Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1288 lines
36 KiB
1288 lines
36 KiB
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] |
|
*/ |
|
/* ==================================================================== |
|
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* openssl-core@openssl.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). */ |
|
|
|
#include <openssl/bn.h> |
|
|
|
#include <assert.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
#include <openssl/cpu.h> |
|
#include <openssl/err.h> |
|
#include <openssl/mem.h> |
|
|
|
#include "internal.h" |
|
#include "rsaz_exp.h" |
|
|
|
|
|
int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { |
|
int i, bits, ret = 0; |
|
BIGNUM *v, *rr; |
|
|
|
BN_CTX_start(ctx); |
|
if (r == a || r == p) { |
|
rr = BN_CTX_get(ctx); |
|
} else { |
|
rr = r; |
|
} |
|
|
|
v = BN_CTX_get(ctx); |
|
if (rr == NULL || v == NULL) { |
|
goto err; |
|
} |
|
|
|
if (BN_copy(v, a) == NULL) { |
|
goto err; |
|
} |
|
bits = BN_num_bits(p); |
|
|
|
if (BN_is_odd(p)) { |
|
if (BN_copy(rr, a) == NULL) { |
|
goto err; |
|
} |
|
} else { |
|
if (!BN_one(rr)) { |
|
goto err; |
|
} |
|
} |
|
|
|
for (i = 1; i < bits; i++) { |
|
if (!BN_sqr(v, v, ctx)) { |
|
goto err; |
|
} |
|
if (BN_is_bit_set(p, i)) { |
|
if (!BN_mul(rr, rr, v, ctx)) { |
|
goto err; |
|
} |
|
} |
|
} |
|
|
|
if (r != rr && !BN_copy(r, rr)) { |
|
goto err; |
|
} |
|
ret = 1; |
|
|
|
err: |
|
BN_CTX_end(ctx); |
|
return ret; |
|
} |
|
|
|
typedef struct bn_recp_ctx_st { |
|
BIGNUM N; // the divisor |
|
BIGNUM Nr; // the reciprocal |
|
int num_bits; |
|
int shift; |
|
int flags; |
|
} BN_RECP_CTX; |
|
|
|
static void BN_RECP_CTX_init(BN_RECP_CTX *recp) { |
|
BN_init(&recp->N); |
|
BN_init(&recp->Nr); |
|
recp->num_bits = 0; |
|
recp->shift = 0; |
|
recp->flags = 0; |
|
} |
|
|
|
static void BN_RECP_CTX_free(BN_RECP_CTX *recp) { |
|
if (recp == NULL) { |
|
return; |
|
} |
|
|
|
BN_free(&recp->N); |
|
BN_free(&recp->Nr); |
|
} |
|
|
|
static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) { |
|
if (!BN_copy(&(recp->N), d)) { |
|
return 0; |
|
} |
|
BN_zero(&recp->Nr); |
|
recp->num_bits = BN_num_bits(d); |
|
recp->shift = 0; |
|
|
|
return 1; |
|
} |
|
|
|
// len is the expected size of the result We actually calculate with an extra |
|
// word of precision, so we can do faster division if the remainder is not |
|
// required. |
|
// r := 2^len / m |
|
static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) { |
|
int ret = -1; |
|
BIGNUM *t; |
|
|
|
BN_CTX_start(ctx); |
|
t = BN_CTX_get(ctx); |
|
if (t == NULL) { |
|
goto err; |
|
} |
|
|
|
if (!BN_set_bit(t, len)) { |
|
goto err; |
|
} |
|
|
|
if (!BN_div(r, NULL, t, m, ctx)) { |
|
goto err; |
|
} |
|
|
|
ret = len; |
|
|
|
err: |
|
BN_CTX_end(ctx); |
|
return ret; |
|
} |
|
|
|
static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, |
|
BN_RECP_CTX *recp, BN_CTX *ctx) { |
|
int i, j, ret = 0; |
|
BIGNUM *a, *b, *d, *r; |
|
|
|
BN_CTX_start(ctx); |
|
a = BN_CTX_get(ctx); |
|
b = BN_CTX_get(ctx); |
|
if (dv != NULL) { |
|
d = dv; |
|
} else { |
|
d = BN_CTX_get(ctx); |
|
} |
|
|
|
if (rem != NULL) { |
|
r = rem; |
|
} else { |
|
r = BN_CTX_get(ctx); |
|
} |
|
|
|
if (a == NULL || b == NULL || d == NULL || r == NULL) { |
|
goto err; |
|
} |
|
|
|
if (BN_ucmp(m, &recp->N) < 0) { |
|
BN_zero(d); |
|
if (!BN_copy(r, m)) { |
|
goto err; |
|
} |
|
BN_CTX_end(ctx); |
|
return 1; |
|
} |
|
|
|
// We want the remainder |
|
// Given input of ABCDEF / ab |
|
// we need multiply ABCDEF by 3 digests of the reciprocal of ab |
|
|
|
// i := max(BN_num_bits(m), 2*BN_num_bits(N)) |
|
i = BN_num_bits(m); |
|
j = recp->num_bits << 1; |
|
if (j > i) { |
|
i = j; |
|
} |
|
|
|
// Nr := round(2^i / N) |
|
if (i != recp->shift) { |
|
recp->shift = |
|
BN_reciprocal(&(recp->Nr), &(recp->N), i, |
|
ctx); // BN_reciprocal returns i, or -1 for an error |
|
} |
|
|
|
if (recp->shift == -1) { |
|
goto err; |
|
} |
|
|
|
// d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i - |
|
// BN_num_bits(N)))| |
|
// = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i - |
|
// BN_num_bits(N)))| |
|
// <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)| |
|
// = |m/N| |
|
if (!BN_rshift(a, m, recp->num_bits)) { |
|
goto err; |
|
} |
|
if (!BN_mul(b, a, &(recp->Nr), ctx)) { |
|
goto err; |
|
} |
|
if (!BN_rshift(d, b, i - recp->num_bits)) { |
|
goto err; |
|
} |
|
d->neg = 0; |
|
|
|
if (!BN_mul(b, &(recp->N), d, ctx)) { |
|
goto err; |
|
} |
|
if (!BN_usub(r, m, b)) { |
|
goto err; |
|
} |
|
r->neg = 0; |
|
|
|
j = 0; |
|
while (BN_ucmp(r, &(recp->N)) >= 0) { |
|
if (j++ > 2) { |
|
OPENSSL_PUT_ERROR(BN, BN_R_BAD_RECIPROCAL); |
|
goto err; |
|
} |
|
if (!BN_usub(r, r, &(recp->N))) { |
|
goto err; |
|
} |
|
if (!BN_add_word(d, 1)) { |
|
goto err; |
|
} |
|
} |
|
|
|
r->neg = BN_is_zero(r) ? 0 : m->neg; |
|
d->neg = m->neg ^ recp->N.neg; |
|
ret = 1; |
|
|
|
err: |
|
BN_CTX_end(ctx); |
|
return ret; |
|
} |
|
|
|
static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, |
|
BN_RECP_CTX *recp, BN_CTX *ctx) { |
|
int ret = 0; |
|
BIGNUM *a; |
|
const BIGNUM *ca; |
|
|
|
BN_CTX_start(ctx); |
|
a = BN_CTX_get(ctx); |
|
if (a == NULL) { |
|
goto err; |
|
} |
|
|
|
if (y != NULL) { |
|
if (x == y) { |
|
if (!BN_sqr(a, x, ctx)) { |
|
goto err; |
|
} |
|
} else { |
|
if (!BN_mul(a, x, y, ctx)) { |
|
goto err; |
|
} |
|
} |
|
ca = a; |
|
} else { |
|
ca = x; // Just do the mod |
|
} |
|
|
|
ret = BN_div_recp(NULL, r, ca, recp, ctx); |
|
|
|
err: |
|
BN_CTX_end(ctx); |
|
return ret; |
|
} |
|
|
|
// BN_window_bits_for_exponent_size returns sliding window size for mod_exp with |
|
// a |b| bit exponent. |
|
// |
|
// For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of |
|
// multiplications is a constant plus on average |
|
// |
|
// 2^(w-1) + (b-w)/(w+1); |
|
// |
|
// here 2^(w-1) is for precomputing the table (we actually need entries only |
|
// for windows that have the lowest bit set), and (b-w)/(w+1) is an |
|
// approximation for the expected number of w-bit windows, not counting the |
|
// first one. |
|
// |
|
// Thus we should use |
|
// |
|
// w >= 6 if b > 671 |
|
// w = 5 if 671 > b > 239 |
|
// w = 4 if 239 > b > 79 |
|
// w = 3 if 79 > b > 23 |
|
// w <= 2 if 23 > b |
|
// |
|
// (with draws in between). Very small exponents are often selected |
|
// with low Hamming weight, so we use w = 1 for b <= 23. |
|
static int BN_window_bits_for_exponent_size(int b) { |
|
if (b > 671) { |
|
return 6; |
|
} |
|
if (b > 239) { |
|
return 5; |
|
} |
|
if (b > 79) { |
|
return 4; |
|
} |
|
if (b > 23) { |
|
return 3; |
|
} |
|
return 1; |
|
} |
|
|
|
// TABLE_SIZE is the maximum precomputation table size for *variable* sliding |
|
// windows. This must be 2^(max_window - 1), where max_window is the largest |
|
// value returned from |BN_window_bits_for_exponent_size|. |
|
#define TABLE_SIZE 32 |
|
|
|
// TABLE_BITS_SMALL is the smallest value returned from |
|
// |BN_window_bits_for_exponent_size| when |b| is at most |BN_BITS2| * |
|
// |BN_SMALL_MAX_WORDS| words. |
|
#define TABLE_BITS_SMALL 5 |
|
|
|
// TABLE_SIZE_SMALL is the same as |TABLE_SIZE|, but when |b| is at most |
|
// |BN_BITS2| * |BN_SMALL_MAX_WORDS|. |
|
#define TABLE_SIZE_SMALL (1 << (TABLE_BITS_SMALL - 1)) |
|
|
|
static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
|
const BIGNUM *m, BN_CTX *ctx) { |
|
int i, j, ret = 0, wstart, window; |
|
int start = 1; |
|
BIGNUM *aa; |
|
// Table of variables obtained from 'ctx' |
|
BIGNUM *val[TABLE_SIZE]; |
|
BN_RECP_CTX recp; |
|
|
|
// This function is only called on even moduli. |
|
assert(!BN_is_odd(m)); |
|
|
|
int bits = BN_num_bits(p); |
|
if (bits == 0) { |
|
return BN_one(r); |
|
} |
|
|
|
BN_CTX_start(ctx); |
|
aa = BN_CTX_get(ctx); |
|
val[0] = BN_CTX_get(ctx); |
|
if (!aa || !val[0]) { |
|
goto err; |
|
} |
|
|
|
BN_RECP_CTX_init(&recp); |
|
if (m->neg) { |
|
// ignore sign of 'm' |
|
if (!BN_copy(aa, m)) { |
|
goto err; |
|
} |
|
aa->neg = 0; |
|
if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) { |
|
goto err; |
|
} |
|
} else { |
|
if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) { |
|
goto err; |
|
} |
|
} |
|
|
|
if (!BN_nnmod(val[0], a, m, ctx)) { |
|
goto err; // 1 |
|
} |
|
if (BN_is_zero(val[0])) { |
|
BN_zero(r); |
|
ret = 1; |
|
goto err; |
|
} |
|
|
|
window = BN_window_bits_for_exponent_size(bits); |
|
if (window > 1) { |
|
if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) { |
|
goto err; // 2 |
|
} |
|
j = 1 << (window - 1); |
|
for (i = 1; i < j; i++) { |
|
if (((val[i] = BN_CTX_get(ctx)) == NULL) || |
|
!BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) { |
|
goto err; |
|
} |
|
} |
|
} |
|
|
|
start = 1; // This is used to avoid multiplication etc |
|
// when there is only the value '1' in the |
|
// buffer. |
|
wstart = bits - 1; // The top bit of the window |
|
|
|
if (!BN_one(r)) { |
|
goto err; |
|
} |
|
|
|
for (;;) { |
|
int wvalue; // The 'value' of the window |
|
int wend; // The bottom bit of the window |
|
|
|
if (!BN_is_bit_set(p, wstart)) { |
|
if (!start) { |
|
if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) { |
|
goto err; |
|
} |
|
} |
|
if (wstart == 0) { |
|
break; |
|
} |
|
wstart--; |
|
continue; |
|
} |
|
|
|
// We now have wstart on a 'set' bit, we now need to work out |
|
// how bit a window to do. To do this we need to scan |
|
// forward until the last set bit before the end of the |
|
// window |
|
wvalue = 1; |
|
wend = 0; |
|
for (i = 1; i < window; i++) { |
|
if (wstart - i < 0) { |
|
break; |
|
} |
|
if (BN_is_bit_set(p, wstart - i)) { |
|
wvalue <<= (i - wend); |
|
wvalue |= 1; |
|
wend = i; |
|
} |
|
} |
|
|
|
// wend is the size of the current window |
|
j = wend + 1; |
|
// add the 'bytes above' |
|
if (!start) { |
|
for (i = 0; i < j; i++) { |
|
if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) { |
|
goto err; |
|
} |
|
} |
|
} |
|
|
|
// wvalue will be an odd number < 2^window |
|
if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) { |
|
goto err; |
|
} |
|
|
|
// move the 'window' down further |
|
wstart -= wend + 1; |
|
start = 0; |
|
if (wstart < 0) { |
|
break; |
|
} |
|
} |
|
ret = 1; |
|
|
|
err: |
|
BN_CTX_end(ctx); |
|
BN_RECP_CTX_free(&recp); |
|
return ret; |
|
} |
|
|
|
int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
|
BN_CTX *ctx) { |
|
if (m->neg) { |
|
OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
|
return 0; |
|
} |
|
if (a->neg || BN_ucmp(a, m) >= 0) { |
|
if (!BN_nnmod(r, a, m, ctx)) { |
|
return 0; |
|
} |
|
a = r; |
|
} |
|
|
|
if (BN_is_odd(m)) { |
|
return BN_mod_exp_mont(r, a, p, m, ctx, NULL); |
|
} |
|
|
|
return mod_exp_recp(r, a, p, m, ctx); |
|
} |
|
|
|
int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
|
const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont) { |
|
if (!BN_is_odd(m)) { |
|
OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); |
|
return 0; |
|
} |
|
if (m->neg) { |
|
OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
|
return 0; |
|
} |
|
if (a->neg || BN_ucmp(a, m) >= 0) { |
|
OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); |
|
return 0; |
|
} |
|
|
|
int bits = BN_num_bits(p); |
|
if (bits == 0) { |
|
// x**0 mod 1 is still zero. |
|
if (BN_abs_is_word(m, 1)) { |
|
BN_zero(rr); |
|
return 1; |
|
} |
|
return BN_one(rr); |
|
} |
|
|
|
int ret = 0; |
|
BIGNUM *val[TABLE_SIZE]; |
|
BN_MONT_CTX *new_mont = NULL; |
|
|
|
BN_CTX_start(ctx); |
|
BIGNUM *r = BN_CTX_get(ctx); |
|
val[0] = BN_CTX_get(ctx); |
|
if (r == NULL || val[0] == NULL) { |
|
goto err; |
|
} |
|
|
|
// Allocate a montgomery context if it was not supplied by the caller. |
|
if (mont == NULL) { |
|
new_mont = BN_MONT_CTX_new_consttime(m, ctx); |
|
if (new_mont == NULL) { |
|
goto err; |
|
} |
|
mont = new_mont; |
|
} |
|
|
|
// We exponentiate by looking at sliding windows of the exponent and |
|
// precomputing powers of |a|. Windows may be shifted so they always end on a |
|
// set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1) |
|
// for i = 0 to 2^(window-1), all in Montgomery form. |
|
int window = BN_window_bits_for_exponent_size(bits); |
|
if (!BN_to_montgomery(val[0], a, mont, ctx)) { |
|
goto err; |
|
} |
|
if (window > 1) { |
|
BIGNUM *d = BN_CTX_get(ctx); |
|
if (d == NULL || |
|
!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) { |
|
goto err; |
|
} |
|
for (int i = 1; i < 1 << (window - 1); i++) { |
|
val[i] = BN_CTX_get(ctx); |
|
if (val[i] == NULL || |
|
!BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) { |
|
goto err; |
|
} |
|
} |
|
} |
|
|
|
// |p| is non-zero, so at least one window is non-zero. To save some |
|
// multiplications, defer initializing |r| until then. |
|
int r_is_one = 1; |
|
int wstart = bits - 1; // The top bit of the window. |
|
for (;;) { |
|
if (!BN_is_bit_set(p, wstart)) { |
|
if (!r_is_one && !BN_mod_mul_montgomery(r, r, r, mont, ctx)) { |
|
goto err; |
|
} |
|
if (wstart == 0) { |
|
break; |
|
} |
|
wstart--; |
|
continue; |
|
} |
|
|
|
// We now have wstart on a set bit. Find the largest window we can use. |
|
int wvalue = 1; |
|
int wsize = 0; |
|
for (int i = 1; i < window && i <= wstart; i++) { |
|
if (BN_is_bit_set(p, wstart - i)) { |
|
wvalue <<= (i - wsize); |
|
wvalue |= 1; |
|
wsize = i; |
|
} |
|
} |
|
|
|
// Shift |r| to the end of the window. |
|
if (!r_is_one) { |
|
for (int i = 0; i < wsize + 1; i++) { |
|
if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) { |
|
goto err; |
|
} |
|
} |
|
} |
|
|
|
assert(wvalue & 1); |
|
assert(wvalue < (1 << window)); |
|
if (r_is_one) { |
|
if (!BN_copy(r, val[wvalue >> 1])) { |
|
goto err; |
|
} |
|
} else if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) { |
|
goto err; |
|
} |
|
|
|
r_is_one = 0; |
|
if (wstart == wsize) { |
|
break; |
|
} |
|
wstart -= wsize + 1; |
|
} |
|
|
|
// |p| is non-zero, so |r_is_one| must be cleared at some point. |
|
assert(!r_is_one); |
|
|
|
if (!BN_from_montgomery(rr, r, mont, ctx)) { |
|
goto err; |
|
} |
|
ret = 1; |
|
|
|
err: |
|
BN_MONT_CTX_free(new_mont); |
|
BN_CTX_end(ctx); |
|
return ret; |
|
} |
|
|
|
void bn_mod_exp_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num, |
|
const BN_ULONG *p, size_t num_p, |
|
const BN_MONT_CTX *mont) { |
|
if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS) { |
|
abort(); |
|
} |
|
assert(BN_is_odd(&mont->N)); |
|
|
|
// Count the number of bits in |p|. Note this function treats |p| as public. |
|
while (num_p != 0 && p[num_p - 1] == 0) { |
|
num_p--; |
|
} |
|
if (num_p == 0) { |
|
bn_from_montgomery_small(r, num, mont->RR.d, num, mont); |
|
return; |
|
} |
|
unsigned bits = BN_num_bits_word(p[num_p - 1]) + (num_p - 1) * BN_BITS2; |
|
assert(bits != 0); |
|
|
|
// We exponentiate by looking at sliding windows of the exponent and |
|
// precomputing powers of |a|. Windows may be shifted so they always end on a |
|
// set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1) for |
|
// i = 0 to 2^(window-1), all in Montgomery form. |
|
unsigned window = BN_window_bits_for_exponent_size(bits); |
|
if (window > TABLE_BITS_SMALL) { |
|
window = TABLE_BITS_SMALL; // Tolerate excessively large |p|. |
|
} |
|
BN_ULONG val[TABLE_SIZE_SMALL][BN_SMALL_MAX_WORDS]; |
|
OPENSSL_memcpy(val[0], a, num * sizeof(BN_ULONG)); |
|
if (window > 1) { |
|
BN_ULONG d[BN_SMALL_MAX_WORDS]; |
|
bn_mod_mul_montgomery_small(d, val[0], val[0], num, mont); |
|
for (unsigned i = 1; i < 1u << (window - 1); i++) { |
|
bn_mod_mul_montgomery_small(val[i], val[i - 1], d, num, mont); |
|
} |
|
} |
|
|
|
// |p| is non-zero, so at least one window is non-zero. To save some |
|
// multiplications, defer initializing |r| until then. |
|
int r_is_one = 1; |
|
unsigned wstart = bits - 1; // The top bit of the window. |
|
for (;;) { |
|
if (!bn_is_bit_set_words(p, num_p, wstart)) { |
|
if (!r_is_one) { |
|
bn_mod_mul_montgomery_small(r, r, r, num, mont); |
|
} |
|
if (wstart == 0) { |
|
break; |
|
} |
|
wstart--; |
|
continue; |
|
} |
|
|
|
// We now have wstart on a set bit. Find the largest window we can use. |
|
unsigned wvalue = 1; |
|
unsigned wsize = 0; |
|
for (unsigned i = 1; i < window && i <= wstart; i++) { |
|
if (bn_is_bit_set_words(p, num_p, wstart - i)) { |
|
wvalue <<= (i - wsize); |
|
wvalue |= 1; |
|
wsize = i; |
|
} |
|
} |
|
|
|
// Shift |r| to the end of the window. |
|
if (!r_is_one) { |
|
for (unsigned i = 0; i < wsize + 1; i++) { |
|
bn_mod_mul_montgomery_small(r, r, r, num, mont); |
|
} |
|
} |
|
|
|
assert(wvalue & 1); |
|
assert(wvalue < (1u << window)); |
|
if (r_is_one) { |
|
OPENSSL_memcpy(r, val[wvalue >> 1], num * sizeof(BN_ULONG)); |
|
} else { |
|
bn_mod_mul_montgomery_small(r, r, val[wvalue >> 1], num, mont); |
|
} |
|
r_is_one = 0; |
|
if (wstart == wsize) { |
|
break; |
|
} |
|
wstart -= wsize + 1; |
|
} |
|
|
|
// |p| is non-zero, so |r_is_one| must be cleared at some point. |
|
assert(!r_is_one); |
|
OPENSSL_cleanse(val, sizeof(val)); |
|
} |
|
|
|
void bn_mod_inverse0_prime_mont_small(BN_ULONG *r, const BN_ULONG *a, |
|
size_t num, const BN_MONT_CTX *mont) { |
|
if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS) { |
|
abort(); |
|
} |
|
|
|
// Per Fermat's Little Theorem, a^-1 = a^(p-2) (mod p) for p prime. |
|
BN_ULONG p_minus_two[BN_SMALL_MAX_WORDS]; |
|
const BN_ULONG *p = mont->N.d; |
|
OPENSSL_memcpy(p_minus_two, p, num * sizeof(BN_ULONG)); |
|
if (p_minus_two[0] >= 2) { |
|
p_minus_two[0] -= 2; |
|
} else { |
|
p_minus_two[0] -= 2; |
|
for (size_t i = 1; i < num; i++) { |
|
if (p_minus_two[i]-- != 0) { |
|
break; |
|
} |
|
} |
|
} |
|
|
|
bn_mod_exp_mont_small(r, a, num, p_minus_two, num, mont); |
|
} |
|
|
|
static void copy_to_prebuf(const BIGNUM *b, int top, BN_ULONG *table, int idx, |
|
int window) { |
|
int ret = bn_copy_words(table + idx * top, top, b); |
|
assert(ret); // |b| is guaranteed to fit. |
|
(void)ret; |
|
} |
|
|
|
static int copy_from_prebuf(BIGNUM *b, int top, const BN_ULONG *table, int idx, |
|
int window) { |
|
if (!bn_wexpand(b, top)) { |
|
return 0; |
|
} |
|
|
|
OPENSSL_memset(b->d, 0, sizeof(BN_ULONG) * top); |
|
const int width = 1 << window; |
|
for (int i = 0; i < width; i++, table += top) { |
|
BN_ULONG mask = constant_time_eq_int(i, idx); |
|
for (int j = 0; j < top; j++) { |
|
b->d[j] |= table[j] & mask; |
|
} |
|
} |
|
|
|
b->width = top; |
|
return 1; |
|
} |
|
|
|
#define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK \ |
|
(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1) |
|
|
|
// Window sizes optimized for fixed window size modular exponentiation |
|
// algorithm (BN_mod_exp_mont_consttime). |
|
// |
|
// To achieve the security goals of BN_mode_exp_mont_consttime, the maximum |
|
// size of the window must not exceed |
|
// log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). |
|
// |
|
// Window size thresholds are defined for cache line sizes of 32 and 64, cache |
|
// line sizes where log_2(32)=5 and log_2(64)=6 respectively. A window size of |
|
// 7 should only be used on processors that have a 128 byte or greater cache |
|
// line size. |
|
#if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64 |
|
|
|
#define BN_window_bits_for_ctime_exponent_size(b) \ |
|
((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1) |
|
#define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6) |
|
|
|
#elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32 |
|
|
|
#define BN_window_bits_for_ctime_exponent_size(b) \ |
|
((b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1) |
|
#define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5) |
|
|
|
#endif |
|
|
|
// Given a pointer value, compute the next address that is a cache line |
|
// multiple. |
|
#define MOD_EXP_CTIME_ALIGN(x_) \ |
|
((unsigned char *)(x_) + \ |
|
(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - \ |
|
(((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK)))) |
|
|
|
// This variant of |BN_mod_exp_mont| uses fixed windows and fixed memory access |
|
// patterns to protect secret exponents (cf. the hyper-threading timing attacks |
|
// pointed out by Colin Percival, |
|
// http://www.daemonology.net/hyperthreading-considered-harmful/) |
|
int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
|
const BIGNUM *m, BN_CTX *ctx, |
|
const BN_MONT_CTX *mont) { |
|
int i, ret = 0, window, wvalue; |
|
BN_MONT_CTX *new_mont = NULL; |
|
|
|
int numPowers; |
|
unsigned char *powerbufFree = NULL; |
|
int powerbufLen = 0; |
|
BN_ULONG *powerbuf = NULL; |
|
BIGNUM tmp, am; |
|
|
|
if (!BN_is_odd(m)) { |
|
OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); |
|
return 0; |
|
} |
|
if (m->neg) { |
|
OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
|
return 0; |
|
} |
|
if (a->neg || BN_ucmp(a, m) >= 0) { |
|
OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); |
|
return 0; |
|
} |
|
|
|
// Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak |
|
// whether the top bits are zero. |
|
int max_bits = p->width * BN_BITS2; |
|
int bits = max_bits; |
|
if (bits == 0) { |
|
// x**0 mod 1 is still zero. |
|
if (BN_abs_is_word(m, 1)) { |
|
BN_zero(rr); |
|
return 1; |
|
} |
|
return BN_one(rr); |
|
} |
|
|
|
// Allocate a montgomery context if it was not supplied by the caller. |
|
if (mont == NULL) { |
|
new_mont = BN_MONT_CTX_new_consttime(m, ctx); |
|
if (new_mont == NULL) { |
|
goto err; |
|
} |
|
mont = new_mont; |
|
} |
|
|
|
// Use the width in |mont->N|, rather than the copy in |m|. The assembly |
|
// implementation assumes it can use |top| to size R. |
|
int top = mont->N.width; |
|
|
|
#if defined(OPENSSL_BN_ASM_MONT5) || defined(RSAZ_ENABLED) |
|
// Share one large stack-allocated buffer between the RSAZ and non-RSAZ code |
|
// paths. If we were to use separate static buffers for each then there is |
|
// some chance that both large buffers would be allocated on the stack, |
|
// causing the stack space requirement to be truly huge (~10KB). |
|
alignas(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH) BN_ULONG |
|
storage[MOD_EXP_CTIME_STORAGE_LEN]; |
|
#endif |
|
#if defined(RSAZ_ENABLED) |
|
// If the size of the operands allow it, perform the optimized RSAZ |
|
// exponentiation. For further information see crypto/fipsmodule/bn/rsaz_exp.c |
|
// and accompanying assembly modules. |
|
if (a->width == 16 && p->width == 16 && BN_num_bits(m) == 1024 && |
|
rsaz_avx2_preferred()) { |
|
if (!bn_wexpand(rr, 16)) { |
|
goto err; |
|
} |
|
RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0], |
|
storage); |
|
rr->width = 16; |
|
rr->neg = 0; |
|
ret = 1; |
|
goto err; |
|
} |
|
#endif |
|
|
|
// Get the window size to use with size of p. |
|
window = BN_window_bits_for_ctime_exponent_size(bits); |
|
#if defined(OPENSSL_BN_ASM_MONT5) |
|
if (window >= 5) { |
|
window = 5; // ~5% improvement for RSA2048 sign, and even for RSA4096 |
|
// reserve space for mont->N.d[] copy |
|
powerbufLen += top * sizeof(mont->N.d[0]); |
|
} |
|
#endif |
|
|
|
// Allocate a buffer large enough to hold all of the pre-computed |
|
// powers of am, am itself and tmp. |
|
numPowers = 1 << window; |
|
powerbufLen += |
|
sizeof(m->d[0]) * |
|
(top * numPowers + ((2 * top) > numPowers ? (2 * top) : numPowers)); |
|
|
|
#if defined(OPENSSL_BN_ASM_MONT5) |
|
if ((size_t)powerbufLen <= sizeof(storage)) { |
|
powerbuf = storage; |
|
} |
|
// |storage| is more than large enough to handle 1024-bit inputs. |
|
assert(powerbuf != NULL || top * BN_BITS2 > 1024); |
|
#endif |
|
if (powerbuf == NULL) { |
|
powerbufFree = |
|
OPENSSL_malloc(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH); |
|
if (powerbufFree == NULL) { |
|
goto err; |
|
} |
|
powerbuf = (BN_ULONG *)MOD_EXP_CTIME_ALIGN(powerbufFree); |
|
} |
|
OPENSSL_memset(powerbuf, 0, powerbufLen); |
|
|
|
// lay down tmp and am right after powers table |
|
tmp.d = powerbuf + top * numPowers; |
|
am.d = tmp.d + top; |
|
tmp.width = am.width = 0; |
|
tmp.dmax = am.dmax = top; |
|
tmp.neg = am.neg = 0; |
|
tmp.flags = am.flags = BN_FLG_STATIC_DATA; |
|
|
|
if (!bn_one_to_montgomery(&tmp, mont, ctx)) { |
|
goto err; |
|
} |
|
|
|
// prepare a^1 in Montgomery domain |
|
assert(!a->neg); |
|
assert(BN_ucmp(a, m) < 0); |
|
if (!BN_to_montgomery(&am, a, mont, ctx)) { |
|
goto err; |
|
} |
|
|
|
#if defined(OPENSSL_BN_ASM_MONT5) |
|
// This optimization uses ideas from http://eprint.iacr.org/2011/239, |
|
// specifically optimization of cache-timing attack countermeasures |
|
// and pre-computation optimization. |
|
|
|
// Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as |
|
// 512-bit RSA is hardly relevant, we omit it to spare size... |
|
if (window == 5 && top > 1) { |
|
const BN_ULONG *n0 = mont->n0; |
|
BN_ULONG *np; |
|
|
|
// BN_to_montgomery can contaminate words above .top |
|
// [in BN_DEBUG[_DEBUG] build]... |
|
for (i = am.width; i < top; i++) { |
|
am.d[i] = 0; |
|
} |
|
for (i = tmp.width; i < top; i++) { |
|
tmp.d[i] = 0; |
|
} |
|
|
|
// copy mont->N.d[] to improve cache locality |
|
for (np = am.d + top, i = 0; i < top; i++) { |
|
np[i] = mont->N.d[i]; |
|
} |
|
|
|
bn_scatter5(tmp.d, top, powerbuf, 0); |
|
bn_scatter5(am.d, am.width, powerbuf, 1); |
|
bn_mul_mont(tmp.d, am.d, am.d, np, n0, top); |
|
bn_scatter5(tmp.d, top, powerbuf, 2); |
|
|
|
// same as above, but uses squaring for 1/2 of operations |
|
for (i = 4; i < 32; i *= 2) { |
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
|
bn_scatter5(tmp.d, top, powerbuf, i); |
|
} |
|
for (i = 3; i < 8; i += 2) { |
|
int j; |
|
bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); |
|
bn_scatter5(tmp.d, top, powerbuf, i); |
|
for (j = 2 * i; j < 32; j *= 2) { |
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
|
bn_scatter5(tmp.d, top, powerbuf, j); |
|
} |
|
} |
|
for (; i < 16; i += 2) { |
|
bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); |
|
bn_scatter5(tmp.d, top, powerbuf, i); |
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
|
bn_scatter5(tmp.d, top, powerbuf, 2 * i); |
|
} |
|
for (; i < 32; i += 2) { |
|
bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); |
|
bn_scatter5(tmp.d, top, powerbuf, i); |
|
} |
|
|
|
bits--; |
|
for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) { |
|
wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
|
} |
|
bn_gather5(tmp.d, top, powerbuf, wvalue); |
|
|
|
// At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit |
|
// that has not been read yet.) |
|
assert(bits >= -1 && (bits == -1 || bits % 5 == 4)); |
|
|
|
// Scan the exponent one window at a time starting from the most |
|
// significant bits. |
|
if (top & 7) { |
|
while (bits >= 0) { |
|
for (wvalue = 0, i = 0; i < 5; i++, bits--) { |
|
wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
|
} |
|
|
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
|
bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); |
|
} |
|
} else { |
|
const uint8_t *p_bytes = (const uint8_t *)p->d; |
|
assert(bits < max_bits); |
|
// |p = 0| has been handled as a special case, so |max_bits| is at least |
|
// one word. |
|
assert(max_bits >= 64); |
|
|
|
// If the first bit to be read lands in the last byte, unroll the first |
|
// iteration to avoid reading past the bounds of |p->d|. (After the first |
|
// iteration, we are guaranteed to be past the last byte.) Note |bits| |
|
// here is the top bit, inclusive. |
|
if (bits - 4 >= max_bits - 8) { |
|
// Read five bits from |bits-4| through |bits|, inclusive. |
|
wvalue = p_bytes[p->width * BN_BYTES - 1]; |
|
wvalue >>= (bits - 4) & 7; |
|
wvalue &= 0x1f; |
|
bits -= 5; |
|
bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); |
|
} |
|
while (bits >= 0) { |
|
// Read five bits from |bits-4| through |bits|, inclusive. |
|
int first_bit = bits - 4; |
|
uint16_t val; |
|
OPENSSL_memcpy(&val, p_bytes + (first_bit >> 3), sizeof(val)); |
|
val >>= first_bit & 7; |
|
val &= 0x1f; |
|
bits -= 5; |
|
bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, val); |
|
} |
|
} |
|
|
|
ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np, n0, top); |
|
tmp.width = top; |
|
if (ret) { |
|
if (!BN_copy(rr, &tmp)) { |
|
ret = 0; |
|
} |
|
goto err; // non-zero ret means it's not error |
|
} |
|
} else |
|
#endif |
|
{ |
|
copy_to_prebuf(&tmp, top, powerbuf, 0, window); |
|
copy_to_prebuf(&am, top, powerbuf, 1, window); |
|
|
|
// If the window size is greater than 1, then calculate |
|
// val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) |
|
// (even powers could instead be computed as (a^(i/2))^2 |
|
// to use the slight performance advantage of sqr over mul). |
|
if (window > 1) { |
|
if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) { |
|
goto err; |
|
} |
|
|
|
copy_to_prebuf(&tmp, top, powerbuf, 2, window); |
|
|
|
for (i = 3; i < numPowers; i++) { |
|
// Calculate a^i = a^(i-1) * a |
|
if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx)) { |
|
goto err; |
|
} |
|
|
|
copy_to_prebuf(&tmp, top, powerbuf, i, window); |
|
} |
|
} |
|
|
|
bits--; |
|
for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) { |
|
wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
|
} |
|
if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, window)) { |
|
goto err; |
|
} |
|
|
|
// Scan the exponent one window at a time starting from the most |
|
// significant bits. |
|
while (bits >= 0) { |
|
wvalue = 0; // The 'value' of the window |
|
|
|
// Scan the window, squaring the result as we go |
|
for (i = 0; i < window; i++, bits--) { |
|
if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) { |
|
goto err; |
|
} |
|
wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
|
} |
|
|
|
// Fetch the appropriate pre-computed value from the pre-buf |
|
if (!copy_from_prebuf(&am, top, powerbuf, wvalue, window)) { |
|
goto err; |
|
} |
|
|
|
// Multiply the result into the intermediate result |
|
if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) { |
|
goto err; |
|
} |
|
} |
|
} |
|
|
|
// Convert the final result from montgomery to standard format |
|
if (!BN_from_montgomery(rr, &tmp, mont, ctx)) { |
|
goto err; |
|
} |
|
ret = 1; |
|
|
|
err: |
|
BN_MONT_CTX_free(new_mont); |
|
if (powerbuf != NULL && powerbufFree == NULL) { |
|
OPENSSL_cleanse(powerbuf, powerbufLen); |
|
} |
|
OPENSSL_free(powerbufFree); |
|
return (ret); |
|
} |
|
|
|
int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, |
|
const BIGNUM *m, BN_CTX *ctx, |
|
const BN_MONT_CTX *mont) { |
|
BIGNUM a_bignum; |
|
BN_init(&a_bignum); |
|
|
|
int ret = 0; |
|
|
|
// BN_mod_exp_mont requires reduced inputs. |
|
if (bn_minimal_width(m) == 1) { |
|
a %= m->d[0]; |
|
} |
|
|
|
if (!BN_set_word(&a_bignum, a)) { |
|
OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR); |
|
goto err; |
|
} |
|
|
|
ret = BN_mod_exp_mont(rr, &a_bignum, p, m, ctx, mont); |
|
|
|
err: |
|
BN_free(&a_bignum); |
|
|
|
return ret; |
|
} |
|
|
|
#define TABLE_SIZE 32 |
|
|
|
int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1, |
|
const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, |
|
BN_CTX *ctx, const BN_MONT_CTX *mont) { |
|
BIGNUM tmp; |
|
BN_init(&tmp); |
|
|
|
int ret = 0; |
|
BN_MONT_CTX *new_mont = NULL; |
|
|
|
// Allocate a montgomery context if it was not supplied by the caller. |
|
if (mont == NULL) { |
|
new_mont = BN_MONT_CTX_new_for_modulus(m, ctx); |
|
if (new_mont == NULL) { |
|
goto err; |
|
} |
|
mont = new_mont; |
|
} |
|
|
|
// BN_mod_mul_montgomery removes one Montgomery factor, so passing one |
|
// Montgomery-encoded and one non-Montgomery-encoded value gives a |
|
// non-Montgomery-encoded result. |
|
if (!BN_mod_exp_mont(rr, a1, p1, m, ctx, mont) || |
|
!BN_mod_exp_mont(&tmp, a2, p2, m, ctx, mont) || |
|
!BN_to_montgomery(rr, rr, mont, ctx) || |
|
!BN_mod_mul_montgomery(rr, rr, &tmp, mont, ctx)) { |
|
goto err; |
|
} |
|
|
|
ret = 1; |
|
|
|
err: |
|
BN_MONT_CTX_free(new_mont); |
|
BN_free(&tmp); |
|
|
|
return ret; |
|
}
|
|
|