Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
749 lines
23 KiB
749 lines
23 KiB
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] */ |
|
|
|
#include <openssl/bn.h> |
|
|
|
#include <assert.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
#include <openssl/err.h> |
|
#include <openssl/mem.h> |
|
#include <openssl/type_check.h> |
|
|
|
#include "internal.h" |
|
#include "../../internal.h" |
|
|
|
|
|
#define BN_MUL_RECURSIVE_SIZE_NORMAL 16 |
|
#define BN_SQR_RECURSIVE_SIZE_NORMAL BN_MUL_RECURSIVE_SIZE_NORMAL |
|
|
|
|
|
static void bn_abs_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
|
size_t num, BN_ULONG *tmp) { |
|
BN_ULONG borrow = bn_sub_words(tmp, a, b, num); |
|
bn_sub_words(r, b, a, num); |
|
bn_select_words(r, 0 - borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, num); |
|
} |
|
|
|
static void bn_mul_normal(BN_ULONG *r, const BN_ULONG *a, size_t na, |
|
const BN_ULONG *b, size_t nb) { |
|
if (na < nb) { |
|
size_t itmp = na; |
|
na = nb; |
|
nb = itmp; |
|
const BN_ULONG *ltmp = a; |
|
a = b; |
|
b = ltmp; |
|
} |
|
BN_ULONG *rr = &(r[na]); |
|
if (nb == 0) { |
|
OPENSSL_memset(r, 0, na * sizeof(BN_ULONG)); |
|
return; |
|
} |
|
rr[0] = bn_mul_words(r, a, na, b[0]); |
|
|
|
for (;;) { |
|
if (--nb == 0) { |
|
return; |
|
} |
|
rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]); |
|
if (--nb == 0) { |
|
return; |
|
} |
|
rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]); |
|
if (--nb == 0) { |
|
return; |
|
} |
|
rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]); |
|
if (--nb == 0) { |
|
return; |
|
} |
|
rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]); |
|
rr += 4; |
|
r += 4; |
|
b += 4; |
|
} |
|
} |
|
|
|
// bn_sub_part_words sets |r| to |a| - |b|. It returns the borrow bit, which is |
|
// one if the operation underflowed and zero otherwise. |cl| is the common |
|
// length, that is, the shorter of len(a) or len(b). |dl| is the delta length, |
|
// that is, len(a) - len(b). |r|'s length matches the larger of |a| and |b|, or |
|
// cl + abs(dl). |
|
// |
|
// TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention |
|
// is confusing. |
|
static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, |
|
const BN_ULONG *b, int cl, int dl) { |
|
assert(cl >= 0); |
|
BN_ULONG borrow = bn_sub_words(r, a, b, cl); |
|
if (dl == 0) { |
|
return borrow; |
|
} |
|
|
|
r += cl; |
|
a += cl; |
|
b += cl; |
|
|
|
if (dl < 0) { |
|
// |a| is shorter than |b|. Complete the subtraction as if the excess words |
|
// in |a| were zeros. |
|
dl = -dl; |
|
for (int i = 0; i < dl; i++) { |
|
r[i] = 0u - b[i] - borrow; |
|
borrow |= r[i] != 0; |
|
} |
|
} else { |
|
// |b| is shorter than |a|. Complete the subtraction as if the excess words |
|
// in |b| were zeros. |
|
for (int i = 0; i < dl; i++) { |
|
// |r| and |a| may alias, so use a temporary. |
|
BN_ULONG tmp = a[i]; |
|
r[i] = a[i] - borrow; |
|
borrow = tmp < r[i]; |
|
} |
|
} |
|
|
|
return borrow; |
|
} |
|
|
|
// bn_abs_sub_part_words computes |r| = |a| - |b|, storing the absolute value |
|
// and returning a mask of all ones if the result was negative and all zeros if |
|
// the result was positive. |cl| and |dl| follow the |bn_sub_part_words| calling |
|
// convention. |
|
// |
|
// TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention |
|
// is confusing. |
|
static BN_ULONG bn_abs_sub_part_words(BN_ULONG *r, const BN_ULONG *a, |
|
const BN_ULONG *b, int cl, int dl, |
|
BN_ULONG *tmp) { |
|
BN_ULONG borrow = bn_sub_part_words(tmp, a, b, cl, dl); |
|
bn_sub_part_words(r, b, a, cl, -dl); |
|
int r_len = cl + (dl < 0 ? -dl : dl); |
|
borrow = 0 - borrow; |
|
bn_select_words(r, borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, r_len); |
|
return borrow; |
|
} |
|
|
|
int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
|
BN_CTX *ctx) { |
|
int cl = a->width < b->width ? a->width : b->width; |
|
int dl = a->width - b->width; |
|
int r_len = a->width < b->width ? b->width : a->width; |
|
BN_CTX_start(ctx); |
|
BIGNUM *tmp = BN_CTX_get(ctx); |
|
int ok = tmp != NULL && |
|
bn_wexpand(r, r_len) && |
|
bn_wexpand(tmp, r_len); |
|
if (ok) { |
|
bn_abs_sub_part_words(r->d, a->d, b->d, cl, dl, tmp->d); |
|
r->width = r_len; |
|
} |
|
BN_CTX_end(ctx); |
|
return ok; |
|
} |
|
|
|
// Karatsuba recursive multiplication algorithm |
|
// (cf. Knuth, The Art of Computer Programming, Vol. 2) |
|
|
|
// bn_mul_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r| has |
|
// length 2*|n2|, |a| has length |n2| + |dna|, |b| has length |n2| + |dnb|, and |
|
// |t| has length 4*|n2|. |n2| must be a power of two. Finally, we must have |
|
// -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dna| <= 0 and |
|
// -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dnb| <= 0. |
|
// |
|
// TODO(davidben): Simplify and |size_t| the calling convention around lengths |
|
// here. |
|
static void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
|
int n2, int dna, int dnb, BN_ULONG *t) { |
|
// |n2| is a power of two. |
|
assert(n2 != 0 && (n2 & (n2 - 1)) == 0); |
|
// Check |dna| and |dnb| are in range. |
|
assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dna && dna <= 0); |
|
assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dnb && dnb <= 0); |
|
|
|
// Only call bn_mul_comba 8 if n2 == 8 and the |
|
// two arrays are complete [steve] |
|
if (n2 == 8 && dna == 0 && dnb == 0) { |
|
bn_mul_comba8(r, a, b); |
|
return; |
|
} |
|
|
|
// Else do normal multiply |
|
if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { |
|
bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); |
|
if (dna + dnb < 0) { |
|
OPENSSL_memset(&r[2 * n2 + dna + dnb], 0, |
|
sizeof(BN_ULONG) * -(dna + dnb)); |
|
} |
|
return; |
|
} |
|
|
|
// Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|. |
|
// Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used |
|
// for recursive calls. |
|
// Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1 |
|
// to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as: |
|
// |
|
// a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0 |
|
// |
|
// Note that we know |n| >= |BN_MUL_RECURSIVE_SIZE_NORMAL|/2 above, so |
|
// |tna| and |tnb| are non-negative. |
|
int n = n2 / 2, tna = n + dna, tnb = n + dnb; |
|
|
|
// t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR |
|
// their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1 |
|
// themselves store the absolute value. |
|
BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]); |
|
neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]); |
|
|
|
// Compute: |
|
// t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)| |
|
// r0,r1 = a0 * b0 |
|
// r2,r3 = a1 * b1 |
|
if (n == 4 && dna == 0 && dnb == 0) { |
|
bn_mul_comba4(&t[n2], t, &t[n]); |
|
|
|
bn_mul_comba4(r, a, b); |
|
bn_mul_comba4(&r[n2], &a[n], &b[n]); |
|
} else if (n == 8 && dna == 0 && dnb == 0) { |
|
bn_mul_comba8(&t[n2], t, &t[n]); |
|
|
|
bn_mul_comba8(r, a, b); |
|
bn_mul_comba8(&r[n2], &a[n], &b[n]); |
|
} else { |
|
BN_ULONG *p = &t[n2 * 2]; |
|
bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p); |
|
bn_mul_recursive(r, a, b, n, 0, 0, p); |
|
bn_mul_recursive(&r[n2], &a[n], &b[n], n, dna, dnb, p); |
|
} |
|
|
|
// t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1 |
|
BN_ULONG c = bn_add_words(t, r, &r[n2], n2); |
|
|
|
// t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0. |
|
// The second term is stored as the absolute value, so we do this with a |
|
// constant-time select. |
|
BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2); |
|
BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2); |
|
bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2); |
|
OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t), |
|
"crypto_word_t is too small"); |
|
c = constant_time_select_w(neg, c_neg, c_pos); |
|
|
|
// We now have our three components. Add them together. |
|
// r1,r2,c = r1,r2 + t2,t3,c |
|
c += bn_add_words(&r[n], &r[n], &t[n2], n2); |
|
|
|
// Propagate the carry bit to the end. |
|
for (int i = n + n2; i < n2 + n2; i++) { |
|
BN_ULONG old = r[i]; |
|
r[i] = old + c; |
|
c = r[i] < old; |
|
} |
|
|
|
// The product should fit without carries. |
|
assert(c == 0); |
|
} |
|
|
|
// bn_mul_part_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r| |
|
// has length 4*|n|, |a| has length |n| + |tna|, |b| has length |n| + |tnb|, and |
|
// |t| has length 8*|n|. |n| must be a power of two. Additionally, we must have |
|
// 0 <= tna < n and 0 <= tnb < n, and |tna| and |tnb| must differ by at most |
|
// one. |
|
// |
|
// TODO(davidben): Make this take |size_t| and perhaps the actual lengths of |a| |
|
// and |b|. |
|
static void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a, |
|
const BN_ULONG *b, int n, int tna, int tnb, |
|
BN_ULONG *t) { |
|
// |n| is a power of two. |
|
assert(n != 0 && (n & (n - 1)) == 0); |
|
// Check |tna| and |tnb| are in range. |
|
assert(0 <= tna && tna < n); |
|
assert(0 <= tnb && tnb < n); |
|
assert(-1 <= tna - tnb && tna - tnb <= 1); |
|
|
|
int n2 = n * 2; |
|
if (n < 8) { |
|
bn_mul_normal(r, a, n + tna, b, n + tnb); |
|
OPENSSL_memset(r + n2 + tna + tnb, 0, n2 - tna - tnb); |
|
return; |
|
} |
|
|
|
// Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|. |a1| |
|
// and |b1| have size |tna| and |tnb|, respectively. |
|
// Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used |
|
// for recursive calls. |
|
// Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1 |
|
// to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as: |
|
// |
|
// a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0 |
|
|
|
// t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR |
|
// their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1 |
|
// themselves store the absolute value. |
|
BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]); |
|
neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]); |
|
|
|
// Compute: |
|
// t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)| |
|
// r0,r1 = a0 * b0 |
|
// r2,r3 = a1 * b1 |
|
if (n == 8) { |
|
bn_mul_comba8(&t[n2], t, &t[n]); |
|
bn_mul_comba8(r, a, b); |
|
|
|
bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb); |
|
// |bn_mul_normal| only writes |tna| + |tna| words. Zero the rest. |
|
OPENSSL_memset(&r[n2 + tna + tnb], 0, sizeof(BN_ULONG) * (n2 - tna - tnb)); |
|
} else { |
|
BN_ULONG *p = &t[n2 * 2]; |
|
bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p); |
|
bn_mul_recursive(r, a, b, n, 0, 0, p); |
|
|
|
OPENSSL_memset(&r[n2], 0, sizeof(BN_ULONG) * n2); |
|
if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL && |
|
tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { |
|
bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb); |
|
} else { |
|
int i = n; |
|
for (;;) { |
|
i /= 2; |
|
if (i < tna || i < tnb) { |
|
// E.g., n == 16, i == 8 and tna == 11. |tna| and |tnb| are within one |
|
// of each other, so if |tna| is larger and tna > i, then we know |
|
// tnb >= i, and this call is valid. |
|
bn_mul_part_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p); |
|
break; |
|
} |
|
if (i == tna || i == tnb) { |
|
// If there is only a bottom half to the number, just do it. We know |
|
// the larger of |tna - i| and |tnb - i| is zero. The other is zero or |
|
// -1 by because of |tna| and |tnb| differ by at most one. |
|
bn_mul_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p); |
|
break; |
|
} |
|
|
|
// This loop will eventually terminate when |i| falls below |
|
// |BN_MUL_RECURSIVE_SIZE_NORMAL| because we know one of |tna| and |tnb| |
|
// exceeds that. |
|
} |
|
} |
|
} |
|
|
|
// t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1 |
|
BN_ULONG c = bn_add_words(t, r, &r[n2], n2); |
|
|
|
// t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0. |
|
// The second term is stored as the absolute value, so we do this with a |
|
// constant-time select. |
|
BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2); |
|
BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2); |
|
bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2); |
|
OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t), |
|
"crypto_word_t is too small"); |
|
c = constant_time_select_w(neg, c_neg, c_pos); |
|
|
|
// We now have our three components. Add them together. |
|
// r1,r2,c = r1,r2 + t2,t3,c |
|
c += bn_add_words(&r[n], &r[n], &t[n2], n2); |
|
|
|
// Propagate the carry bit to the end. |
|
for (int i = n + n2; i < n2 + n2; i++) { |
|
BN_ULONG old = r[i]; |
|
r[i] = old + c; |
|
c = r[i] < old; |
|
} |
|
|
|
// The product should fit without carries. |
|
assert(c == 0); |
|
} |
|
|
|
// bn_mul_impl implements |BN_mul| and |bn_mul_consttime|. Note this function |
|
// breaks |BIGNUM| invariants and may return a negative zero. This is handled by |
|
// the callers. |
|
static int bn_mul_impl(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
|
BN_CTX *ctx) { |
|
int al = a->width; |
|
int bl = b->width; |
|
if (al == 0 || bl == 0) { |
|
BN_zero(r); |
|
return 1; |
|
} |
|
|
|
int ret = 0; |
|
BIGNUM *rr; |
|
BN_CTX_start(ctx); |
|
if (r == a || r == b) { |
|
rr = BN_CTX_get(ctx); |
|
if (rr == NULL) { |
|
goto err; |
|
} |
|
} else { |
|
rr = r; |
|
} |
|
rr->neg = a->neg ^ b->neg; |
|
|
|
int i = al - bl; |
|
if (i == 0) { |
|
if (al == 8) { |
|
if (!bn_wexpand(rr, 16)) { |
|
goto err; |
|
} |
|
rr->width = 16; |
|
bn_mul_comba8(rr->d, a->d, b->d); |
|
goto end; |
|
} |
|
} |
|
|
|
int top = al + bl; |
|
static const int kMulNormalSize = 16; |
|
if (al >= kMulNormalSize && bl >= kMulNormalSize) { |
|
if (-1 <= i && i <= 1) { |
|
// Find the largest power of two less than or equal to the larger length. |
|
int j; |
|
if (i >= 0) { |
|
j = BN_num_bits_word((BN_ULONG)al); |
|
} else { |
|
j = BN_num_bits_word((BN_ULONG)bl); |
|
} |
|
j = 1 << (j - 1); |
|
assert(j <= al || j <= bl); |
|
BIGNUM *t = BN_CTX_get(ctx); |
|
if (t == NULL) { |
|
goto err; |
|
} |
|
if (al > j || bl > j) { |
|
// We know |al| and |bl| are at most one from each other, so if al > j, |
|
// bl >= j, and vice versa. Thus we can use |bn_mul_part_recursive|. |
|
// |
|
// TODO(davidben): This codepath is almost unused in standard |
|
// algorithms. Is this optimization necessary? See notes in |
|
// https://boringssl-review.googlesource.com/q/I0bd604e2cd6a75c266f64476c23a730ca1721ea6 |
|
assert(al >= j && bl >= j); |
|
if (!bn_wexpand(t, j * 8) || |
|
!bn_wexpand(rr, j * 4)) { |
|
goto err; |
|
} |
|
bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); |
|
} else { |
|
// al <= j && bl <= j. Additionally, we know j <= al or j <= bl, so one |
|
// of al - j or bl - j is zero. The other, by the bound on |i| above, is |
|
// zero or -1. Thus, we can use |bn_mul_recursive|. |
|
if (!bn_wexpand(t, j * 4) || |
|
!bn_wexpand(rr, j * 2)) { |
|
goto err; |
|
} |
|
bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); |
|
} |
|
rr->width = top; |
|
goto end; |
|
} |
|
} |
|
|
|
if (!bn_wexpand(rr, top)) { |
|
goto err; |
|
} |
|
rr->width = top; |
|
bn_mul_normal(rr->d, a->d, al, b->d, bl); |
|
|
|
end: |
|
if (r != rr && !BN_copy(r, rr)) { |
|
goto err; |
|
} |
|
ret = 1; |
|
|
|
err: |
|
BN_CTX_end(ctx); |
|
return ret; |
|
} |
|
|
|
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { |
|
if (!bn_mul_impl(r, a, b, ctx)) { |
|
return 0; |
|
} |
|
|
|
// This additionally fixes any negative zeros created by |bn_mul_impl|. |
|
bn_set_minimal_width(r); |
|
return 1; |
|
} |
|
|
|
int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { |
|
// Prevent negative zeros. |
|
if (a->neg || b->neg) { |
|
OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
|
return 0; |
|
} |
|
|
|
return bn_mul_impl(r, a, b, ctx); |
|
} |
|
|
|
void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a, |
|
const BN_ULONG *b, size_t num_b) { |
|
if (num_r != num_a + num_b) { |
|
abort(); |
|
} |
|
// TODO(davidben): Should this call |bn_mul_comba4| too? |BN_mul| does not |
|
// hit that code. |
|
if (num_a == 8 && num_b == 8) { |
|
bn_mul_comba8(r, a, b); |
|
} else { |
|
bn_mul_normal(r, a, num_a, b, num_b); |
|
} |
|
} |
|
|
|
// tmp must have 2*n words |
|
static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, size_t n, |
|
BN_ULONG *tmp) { |
|
if (n == 0) { |
|
return; |
|
} |
|
|
|
size_t max = n * 2; |
|
const BN_ULONG *ap = a; |
|
BN_ULONG *rp = r; |
|
rp[0] = rp[max - 1] = 0; |
|
rp++; |
|
|
|
// Compute the contribution of a[i] * a[j] for all i < j. |
|
if (n > 1) { |
|
ap++; |
|
rp[n - 1] = bn_mul_words(rp, ap, n - 1, ap[-1]); |
|
rp += 2; |
|
} |
|
if (n > 2) { |
|
for (size_t i = n - 2; i > 0; i--) { |
|
ap++; |
|
rp[i] = bn_mul_add_words(rp, ap, i, ap[-1]); |
|
rp += 2; |
|
} |
|
} |
|
|
|
// The final result fits in |max| words, so none of the following operations |
|
// will overflow. |
|
|
|
// Double |r|, giving the contribution of a[i] * a[j] for all i != j. |
|
bn_add_words(r, r, r, max); |
|
|
|
// Add in the contribution of a[i] * a[i] for all i. |
|
bn_sqr_words(tmp, a, n); |
|
bn_add_words(r, r, tmp, max); |
|
} |
|
|
|
// bn_sqr_recursive sets |r| to |a|^2, using |t| as scratch space. |r| has |
|
// length 2*|n2|, |a| has length |n2|, and |t| has length 4*|n2|. |n2| must be |
|
// a power of two. |
|
static void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, size_t n2, |
|
BN_ULONG *t) { |
|
// |n2| is a power of two. |
|
assert(n2 != 0 && (n2 & (n2 - 1)) == 0); |
|
|
|
if (n2 == 4) { |
|
bn_sqr_comba4(r, a); |
|
return; |
|
} |
|
if (n2 == 8) { |
|
bn_sqr_comba8(r, a); |
|
return; |
|
} |
|
if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) { |
|
bn_sqr_normal(r, a, n2, t); |
|
return; |
|
} |
|
|
|
// Split |a| into a0,a1, each of size |n|. |
|
// Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used |
|
// for recursive calls. |
|
// Split |r| into r0,r1,r2,r3. We must contribute a0^2 to r0,r1, 2*a0*a1 to |
|
// r1,r2, and a1^2 to r2,r3. |
|
size_t n = n2 / 2; |
|
BN_ULONG *t_recursive = &t[n2 * 2]; |
|
|
|
// t0 = |a0 - a1|. |
|
bn_abs_sub_words(t, a, &a[n], n, &t[n]); |
|
// t2,t3 = t0^2 = |a0 - a1|^2 = a0^2 - 2*a0*a1 + a1^2 |
|
bn_sqr_recursive(&t[n2], t, n, t_recursive); |
|
|
|
// r0,r1 = a0^2 |
|
bn_sqr_recursive(r, a, n, t_recursive); |
|
|
|
// r2,r3 = a1^2 |
|
bn_sqr_recursive(&r[n2], &a[n], n, t_recursive); |
|
|
|
// t0,t1,c = r0,r1 + r2,r3 = a0^2 + a1^2 |
|
BN_ULONG c = bn_add_words(t, r, &r[n2], n2); |
|
// t2,t3,c = t0,t1,c - t2,t3 = 2*a0*a1 |
|
c -= bn_sub_words(&t[n2], t, &t[n2], n2); |
|
|
|
// We now have our three components. Add them together. |
|
// r1,r2,c = r1,r2 + t2,t3,c |
|
c += bn_add_words(&r[n], &r[n], &t[n2], n2); |
|
|
|
// Propagate the carry bit to the end. |
|
for (size_t i = n + n2; i < n2 + n2; i++) { |
|
BN_ULONG old = r[i]; |
|
r[i] = old + c; |
|
c = r[i] < old; |
|
} |
|
|
|
// The square should fit without carries. |
|
assert(c == 0); |
|
} |
|
|
|
int BN_mul_word(BIGNUM *bn, BN_ULONG w) { |
|
if (!bn->width) { |
|
return 1; |
|
} |
|
|
|
if (w == 0) { |
|
BN_zero(bn); |
|
return 1; |
|
} |
|
|
|
BN_ULONG ll = bn_mul_words(bn->d, bn->d, bn->width, w); |
|
if (ll) { |
|
if (!bn_wexpand(bn, bn->width + 1)) { |
|
return 0; |
|
} |
|
bn->d[bn->width++] = ll; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { |
|
int al = a->width; |
|
if (al <= 0) { |
|
r->width = 0; |
|
r->neg = 0; |
|
return 1; |
|
} |
|
|
|
int ret = 0; |
|
BN_CTX_start(ctx); |
|
BIGNUM *rr = (a != r) ? r : BN_CTX_get(ctx); |
|
BIGNUM *tmp = BN_CTX_get(ctx); |
|
if (!rr || !tmp) { |
|
goto err; |
|
} |
|
|
|
int max = 2 * al; // Non-zero (from above) |
|
if (!bn_wexpand(rr, max)) { |
|
goto err; |
|
} |
|
|
|
if (al == 4) { |
|
bn_sqr_comba4(rr->d, a->d); |
|
} else if (al == 8) { |
|
bn_sqr_comba8(rr->d, a->d); |
|
} else { |
|
if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) { |
|
BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2]; |
|
bn_sqr_normal(rr->d, a->d, al, t); |
|
} else { |
|
// If |al| is a power of two, we can use |bn_sqr_recursive|. |
|
if (al != 0 && (al & (al - 1)) == 0) { |
|
if (!bn_wexpand(tmp, al * 4)) { |
|
goto err; |
|
} |
|
bn_sqr_recursive(rr->d, a->d, al, tmp->d); |
|
} else { |
|
if (!bn_wexpand(tmp, max)) { |
|
goto err; |
|
} |
|
bn_sqr_normal(rr->d, a->d, al, tmp->d); |
|
} |
|
} |
|
} |
|
|
|
rr->neg = 0; |
|
rr->width = max; |
|
|
|
if (rr != r && !BN_copy(r, rr)) { |
|
goto err; |
|
} |
|
ret = 1; |
|
|
|
err: |
|
BN_CTX_end(ctx); |
|
return ret; |
|
} |
|
|
|
int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { |
|
if (!bn_sqr_consttime(r, a, ctx)) { |
|
return 0; |
|
} |
|
|
|
bn_set_minimal_width(r); |
|
return 1; |
|
} |
|
|
|
void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a) { |
|
if (num_r != 2 * num_a || num_a > BN_SMALL_MAX_WORDS) { |
|
abort(); |
|
} |
|
if (num_a == 4) { |
|
bn_sqr_comba4(r, a); |
|
} else if (num_a == 8) { |
|
bn_sqr_comba8(r, a); |
|
} else { |
|
BN_ULONG tmp[2 * BN_SMALL_MAX_WORDS]; |
|
bn_sqr_normal(r, a, num_a, tmp); |
|
OPENSSL_cleanse(tmp, 2 * num_a * sizeof(BN_ULONG)); |
|
} |
|
}
|
|
|