|
|
package hrss |
|
|
|
|
|
import ( |
|
|
"crypto/hmac" |
|
|
"crypto/sha256" |
|
|
"crypto/subtle" |
|
|
"encoding/binary" |
|
|
"io" |
|
|
"math/bits" |
|
|
) |
|
|
|
|
|
const ( |
|
|
PublicKeySize = modQBytes |
|
|
CiphertextSize = modQBytes |
|
|
) |
|
|
|
|
|
const ( |
|
|
N = 701 |
|
|
Q = 8192 |
|
|
mod3Bytes = 140 |
|
|
modQBytes = 1138 |
|
|
) |
|
|
|
|
|
const ( |
|
|
bitsPerWord = bits.UintSize |
|
|
wordsPerPoly = (N + bitsPerWord - 1) / bitsPerWord |
|
|
fullWordsPerPoly = N / bitsPerWord |
|
|
bitsInLastWord = N % bitsPerWord |
|
|
) |
|
|
|
|
|
// poly3 represents a degree-N polynomial over GF(3). Each coefficient is |
|
|
// bitsliced across the |s| and |a| arrays, like this: |
|
|
// |
|
|
// s | a | value |
|
|
// ----------------- |
|
|
// 0 | 0 | 0 |
|
|
// 0 | 1 | 1 |
|
|
// 1 | 0 | 2 (aka -1) |
|
|
// 1 | 1 | <invalid> |
|
|
// |
|
|
// ('s' is for sign, and 'a' is just a letter.) |
|
|
// |
|
|
// Once bitsliced as such, the following circuits can be used to implement |
|
|
// addition and multiplication mod 3: |
|
|
// |
|
|
// (s3, a3) = (s1, a1) × (s2, a2) |
|
|
// s3 = (s2 ∧ a1) ⊕ (s1 ∧ a2) |
|
|
// a3 = (s1 ∧ s2) ⊕ (a1 ∧ a2) |
|
|
// |
|
|
// (s3, a3) = (s1, a1) + (s2, a2) |
|
|
// t1 = ~(s1 ∨ a1) |
|
|
// t2 = ~(s2 ∨ a2) |
|
|
// s3 = (a1 ∧ a2) ⊕ (t1 ∧ s2) ⊕ (t2 ∧ s1) |
|
|
// a3 = (s1 ∧ s2) ⊕ (t1 ∧ a2) ⊕ (t2 ∧ a1) |
|
|
// |
|
|
// Negating a value just involves swapping s and a. |
|
|
type poly3 struct { |
|
|
s [wordsPerPoly]uint |
|
|
a [wordsPerPoly]uint |
|
|
} |
|
|
|
|
|
func (p *poly3) trim() { |
|
|
p.s[wordsPerPoly-1] &= (1 << bitsInLastWord) - 1 |
|
|
p.a[wordsPerPoly-1] &= (1 << bitsInLastWord) - 1 |
|
|
} |
|
|
|
|
|
func (p *poly3) zero() { |
|
|
for i := range p.a { |
|
|
p.s[i] = 0 |
|
|
p.a[i] = 0 |
|
|
} |
|
|
} |
|
|
|
|
|
func (p *poly3) fromDiscrete(in *poly) { |
|
|
var shift uint |
|
|
s := p.s[:] |
|
|
a := p.a[:] |
|
|
s[0] = 0 |
|
|
a[0] = 0 |
|
|
|
|
|
for _, v := range in { |
|
|
s[0] >>= 1 |
|
|
s[0] |= uint((v>>1)&1) << (bitsPerWord - 1) |
|
|
a[0] >>= 1 |
|
|
a[0] |= uint(v&1) << (bitsPerWord - 1) |
|
|
shift++ |
|
|
if shift == bitsPerWord { |
|
|
s = s[1:] |
|
|
a = a[1:] |
|
|
s[0] = 0 |
|
|
a[0] = 0 |
|
|
shift = 0 |
|
|
} |
|
|
} |
|
|
|
|
|
a[0] >>= bitsPerWord - shift |
|
|
s[0] >>= bitsPerWord - shift |
|
|
} |
|
|
|
|
|
func (p *poly3) fromModQ(in *poly) int { |
|
|
var shift uint |
|
|
s := p.s[:] |
|
|
a := p.a[:] |
|
|
s[0] = 0 |
|
|
a[0] = 0 |
|
|
ok := 1 |
|
|
|
|
|
for _, v := range in { |
|
|
vMod3, vOk := modQToMod3(v) |
|
|
ok &= vOk |
|
|
|
|
|
s[0] >>= 1 |
|
|
s[0] |= uint((vMod3>>1)&1) << (bitsPerWord - 1) |
|
|
a[0] >>= 1 |
|
|
a[0] |= uint(vMod3&1) << (bitsPerWord - 1) |
|
|
shift++ |
|
|
if shift == bitsPerWord { |
|
|
s = s[1:] |
|
|
a = a[1:] |
|
|
s[0] = 0 |
|
|
a[0] = 0 |
|
|
shift = 0 |
|
|
} |
|
|
} |
|
|
|
|
|
a[0] >>= bitsPerWord - shift |
|
|
s[0] >>= bitsPerWord - shift |
|
|
|
|
|
return ok |
|
|
} |
|
|
|
|
|
func (p *poly3) fromDiscreteMod3(in *poly) { |
|
|
var shift uint |
|
|
s := p.s[:] |
|
|
a := p.a[:] |
|
|
s[0] = 0 |
|
|
a[0] = 0 |
|
|
|
|
|
for _, v := range in { |
|
|
// This duplicates the 13th bit upwards to the top of the |
|
|
// uint16, essentially treating it as a sign bit and converting |
|
|
// into a signed int16. The signed value is reduced mod 3, |
|
|
// yeilding {-2, -1, 0, 1, 2}. |
|
|
v = uint16((int16(v<<3)>>3)%3) & 7 |
|
|
|
|
|
// We want to map v thus: |
|
|
// {-2, -1, 0, 1, 2} -> {1, 2, 0, 1, 2}. We take the bottom |
|
|
// three bits and then the constants below, when shifted by |
|
|
// those three bits, perform the required mapping. |
|
|
s[0] >>= 1 |
|
|
s[0] |= (0xbc >> v) << (bitsPerWord - 1) |
|
|
a[0] >>= 1 |
|
|
a[0] |= (0x7a >> v) << (bitsPerWord - 1) |
|
|
shift++ |
|
|
if shift == bitsPerWord { |
|
|
s = s[1:] |
|
|
a = a[1:] |
|
|
s[0] = 0 |
|
|
a[0] = 0 |
|
|
shift = 0 |
|
|
} |
|
|
} |
|
|
|
|
|
a[0] >>= bitsPerWord - shift |
|
|
s[0] >>= bitsPerWord - shift |
|
|
} |
|
|
|
|
|
func (p *poly3) marshal(out []byte) { |
|
|
s := p.s[:] |
|
|
a := p.a[:] |
|
|
sw := s[0] |
|
|
aw := a[0] |
|
|
var shift int |
|
|
|
|
|
for i := 0; i < 700; i += 5 { |
|
|
acc, scale := 0, 1 |
|
|
for j := 0; j < 5; j++ { |
|
|
v := int(aw&1) | int(sw&1)<<1 |
|
|
acc += scale * v |
|
|
scale *= 3 |
|
|
|
|
|
shift++ |
|
|
if shift == bitsPerWord { |
|
|
s = s[1:] |
|
|
a = a[1:] |
|
|
sw = s[0] |
|
|
aw = a[0] |
|
|
shift = 0 |
|
|
} else { |
|
|
sw >>= 1 |
|
|
aw >>= 1 |
|
|
} |
|
|
} |
|
|
|
|
|
out[0] = byte(acc) |
|
|
out = out[1:] |
|
|
} |
|
|
} |
|
|
|
|
|
func (p *poly) fromMod2(in *poly2) { |
|
|
var shift uint |
|
|
words := in[:] |
|
|
word := words[0] |
|
|
|
|
|
for i := range p { |
|
|
p[i] = uint16(word & 1) |
|
|
word >>= 1 |
|
|
shift++ |
|
|
if shift == bitsPerWord { |
|
|
words = words[1:] |
|
|
word = words[0] |
|
|
shift = 0 |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
func (p *poly) fromMod3(in *poly3) { |
|
|
var shift uint |
|
|
s := in.s[:] |
|
|
a := in.a[:] |
|
|
sw := s[0] |
|
|
aw := a[0] |
|
|
|
|
|
for i := range p { |
|
|
p[i] = uint16(aw&1 | (sw&1)<<1) |
|
|
aw >>= 1 |
|
|
sw >>= 1 |
|
|
shift++ |
|
|
if shift == bitsPerWord { |
|
|
a = a[1:] |
|
|
s = s[1:] |
|
|
aw = a[0] |
|
|
sw = s[0] |
|
|
shift = 0 |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
func (p *poly) fromMod3ToModQ(in *poly3) { |
|
|
var shift uint |
|
|
s := in.s[:] |
|
|
a := in.a[:] |
|
|
sw := s[0] |
|
|
aw := a[0] |
|
|
|
|
|
for i := range p { |
|
|
p[i] = mod3ToModQ(uint16(aw&1 | (sw&1)<<1)) |
|
|
aw >>= 1 |
|
|
sw >>= 1 |
|
|
shift++ |
|
|
if shift == bitsPerWord { |
|
|
a = a[1:] |
|
|
s = s[1:] |
|
|
aw = a[0] |
|
|
sw = s[0] |
|
|
shift = 0 |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
func lsbToAll(v uint) uint { |
|
|
return uint(int(v<<(bitsPerWord-1)) >> (bitsPerWord - 1)) |
|
|
} |
|
|
|
|
|
func (p *poly3) mulConst(ms, ma uint) { |
|
|
ms = lsbToAll(ms) |
|
|
ma = lsbToAll(ma) |
|
|
|
|
|
for i := range p.a { |
|
|
p.s[i], p.a[i] = (ma&p.s[i])^(ms&p.a[i]), (ma&p.a[i])^(ms&p.s[i]) |
|
|
} |
|
|
} |
|
|
|
|
|
func cmovWords(out, in *[wordsPerPoly]uint, mov uint) { |
|
|
for i := range out { |
|
|
out[i] = (out[i] & ^mov) | (in[i] & mov) |
|
|
} |
|
|
} |
|
|
|
|
|
func rotWords(out, in *[wordsPerPoly]uint, bits uint) { |
|
|
start := bits / bitsPerWord |
|
|
n := (N - bits) / bitsPerWord |
|
|
|
|
|
for i := uint(0); i < n; i++ { |
|
|
out[i] = in[start+i] |
|
|
} |
|
|
|
|
|
carry := in[wordsPerPoly-1] |
|
|
|
|
|
for i := uint(0); i < start; i++ { |
|
|
out[n+i] = carry | in[i]<<bitsInLastWord |
|
|
carry = in[i] >> (bitsPerWord - bitsInLastWord) |
|
|
} |
|
|
|
|
|
out[wordsPerPoly-1] = carry |
|
|
} |
|
|
|
|
|
// rotBits right-rotates the bits in |in|. bits must be a non-zero power of two |
|
|
// and less than bitsPerWord. |
|
|
func rotBits(out, in *[wordsPerPoly]uint, bits uint) { |
|
|
if (bits == 0 || (bits & (bits - 1)) != 0 || bits > bitsPerWord/2 || bitsInLastWord < bitsPerWord/2) { |
|
|
panic("internal error"); |
|
|
} |
|
|
|
|
|
carry := in[wordsPerPoly-1] << (bitsPerWord - bits) |
|
|
|
|
|
for i := wordsPerPoly - 2; i >= 0; i-- { |
|
|
out[i] = carry | in[i]>>bits |
|
|
carry = in[i] << (bitsPerWord - bits) |
|
|
} |
|
|
|
|
|
out[wordsPerPoly-1] = carry>>(bitsPerWord-bitsInLastWord) | in[wordsPerPoly-1]>>bits |
|
|
} |
|
|
|
|
|
func (p *poly3) rotWords(bits uint, in *poly3) { |
|
|
rotWords(&p.s, &in.s, bits) |
|
|
rotWords(&p.a, &in.a, bits) |
|
|
} |
|
|
|
|
|
func (p *poly3) rotBits(bits uint, in *poly3) { |
|
|
rotBits(&p.s, &in.s, bits) |
|
|
rotBits(&p.a, &in.a, bits) |
|
|
} |
|
|
|
|
|
func (p *poly3) cmov(in *poly3, mov uint) { |
|
|
cmovWords(&p.s, &in.s, mov) |
|
|
cmovWords(&p.a, &in.a, mov) |
|
|
} |
|
|
|
|
|
func (p *poly3) rot(bits uint) { |
|
|
if bits > N { |
|
|
panic("invalid") |
|
|
} |
|
|
var shifted poly3 |
|
|
|
|
|
shift := uint(9) |
|
|
for ; (1 << shift) >= bitsPerWord; shift-- { |
|
|
shifted.rotWords(1<<shift, p) |
|
|
p.cmov(&shifted, lsbToAll(bits>>shift)) |
|
|
} |
|
|
for ; shift < 9; shift-- { |
|
|
shifted.rotBits(1<<shift, p) |
|
|
p.cmov(&shifted, lsbToAll(bits>>shift)) |
|
|
} |
|
|
} |
|
|
|
|
|
func (p *poly3) fmadd(ms, ma uint, in *poly3) { |
|
|
ms = lsbToAll(ms) |
|
|
ma = lsbToAll(ma) |
|
|
|
|
|
for i := range p.a { |
|
|
products := (ma & in.s[i]) ^ (ms & in.a[i]) |
|
|
producta := (ma & in.a[i]) ^ (ms & in.s[i]) |
|
|
|
|
|
ns1Ana1 := ^p.s[i] & ^p.a[i] |
|
|
ns2Ana2 := ^products & ^producta |
|
|
|
|
|
p.s[i], p.a[i] = (p.a[i]&producta)^(ns1Ana1&products)^(p.s[i]&ns2Ana2), (p.s[i]&products)^(ns1Ana1&producta)^(p.a[i]&ns2Ana2) |
|
|
} |
|
|
} |
|
|
|
|
|
func (p *poly3) modPhiN() { |
|
|
factora := uint(int(p.s[wordsPerPoly-1]<<(bitsPerWord-bitsInLastWord)) >> (bitsPerWord - 1)) |
|
|
factors := uint(int(p.a[wordsPerPoly-1]<<(bitsPerWord-bitsInLastWord)) >> (bitsPerWord - 1)) |
|
|
ns2Ana2 := ^factors & ^factora |
|
|
|
|
|
for i := range p.s { |
|
|
ns1Ana1 := ^p.s[i] & ^p.a[i] |
|
|
p.s[i], p.a[i] = (p.a[i]&factora)^(ns1Ana1&factors)^(p.s[i]&ns2Ana2), (p.s[i]&factors)^(ns1Ana1&factora)^(p.a[i]&ns2Ana2) |
|
|
} |
|
|
} |
|
|
|
|
|
func (p *poly3) cswap(other *poly3, swap uint) { |
|
|
for i := range p.s { |
|
|
sums := swap & (p.s[i] ^ other.s[i]) |
|
|
p.s[i] ^= sums |
|
|
other.s[i] ^= sums |
|
|
|
|
|
suma := swap & (p.a[i] ^ other.a[i]) |
|
|
p.a[i] ^= suma |
|
|
other.a[i] ^= suma |
|
|
} |
|
|
} |
|
|
|
|
|
func (p *poly3) mulx() { |
|
|
carrys := (p.s[wordsPerPoly-1] >> (bitsInLastWord - 1)) & 1 |
|
|
carrya := (p.a[wordsPerPoly-1] >> (bitsInLastWord - 1)) & 1 |
|
|
|
|
|
for i := range p.s { |
|
|
outCarrys := p.s[i] >> (bitsPerWord - 1) |
|
|
outCarrya := p.a[i] >> (bitsPerWord - 1) |
|
|
p.s[i] <<= 1 |
|
|
p.a[i] <<= 1 |
|
|
p.s[i] |= carrys |
|
|
p.a[i] |= carrya |
|
|
carrys = outCarrys |
|
|
carrya = outCarrya |
|
|
} |
|
|
} |
|
|
|
|
|
func (p *poly3) divx() { |
|
|
var carrys, carrya uint |
|
|
|
|
|
for i := len(p.s) - 1; i >= 0; i-- { |
|
|
outCarrys := p.s[i] & 1 |
|
|
outCarrya := p.a[i] & 1 |
|
|
p.s[i] >>= 1 |
|
|
p.a[i] >>= 1 |
|
|
p.s[i] |= carrys << (bitsPerWord - 1) |
|
|
p.a[i] |= carrya << (bitsPerWord - 1) |
|
|
carrys = outCarrys |
|
|
carrya = outCarrya |
|
|
} |
|
|
} |
|
|
|
|
|
type poly2 [wordsPerPoly]uint |
|
|
|
|
|
func (p *poly2) fromDiscrete(in *poly) { |
|
|
var shift uint |
|
|
words := p[:] |
|
|
words[0] = 0 |
|
|
|
|
|
for _, v := range in { |
|
|
words[0] >>= 1 |
|
|
words[0] |= uint(v&1) << (bitsPerWord - 1) |
|
|
shift++ |
|
|
if shift == bitsPerWord { |
|
|
words = words[1:] |
|
|
words[0] = 0 |
|
|
shift = 0 |
|
|
} |
|
|
} |
|
|
|
|
|
words[0] >>= bitsPerWord - shift |
|
|
} |
|
|
|
|
|
func (p *poly2) setPhiN() { |
|
|
for i := range p { |
|
|
p[i] = ^uint(0) |
|
|
} |
|
|
p[wordsPerPoly-1] &= (1 << bitsInLastWord) - 1 |
|
|
} |
|
|
|
|
|
func (p *poly2) cswap(other *poly2, swap uint) { |
|
|
for i := range p { |
|
|
sum := swap & (p[i] ^ other[i]) |
|
|
p[i] ^= sum |
|
|
other[i] ^= sum |
|
|
} |
|
|
} |
|
|
|
|
|
func (p *poly2) fmadd(m uint, in *poly2) { |
|
|
m = ^(m - 1) |
|
|
|
|
|
for i := range p { |
|
|
p[i] ^= in[i] & m |
|
|
} |
|
|
} |
|
|
|
|
|
func (p *poly2) lshift1() { |
|
|
var carry uint |
|
|
for i := range p { |
|
|
nextCarry := p[i] >> (bitsPerWord - 1) |
|
|
p[i] <<= 1 |
|
|
p[i] |= carry |
|
|
carry = nextCarry |
|
|
} |
|
|
} |
|
|
|
|
|
func (p *poly2) rshift1() { |
|
|
var carry uint |
|
|
for i := len(p) - 1; i >= 0; i-- { |
|
|
nextCarry := p[i] & 1 |
|
|
p[i] >>= 1 |
|
|
p[i] |= carry << (bitsPerWord - 1) |
|
|
carry = nextCarry |
|
|
} |
|
|
} |
|
|
|
|
|
func (p *poly2) rot(bits uint) { |
|
|
if bits > N { |
|
|
panic("invalid") |
|
|
} |
|
|
var shifted [wordsPerPoly]uint |
|
|
out := (*[wordsPerPoly]uint)(p) |
|
|
|
|
|
shift := uint(9) |
|
|
for ; (1 << shift) >= bitsPerWord; shift-- { |
|
|
rotWords(&shifted, out, 1<<shift) |
|
|
cmovWords(out, &shifted, lsbToAll(bits>>shift)) |
|
|
} |
|
|
for ; shift < 9; shift-- { |
|
|
rotBits(&shifted, out, 1<<shift) |
|
|
cmovWords(out, &shifted, lsbToAll(bits>>shift)) |
|
|
} |
|
|
} |
|
|
|
|
|
type poly [N]uint16 |
|
|
|
|
|
func (in *poly) marshal(out []byte) { |
|
|
p := in[:] |
|
|
|
|
|
for len(p) >= 8 { |
|
|
out[0] = byte(p[0]) |
|
|
out[1] = byte(p[0]>>8) | byte((p[1]&0x07)<<5) |
|
|
out[2] = byte(p[1] >> 3) |
|
|
out[3] = byte(p[1]>>11) | byte((p[2]&0x3f)<<2) |
|
|
out[4] = byte(p[2]>>6) | byte((p[3]&0x01)<<7) |
|
|
out[5] = byte(p[3] >> 1) |
|
|
out[6] = byte(p[3]>>9) | byte((p[4]&0x0f)<<4) |
|
|
out[7] = byte(p[4] >> 4) |
|
|
out[8] = byte(p[4]>>12) | byte((p[5]&0x7f)<<1) |
|
|
out[9] = byte(p[5]>>7) | byte((p[6]&0x03)<<6) |
|
|
out[10] = byte(p[6] >> 2) |
|
|
out[11] = byte(p[6]>>10) | byte((p[7]&0x1f)<<3) |
|
|
out[12] = byte(p[7] >> 5) |
|
|
|
|
|
p = p[8:] |
|
|
out = out[13:] |
|
|
} |
|
|
|
|
|
// There are four remaining values. |
|
|
out[0] = byte(p[0]) |
|
|
out[1] = byte(p[0]>>8) | byte((p[1]&0x07)<<5) |
|
|
out[2] = byte(p[1] >> 3) |
|
|
out[3] = byte(p[1]>>11) | byte((p[2]&0x3f)<<2) |
|
|
out[4] = byte(p[2]>>6) | byte((p[3]&0x01)<<7) |
|
|
out[5] = byte(p[3] >> 1) |
|
|
out[6] = byte(p[3] >> 9) |
|
|
} |
|
|
|
|
|
func (out *poly) unmarshal(in []byte) bool { |
|
|
p := out[:] |
|
|
for i := 0; i < 87; i++ { |
|
|
p[0] = uint16(in[0]) | uint16(in[1]&0x1f)<<8 |
|
|
p[1] = uint16(in[1]>>5) | uint16(in[2])<<3 | uint16(in[3]&3)<<11 |
|
|
p[2] = uint16(in[3]>>2) | uint16(in[4]&0x7f)<<6 |
|
|
p[3] = uint16(in[4]>>7) | uint16(in[5])<<1 | uint16(in[6]&0xf)<<9 |
|
|
p[4] = uint16(in[6]>>4) | uint16(in[7])<<4 | uint16(in[8]&1)<<12 |
|
|
p[5] = uint16(in[8]>>1) | uint16(in[9]&0x3f)<<7 |
|
|
p[6] = uint16(in[9]>>6) | uint16(in[10])<<2 | uint16(in[11]&7)<<10 |
|
|
p[7] = uint16(in[11]>>3) | uint16(in[12])<<5 |
|
|
|
|
|
p = p[8:] |
|
|
in = in[13:] |
|
|
} |
|
|
|
|
|
// There are four coefficients left over |
|
|
p[0] = uint16(in[0]) | uint16(in[1]&0x1f)<<8 |
|
|
p[1] = uint16(in[1]>>5) | uint16(in[2])<<3 | uint16(in[3]&3)<<11 |
|
|
p[2] = uint16(in[3]>>2) | uint16(in[4]&0x7f)<<6 |
|
|
p[3] = uint16(in[4]>>7) | uint16(in[5])<<1 | uint16(in[6]&0xf)<<9 |
|
|
|
|
|
if in[6]&0xf0 != 0 { |
|
|
return false |
|
|
} |
|
|
|
|
|
out[N-1] = 0 |
|
|
var top int |
|
|
for _, v := range out { |
|
|
top += int(v) |
|
|
} |
|
|
|
|
|
out[N-1] = uint16(-top) % Q |
|
|
return true |
|
|
} |
|
|
|
|
|
func (in *poly) marshalS3(out []byte) { |
|
|
p := in[:] |
|
|
for len(p) >= 5 { |
|
|
out[0] = byte(p[0] + p[1]*3 + p[2]*9 + p[3]*27 + p[4]*81) |
|
|
out = out[1:] |
|
|
p = p[5:] |
|
|
} |
|
|
} |
|
|
|
|
|
func (out *poly) unmarshalS3(in []byte) bool { |
|
|
p := out[:] |
|
|
for i := 0; i < 140; i++ { |
|
|
c := in[0] |
|
|
if c >= 243 { |
|
|
return false |
|
|
} |
|
|
p[0] = uint16(c % 3) |
|
|
p[1] = uint16((c / 3) % 3) |
|
|
p[2] = uint16((c / 9) % 3) |
|
|
p[3] = uint16((c / 27) % 3) |
|
|
p[4] = uint16((c / 81) % 3) |
|
|
|
|
|
p = p[5:] |
|
|
in = in[1:] |
|
|
} |
|
|
|
|
|
out[N-1] = 0 |
|
|
return true |
|
|
} |
|
|
|
|
|
func (p *poly) modPhiN() { |
|
|
for i := range p { |
|
|
p[i] = (p[i] + Q - p[N-1]) % Q |
|
|
} |
|
|
} |
|
|
|
|
|
func (out *poly) shortSample(in []byte) { |
|
|
// b a result |
|
|
// 00 00 00 |
|
|
// 00 01 01 |
|
|
// 00 10 10 |
|
|
// 00 11 11 |
|
|
// 01 00 10 |
|
|
// 01 01 00 |
|
|
// 01 10 01 |
|
|
// 01 11 11 |
|
|
// 10 00 01 |
|
|
// 10 01 10 |
|
|
// 10 10 00 |
|
|
// 10 11 11 |
|
|
// 11 00 11 |
|
|
// 11 01 11 |
|
|
// 11 10 11 |
|
|
// 11 11 11 |
|
|
|
|
|
// 1111 1111 1100 1001 1101 0010 1110 0100 |
|
|
// f f c 9 d 2 e 4 |
|
|
const lookup = uint32(0xffc9d2e4) |
|
|
|
|
|
p := out[:] |
|
|
for i := 0; i < 87; i++ { |
|
|
v := binary.LittleEndian.Uint32(in) |
|
|
v2 := (v & 0x55555555) + ((v >> 1) & 0x55555555) |
|
|
for j := 0; j < 8; j++ { |
|
|
p[j] = uint16(lookup >> ((v2 & 15) << 1) & 3) |
|
|
v2 >>= 4 |
|
|
} |
|
|
p = p[8:] |
|
|
in = in[4:] |
|
|
} |
|
|
|
|
|
// There are four values remaining. |
|
|
v := binary.LittleEndian.Uint32(in) |
|
|
v2 := (v & 0x55555555) + ((v >> 1) & 0x55555555) |
|
|
for j := 0; j < 4; j++ { |
|
|
p[j] = uint16(lookup >> ((v2 & 15) << 1) & 3) |
|
|
v2 >>= 4 |
|
|
} |
|
|
|
|
|
out[N-1] = 0 |
|
|
} |
|
|
|
|
|
func (out *poly) shortSamplePlus(in []byte) { |
|
|
out.shortSample(in) |
|
|
|
|
|
var sum uint16 |
|
|
for i := 0; i < N-1; i++ { |
|
|
sum += mod3ResultToModQ(out[i] * out[i+1]) |
|
|
} |
|
|
|
|
|
scale := 1 + (1 & (sum >> 12)) |
|
|
for i := 0; i < len(out); i += 2 { |
|
|
out[i] = (out[i] * scale) % 3 |
|
|
} |
|
|
} |
|
|
|
|
|
func mul(out, scratch, a, b []uint16) { |
|
|
const schoolbookLimit = 32 |
|
|
if len(a) < schoolbookLimit { |
|
|
for i := 0; i < len(a)*2; i++ { |
|
|
out[i] = 0 |
|
|
} |
|
|
for i := range a { |
|
|
for j := range b { |
|
|
out[i+j] += a[i] * b[j] |
|
|
} |
|
|
} |
|
|
return |
|
|
} |
|
|
|
|
|
lowLen := len(a) / 2 |
|
|
highLen := len(a) - lowLen |
|
|
aLow, aHigh := a[:lowLen], a[lowLen:] |
|
|
bLow, bHigh := b[:lowLen], b[lowLen:] |
|
|
|
|
|
for i := 0; i < lowLen; i++ { |
|
|
out[i] = aHigh[i] + aLow[i] |
|
|
} |
|
|
if highLen != lowLen { |
|
|
out[lowLen] = aHigh[lowLen] |
|
|
} |
|
|
|
|
|
for i := 0; i < lowLen; i++ { |
|
|
out[highLen+i] = bHigh[i] + bLow[i] |
|
|
} |
|
|
if highLen != lowLen { |
|
|
out[highLen+lowLen] = bHigh[lowLen] |
|
|
} |
|
|
|
|
|
mul(scratch, scratch[2*highLen:], out[:highLen], out[highLen:highLen*2]) |
|
|
mul(out[lowLen*2:], scratch[2*highLen:], aHigh, bHigh) |
|
|
mul(out, scratch[2*highLen:], aLow, bLow) |
|
|
|
|
|
for i := 0; i < lowLen*2; i++ { |
|
|
scratch[i] -= out[i] + out[lowLen*2+i] |
|
|
} |
|
|
if lowLen != highLen { |
|
|
scratch[lowLen*2] -= out[lowLen*4] |
|
|
} |
|
|
|
|
|
for i := 0; i < 2*highLen; i++ { |
|
|
out[lowLen+i] += scratch[i] |
|
|
} |
|
|
} |
|
|
|
|
|
func (out *poly) mul(a, b *poly) { |
|
|
var prod, scratch [2 * N]uint16 |
|
|
mul(prod[:], scratch[:], a[:], b[:]) |
|
|
for i := range out { |
|
|
out[i] = (prod[i] + prod[i+N]) % Q |
|
|
} |
|
|
} |
|
|
|
|
|
func (p3 *poly3) mulMod3(x, y *poly3) { |
|
|
// (𝑥^n - 1) is a multiple of Φ(N) so we can work mod (𝑥^n - 1) here and |
|
|
// (reduce mod Φ(N) afterwards. |
|
|
x3 := *x |
|
|
y3 := *y |
|
|
s := x3.s[:] |
|
|
a := x3.a[:] |
|
|
sw := s[0] |
|
|
aw := a[0] |
|
|
p3.zero() |
|
|
var shift uint |
|
|
for i := 0; i < N; i++ { |
|
|
p3.fmadd(sw, aw, &y3) |
|
|
sw >>= 1 |
|
|
aw >>= 1 |
|
|
shift++ |
|
|
if shift == bitsPerWord { |
|
|
s = s[1:] |
|
|
a = a[1:] |
|
|
sw = s[0] |
|
|
aw = a[0] |
|
|
shift = 0 |
|
|
} |
|
|
y3.mulx() |
|
|
} |
|
|
p3.modPhiN() |
|
|
} |
|
|
|
|
|
// mod3ToModQ maps {0, 1, 2, 3} to {0, 1, Q-1, 0xffff} |
|
|
// The case of n == 3 should never happen but is included so that modQToMod3 |
|
|
// can easily catch invalid inputs. |
|
|
func mod3ToModQ(n uint16) uint16 { |
|
|
return uint16(uint64(0xffff1fff00010000) >> (16 * n)) |
|
|
} |
|
|
|
|
|
// modQToMod3 maps {0, 1, Q-1} to {(0, 0), (0, 1), (1, 0)} and also returns an int |
|
|
// which is one if the input is in range and zero otherwise. |
|
|
func modQToMod3(n uint16) (uint16, int) { |
|
|
result := (n&3 - (n>>1)&1) |
|
|
return result, subtle.ConstantTimeEq(int32(mod3ToModQ(result)), int32(n)) |
|
|
} |
|
|
|
|
|
// mod3ResultToModQ maps {0, 1, 2, 4} to {0, 1, Q-1, 1} |
|
|
func mod3ResultToModQ(n uint16) uint16 { |
|
|
return ((((uint16(0x13) >> n) & 1) - 1) & 0x1fff) | ((uint16(0x12) >> n) & 1) |
|
|
//shift := (uint(0x324) >> (2 * n)) & 3 |
|
|
//return uint16(uint64(0x00011fff00010000) >> (16 * shift)) |
|
|
} |
|
|
|
|
|
// mulXMinus1 sets out to a×(𝑥 - 1) mod (𝑥^n - 1) |
|
|
func (out *poly) mulXMinus1() { |
|
|
// Multiplying by (𝑥 - 1) means negating each coefficient and adding in |
|
|
// the value of the previous one. |
|
|
origOut700 := out[700] |
|
|
|
|
|
for i := N - 1; i > 0; i-- { |
|
|
out[i] = (Q - out[i] + out[i-1]) % Q |
|
|
} |
|
|
out[0] = (Q - out[0] + origOut700) % Q |
|
|
} |
|
|
|
|
|
func (out *poly) lift(a *poly) { |
|
|
// We wish to calculate a/(𝑥-1) mod Φ(N) over GF(3), where Φ(N) is the |
|
|
// Nth cyclotomic polynomial, i.e. 1 + 𝑥 + … + 𝑥^700 (since N is prime). |
|
|
|
|
|
// 1/(𝑥-1) has a fairly basic structure that we can exploit to speed this up: |
|
|
// |
|
|
// R.<x> = PolynomialRing(GF(3)…) |
|
|
// inv = R.cyclotomic_polynomial(1).inverse_mod(R.cyclotomic_polynomial(n)) |
|
|
// list(inv)[:15] |
|
|
// [1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2] |
|
|
// |
|
|
// This three-element pattern of coefficients repeats for the whole |
|
|
// polynomial. |
|
|
// |
|
|
// Next define the overbar operator such that z̅ = z[0] + |
|
|
// reverse(z[1:]). (Index zero of a polynomial here is the coefficient |
|
|
// of the constant term. So index one is the coefficient of 𝑥 and so |
|
|
// on.) |
|
|
// |
|
|
// A less odd way to define this is to see that z̅ negates the indexes, |
|
|
// so z̅[0] = z[-0], z̅[1] = z[-1] and so on. |
|
|
// |
|
|
// The use of z̅ is that, when working mod (𝑥^701 - 1), vz[0] = <v, |
|
|
// z̅>, vz[1] = <v, 𝑥z̅>, …. (Where <a, b> is the inner product: the sum |
|
|
// of the point-wise products.) Although we calculated the inverse mod |
|
|
// Φ(N), we can work mod (𝑥^N - 1) and reduce mod Φ(N) at the end. |
|
|
// (That's because (𝑥^N - 1) is a multiple of Φ(N).) |
|
|
// |
|
|
// When working mod (𝑥^N - 1), multiplication by 𝑥 is a right-rotation |
|
|
// of the list of coefficients. |
|
|
// |
|
|
// Thus we can consider what the pattern of z̅, 𝑥z̅, 𝑥^2z̅, … looks like: |
|
|
// |
|
|
// def reverse(xs): |
|
|
// suffix = list(xs[1:]) |
|
|
// suffix.reverse() |
|
|
// return [xs[0]] + suffix |
|
|
// |
|
|
// def rotate(xs): |
|
|
// return [xs[-1]] + xs[:-1] |
|
|
// |
|
|
// zoverbar = reverse(list(inv) + [0]) |
|
|
// xzoverbar = rotate(reverse(list(inv) + [0])) |
|
|
// x2zoverbar = rotate(rotate(reverse(list(inv) + [0]))) |
|
|
// |
|
|
// zoverbar[:15] |
|
|
// [1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1] |
|
|
// xzoverbar[:15] |
|
|
// [0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0] |
|
|
// x2zoverbar[:15] |
|
|
// [2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2] |
|
|
// |
|
|
// (For a formula for z̅, see lemma two of appendix B.) |
|
|
// |
|
|
// After the first three elements have been taken care of, all then have |
|
|
// a repeating three-element cycle. The next value (𝑥^3z̅) involves |
|
|
// three rotations of the first pattern, thus the three-element cycle |
|
|
// lines up. However, the discontinuity in the first three elements |
|
|
// obviously moves to a different position. Consider the difference |
|
|
// between 𝑥^3z̅ and z̅: |
|
|
// |
|
|
// [x-y for (x,y) in zip(zoverbar, x3zoverbar)][:15] |
|
|
// [0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
|
|
// |
|
|
// This pattern of differences is the same for all elements, although it |
|
|
// obviously moves right with the rotations. |
|
|
// |
|
|
// From this, we reach algorithm eight of appendix B. |
|
|
|
|
|
// Handle the first three elements of the inner products. |
|
|
out[0] = a[0] + a[2] |
|
|
out[1] = a[1] |
|
|
out[2] = 2*a[0] + a[2] |
|
|
|
|
|
// Use the repeating pattern to complete the first three inner products. |
|
|
for i := 3; i < 699; i += 3 { |
|
|
out[0] += 2*a[i] + a[i+2] |
|
|
out[1] += a[i] + 2*a[i+1] |
|
|
out[2] += a[i+1] + 2*a[i+2] |
|
|
} |
|
|
|
|
|
// Handle the fact that the three-element pattern doesn't fill the |
|
|
// polynomial exactly (since 701 isn't a multiple of three). |
|
|
out[2] += a[700] |
|
|
out[0] += 2 * a[699] |
|
|
out[1] += a[699] + 2*a[700] |
|
|
|
|
|
out[0] = out[0] % 3 |
|
|
out[1] = out[1] % 3 |
|
|
out[2] = out[2] % 3 |
|
|
|
|
|
// Calculate the remaining inner products by taking advantage of the |
|
|
// fact that the pattern repeats every three cycles and the pattern of |
|
|
// differences is moves with the rotation. |
|
|
for i := 3; i < N; i++ { |
|
|
// Add twice something is the same as subtracting when working |
|
|
// mod 3. Doing it this way avoids underflow. Underflow is bad |
|
|
// because "% 3" doesn't work correctly for negative numbers |
|
|
// here since underflow will wrap to 2^16-1 and 2^16 isn't a |
|
|
// multiple of three. |
|
|
out[i] = (out[i-3] + 2*(a[i-2]+a[i-1]+a[i])) % 3 |
|
|
} |
|
|
|
|
|
// Reduce mod Φ(N) by subtracting a multiple of out[700] from every |
|
|
// element and convert to mod Q. (See above about adding twice as |
|
|
// subtraction.) |
|
|
v := out[700] * 2 |
|
|
for i := range out { |
|
|
out[i] = mod3ToModQ((out[i] + v) % 3) |
|
|
} |
|
|
|
|
|
out.mulXMinus1() |
|
|
} |
|
|
|
|
|
func (a *poly) cswap(b *poly, swap uint16) { |
|
|
for i := range a { |
|
|
sum := swap & (a[i] ^ b[i]) |
|
|
a[i] ^= sum |
|
|
b[i] ^= sum |
|
|
} |
|
|
} |
|
|
|
|
|
func lt(a, b uint) uint { |
|
|
if a < b { |
|
|
return ^uint(0) |
|
|
} |
|
|
return 0 |
|
|
} |
|
|
|
|
|
func bsMul(s1, a1, s2, a2 uint) (s3, a3 uint) { |
|
|
s3 = (a1 & s2) ^ (s1 & a2) |
|
|
a3 = (a1 & a2) ^ (s1 & s2) |
|
|
return |
|
|
} |
|
|
|
|
|
func (out *poly3) invertMod3(in *poly3) { |
|
|
// This algorithm follows algorithm 10 in the paper. (Although note that |
|
|
// the paper appears to have a bug: k should start at zero, not one.) |
|
|
// The best explanation for why it works is in the "Why it works" |
|
|
// section of |
|
|
// https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf. |
|
|
var k uint |
|
|
degF, degG := uint(N-1), uint(N-1) |
|
|
|
|
|
var b, c, g poly3 |
|
|
f := *in |
|
|
|
|
|
for i := range g.a { |
|
|
g.a[i] = ^uint(0) |
|
|
} |
|
|
|
|
|
b.a[0] = 1 |
|
|
|
|
|
var f0s, f0a uint |
|
|
stillGoing := ^uint(0) |
|
|
for i := 0; i < 2*(N-1)-1; i++ { |
|
|
ss, sa := bsMul(f.s[0], f.a[0], g.s[0], g.a[0]) |
|
|
ss, sa = sa&stillGoing&1, ss&stillGoing&1 |
|
|
shouldSwap := ^uint(int((ss|sa)-1)>>(bitsPerWord-1)) & lt(degF, degG) |
|
|
f.cswap(&g, shouldSwap) |
|
|
b.cswap(&c, shouldSwap) |
|
|
degF, degG = (degG&shouldSwap)|(degF & ^shouldSwap), (degF&shouldSwap)|(degG&^shouldSwap) |
|
|
f.fmadd(ss, sa, &g) |
|
|
b.fmadd(ss, sa, &c) |
|
|
|
|
|
f.divx() |
|
|
f.s[wordsPerPoly-1] &= ((1 << bitsInLastWord) - 1) >> 1 |
|
|
f.a[wordsPerPoly-1] &= ((1 << bitsInLastWord) - 1) >> 1 |
|
|
c.mulx() |
|
|
c.s[0] &= ^uint(1) |
|
|
c.a[0] &= ^uint(1) |
|
|
|
|
|
degF-- |
|
|
k += 1 & stillGoing |
|
|
f0s = (stillGoing & f.s[0]) | (^stillGoing & f0s) |
|
|
f0a = (stillGoing & f.a[0]) | (^stillGoing & f0a) |
|
|
stillGoing = ^uint(int(degF-1) >> (bitsPerWord - 1)) |
|
|
} |
|
|
|
|
|
k -= N & lt(N, k) |
|
|
*out = b |
|
|
out.rot(k) |
|
|
out.mulConst(f0s, f0a) |
|
|
out.modPhiN() |
|
|
} |
|
|
|
|
|
func (out *poly) invertMod2(a *poly) { |
|
|
// This algorithm follows mix of algorithm 10 in the paper and the first |
|
|
// page of the PDF linked below. (Although note that the paper appears |
|
|
// to have a bug: k should start at zero, not one.) The best explanation |
|
|
// for why it works is in the "Why it works" section of |
|
|
// https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf. |
|
|
var k uint |
|
|
degF, degG := uint(N-1), uint(N-1) |
|
|
|
|
|
var f poly2 |
|
|
f.fromDiscrete(a) |
|
|
var b, c, g poly2 |
|
|
g.setPhiN() |
|
|
b[0] = 1 |
|
|
|
|
|
stillGoing := ^uint(0) |
|
|
for i := 0; i < 2*(N-1)-1; i++ { |
|
|
s := uint(f[0]&1) & stillGoing |
|
|
shouldSwap := ^(s - 1) & lt(degF, degG) |
|
|
f.cswap(&g, shouldSwap) |
|
|
b.cswap(&c, shouldSwap) |
|
|
degF, degG = (degG&shouldSwap)|(degF & ^shouldSwap), (degF&shouldSwap)|(degG&^shouldSwap) |
|
|
f.fmadd(s, &g) |
|
|
b.fmadd(s, &c) |
|
|
|
|
|
f.rshift1() |
|
|
c.lshift1() |
|
|
|
|
|
degF-- |
|
|
k += 1 & stillGoing |
|
|
stillGoing = ^uint(int(degF-1) >> (bitsPerWord - 1)) |
|
|
} |
|
|
|
|
|
k -= N & lt(N, k) |
|
|
b.rot(k) |
|
|
out.fromMod2(&b) |
|
|
} |
|
|
|
|
|
func (out *poly) invert(origA *poly) { |
|
|
// Inversion mod Q, which is done based on the result of inverting mod |
|
|
// 2. See the NTRU paper, page three. |
|
|
var a, tmp, tmp2, b poly |
|
|
b.invertMod2(origA) |
|
|
|
|
|
// Negate a. |
|
|
for i := range a { |
|
|
a[i] = Q - origA[i] |
|
|
} |
|
|
|
|
|
// We are working mod Q=2**13 and we need to iterate ceil(log_2(13)) |
|
|
// times, which is four. |
|
|
for i := 0; i < 4; i++ { |
|
|
tmp.mul(&a, &b) |
|
|
tmp[0] += 2 |
|
|
tmp2.mul(&b, &tmp) |
|
|
b = tmp2 |
|
|
} |
|
|
|
|
|
*out = b |
|
|
} |
|
|
|
|
|
type PublicKey struct { |
|
|
h poly |
|
|
} |
|
|
|
|
|
func ParsePublicKey(in []byte) (*PublicKey, bool) { |
|
|
ret := new(PublicKey) |
|
|
if !ret.h.unmarshal(in) { |
|
|
return nil, false |
|
|
} |
|
|
return ret, true |
|
|
} |
|
|
|
|
|
func (pub *PublicKey) Marshal() []byte { |
|
|
ret := make([]byte, modQBytes) |
|
|
pub.h.marshal(ret) |
|
|
return ret |
|
|
} |
|
|
|
|
|
func (pub *PublicKey) Encap(rand io.Reader) (ciphertext []byte, sharedKey []byte) { |
|
|
var randBytes [352 + 352]byte |
|
|
if _, err := io.ReadFull(rand, randBytes[:]); err != nil { |
|
|
panic("rand failed") |
|
|
} |
|
|
|
|
|
var m, r poly |
|
|
m.shortSample(randBytes[:352]) |
|
|
r.shortSample(randBytes[352:]) |
|
|
|
|
|
var mBytes, rBytes [mod3Bytes]byte |
|
|
m.marshalS3(mBytes[:]) |
|
|
r.marshalS3(rBytes[:]) |
|
|
|
|
|
ciphertext = pub.owf(&m, &r) |
|
|
|
|
|
h := sha256.New() |
|
|
h.Write([]byte("shared key\x00")) |
|
|
h.Write(mBytes[:]) |
|
|
h.Write(rBytes[:]) |
|
|
h.Write(ciphertext) |
|
|
sharedKey = h.Sum(nil) |
|
|
|
|
|
return ciphertext, sharedKey |
|
|
} |
|
|
|
|
|
func (pub *PublicKey) owf(m, r *poly) []byte { |
|
|
for i := range r { |
|
|
r[i] = mod3ToModQ(r[i]) |
|
|
} |
|
|
|
|
|
var mq poly |
|
|
mq.lift(m) |
|
|
|
|
|
var e poly |
|
|
e.mul(r, &pub.h) |
|
|
for i := range e { |
|
|
e[i] = (e[i] + mq[i]) % Q |
|
|
} |
|
|
|
|
|
ret := make([]byte, modQBytes) |
|
|
e.marshal(ret[:]) |
|
|
return ret |
|
|
} |
|
|
|
|
|
type PrivateKey struct { |
|
|
PublicKey |
|
|
f, fp poly3 |
|
|
hInv poly |
|
|
hmacKey [32]byte |
|
|
} |
|
|
|
|
|
func (priv *PrivateKey) Marshal() []byte { |
|
|
var ret [2*mod3Bytes + modQBytes]byte |
|
|
priv.f.marshal(ret[:]) |
|
|
priv.fp.marshal(ret[mod3Bytes:]) |
|
|
priv.h.marshal(ret[2*mod3Bytes:]) |
|
|
return ret[:] |
|
|
} |
|
|
|
|
|
func (priv *PrivateKey) Decap(ciphertext []byte) (sharedKey []byte, ok bool) { |
|
|
if len(ciphertext) != modQBytes { |
|
|
return nil, false |
|
|
} |
|
|
|
|
|
var e poly |
|
|
if !e.unmarshal(ciphertext) { |
|
|
return nil, false |
|
|
} |
|
|
|
|
|
var f poly |
|
|
f.fromMod3ToModQ(&priv.f) |
|
|
|
|
|
var v1, m poly |
|
|
v1.mul(&e, &f) |
|
|
|
|
|
var v13 poly3 |
|
|
v13.fromDiscreteMod3(&v1) |
|
|
// Note: v13 is not reduced mod phi(n). |
|
|
|
|
|
var m3 poly3 |
|
|
m3.mulMod3(&v13, &priv.fp) |
|
|
m3.modPhiN() |
|
|
m.fromMod3(&m3) |
|
|
|
|
|
var mLift, delta poly |
|
|
mLift.lift(&m) |
|
|
for i := range delta { |
|
|
delta[i] = (e[i] - mLift[i] + Q) % Q |
|
|
} |
|
|
delta.mul(&delta, &priv.hInv) |
|
|
delta.modPhiN() |
|
|
|
|
|
var r poly3 |
|
|
allOk := r.fromModQ(&delta) |
|
|
|
|
|
var mBytes, rBytes [mod3Bytes]byte |
|
|
m.marshalS3(mBytes[:]) |
|
|
r.marshal(rBytes[:]) |
|
|
|
|
|
var rPoly poly |
|
|
rPoly.fromMod3(&r) |
|
|
expectedCiphertext := priv.PublicKey.owf(&m, &rPoly) |
|
|
|
|
|
allOk &= subtle.ConstantTimeCompare(ciphertext, expectedCiphertext) |
|
|
|
|
|
hmacHash := hmac.New(sha256.New, priv.hmacKey[:]) |
|
|
hmacHash.Write(ciphertext) |
|
|
hmacDigest := hmacHash.Sum(nil) |
|
|
|
|
|
h := sha256.New() |
|
|
h.Write([]byte("shared key\x00")) |
|
|
h.Write(mBytes[:]) |
|
|
h.Write(rBytes[:]) |
|
|
h.Write(ciphertext) |
|
|
sharedKey = h.Sum(nil) |
|
|
|
|
|
mask := uint8(allOk - 1) |
|
|
for i := range sharedKey { |
|
|
sharedKey[i] = (sharedKey[i] & ^mask) | (hmacDigest[i] & mask) |
|
|
} |
|
|
|
|
|
return sharedKey, true |
|
|
} |
|
|
|
|
|
func GenerateKey(rand io.Reader) PrivateKey { |
|
|
var randBytes [352 + 352]byte |
|
|
if _, err := io.ReadFull(rand, randBytes[:]); err != nil { |
|
|
panic("rand failed") |
|
|
} |
|
|
|
|
|
var f poly |
|
|
f.shortSamplePlus(randBytes[:352]) |
|
|
var priv PrivateKey |
|
|
priv.f.fromDiscrete(&f) |
|
|
priv.fp.invertMod3(&priv.f) |
|
|
|
|
|
var g poly |
|
|
g.shortSamplePlus(randBytes[352:]) |
|
|
|
|
|
var pgPhi1 poly |
|
|
for i := range g { |
|
|
pgPhi1[i] = mod3ToModQ(g[i]) |
|
|
} |
|
|
for i := range pgPhi1 { |
|
|
pgPhi1[i] = (pgPhi1[i] * 3) % Q |
|
|
} |
|
|
pgPhi1.mulXMinus1() |
|
|
|
|
|
var fModQ poly |
|
|
fModQ.fromMod3ToModQ(&priv.f) |
|
|
|
|
|
var pfgPhi1 poly |
|
|
pfgPhi1.mul(&fModQ, &pgPhi1) |
|
|
|
|
|
var i poly |
|
|
i.invert(&pfgPhi1) |
|
|
|
|
|
priv.h.mul(&i, &pgPhi1) |
|
|
priv.h.mul(&priv.h, &pgPhi1) |
|
|
|
|
|
priv.hInv.mul(&i, &fModQ) |
|
|
priv.hInv.mul(&priv.hInv, &fModQ) |
|
|
|
|
|
return priv |
|
|
}
|
|
|
|