve(group, r)) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
int ec_point_mul_scalar_batch(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_RAW_POINT *p0, const EC_SCALAR *scalar0, |
|
const EC_RAW_POINT *p1, const EC_SCALAR *scalar1, |
|
const EC_RAW_POINT *p2, |
|
const EC_SCALAR *scalar2) { |
|
if (group->meth->mul_batch == NULL) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
|
return 0; |
|
} |
|
|
|
group->meth->mul_batch(group, r, p0, scalar0, p1, scalar1, p2, scalar2); |
|
|
|
// Check the result is on the curve to defend against fault attacks or bugs. |
|
// This has negligible cost compared to the multiplication. |
|
if (!ec_GFp_simple_is_on_curve(group, r)) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
int ec_init_precomp(const EC_GROUP *group, EC_PRECOMP *out, |
|
const EC_RAW_POINT *p) { |
|
if (group->meth->init_precomp == NULL) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
|
return 0; |
|
} |
|
|
|
return group->meth->init_precomp(group, out, p); |
|
} |
|
|
|
int ec_point_mul_scalar_precomp(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_PRECOMP *p0, const EC_SCALAR *scalar0, |
|
const EC_PRECOMP *p1, const EC_SCALAR *scalar1, |
|
const EC_PRECOMP *p2, |
|
const EC_SCALAR *scalar2) { |
|
if (group->meth->mul_precomp == NULL) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
|
return 0; |
|
} |
|
|
|
group->meth->mul_precomp(group, r, p0, scalar0, p1, scalar1, p2, scalar2); |
|
|
|
// Check the result is on the curve to defend against fault attacks or bugs. |
|
// This has negligible cost compared to the multiplication. |
|
if (!ec_GFp_simple_is_on_curve(group, r)) { |
|
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
void ec_point_select(const EC_GROUP *group, EC_RAW_POINT *out, BN_ULONG mask, |
|
const EC_RAW_POINT *a, const EC_RAW_POINT *b) { |
|
ec_felem_select(group, &out->X, mask, &a->X, &b->X); |
|
ec_felem_select(group, &out->Y, mask, &a->Y, &b->Y); |
|
ec_felem_select(group, &out->Z, mask, &a->Z, &b->Z); |
|
} |
|
|
|
void ec_affine_select(const EC_GROUP *group, EC_AFFINE *out, BN_ULONG mask, |
|
const EC_AFFINE *a, const EC_AFFINE *b) { |
|
ec_felem_select(group, &out->X, mask, &a->X, &b->X); |
|
ec_felem_select(group, &out->Y, mask, &a->Y, &b->Y); |
|
} |
|
|
|
void ec_precomp_select(const EC_GROUP *group, EC_PRECOMP *out, BN_ULONG mask, |
|
const EC_PRECOMP *a, const EC_PRECOMP *b) { |
|
OPENSSL_STATIC_ASSERT(sizeof(out->comb) == sizeof(*out), |
|
"out->comb does not span the entire structure"); |
|
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(out->comb); i++) { |
|
ec_affine_select(group, &out->comb[i], mask, &a->comb[i], &b->comb[i]); |
|
} |
|
} |
|
|
|
int ec_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p, |
|
const EC_SCALAR *r) { |
|
return group->meth->cmp_x_coordinate(group, p, r); |
|
} |
|
|
|
int ec_get_x_coordinate_as_scalar(const EC_GROUP *group, EC_SCALAR *out, |
|
const EC_RAW_POINT *p) { |
|
uint8_t bytes[EC_MAX_BYTES]; |
|
size_t len; |
|
if (!ec_get_x_coordinate_as_bytes(group, bytes, &len, sizeof(bytes), p)) { |
|
return 0; |
|
} |
|
|
|
// For simplicity, in case of width mismatches between |group->field| and |
|
// |group->order|, zero any untouched words in |out|. |
|
OPENSSL_memset(out, 0, sizeof(EC_SCALAR)); |
|
for (size_t i = 0; i < len; i++) { |
|
out->bytes[len - i - 1] = bytes[i]; |
|
} |
|
|
|
// We must have p < 2×order, assuming p is not tiny (p >= 17). Thus rather we |
|
// can reduce by performing at most one subtraction. |
|
// |
|
// Proof: We only work with prime order curves, so the number of points on |
|
// the curve is the order. Thus Hasse's theorem gives: |
|
// |
|
// |order - (p + 1)| <= 2×sqrt(p) |
|
// p + 1 - order <= 2×sqrt(p) |
|
// p + 1 - 2×sqrt(p) <= order |
|
// p + 1 - 2×(p/4) < order (p/4 > sqrt(p) for p >= 17) |
|
// p/2 < p/2 + 1 < order |
|
// p < 2×order |
|
// |
|
// Additionally, one can manually check this property for built-in curves. It |
|
// is enforced for legacy custom curves in |EC_GROUP_set_generator|. |
|
|
|
// The above does not guarantee |group->field| is not one word larger than |
|
// |group->order|, so read one extra carry word. |
|
BN_ULONG tmp[EC_MAX_WORDS]; |
|
BN_ULONG carry = |
|
group->order.width < EC_MAX_WORDS ? out->words[group->order.width] : 0; |
|
bn_reduce_once_in_place(out->words, carry, group->order.d, tmp, |
|
group->order.width); |
|
return 1; |
|
} |
|
|
|
int ec_get_x_coordinate_as_bytes(const EC_GROUP *group, uint8_t *out, |
|
size_t *out_len, size_t max_out, |
|
const EC_RAW_POINT *p) { |
|
size_t len = BN_num_bytes(&group->field); |
|
assert(len <= EC_MAX_BYTES); |
|
if (max_out < len) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL); |
|
return 0; |
|
} |
|
|
|
EC_FELEM x; |
|
if (!group->meth->point_get_affine_coordinates(group, p, &x, NULL)) { |
|
return 0; |
|
} |
|
|
|
ec_felem_to_bytes(group, out, out_len, &x); |
|
*out_len = len; |
|
return 1; |
|
} |
|
|
|
void ec_set_to_safe_point(const EC_GROUP *group, EC_RAW_POINT *out) { |
|
if (group->generator != NULL) { |
|
ec_GFp_simple_point_copy(out, &group->generator->raw); |
|
} else { |
|
// The generator can be missing if the caller is in the process of |
|
// constructing an arbitrary group. In this case, we give up and use the |
|
// point at infinity. |
|
ec_GFp_simple_point_set_to_infinity(group, out); |
|
} |
|
} |
|
|
|
void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag) {} |
|
|
|
const EC_METHOD *EC_GROUP_method_of(const EC_GROUP *group) { |
|
// This function exists purely to give callers a way to call |
|
// |EC_METHOD_get_field_type|. cryptography.io crashes if |EC_GROUP_method_of| |
|
// returns NULL, so return some other garbage pointer. |
|
return (const EC_METHOD *)0x12340000; |
|
} |
|
|
|
int EC_METHOD_get_field_type(const EC_METHOD *meth) { |
|
return NID_X9_62_prime_field; |
|
} |
|
|
|
void EC_GROUP_set_point_conversion_form(EC_GROUP *group, |
|
point_conversion_form_t form) { |
|
if (form != POINT_CONVERSION_UNCOMPRESSED) { |
|
abort(); |
|
} |
|
} |
|
|
|
size_t EC_get_builtin_curves(EC_builtin_curve *out_curves, |
|
size_t max_num_curves) { |
|
const struct built_in_curves *const curves = OPENSSL_built_in_curves(); |
|
|
|
for (size_t i = 0; i < max_num_curves && i < OPENSSL_NUM_BUILT_IN_CURVES; |
|
i++) { |
|
out_curves[i].comment = curves->curves[i].comment; |
|
out_curves[i].nid = curves->curves[i].nid; |
|
} |
|
|
|
return OPENSSL_NUM_BUILT_IN_CURVES; |
|
}
|
|
|