Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
728 lines
20 KiB
728 lines
20 KiB
/* Copyright (c) 2019, Google Inc. |
|
* |
|
* Permission to use, copy, modify, and/or distribute this software for any |
|
* purpose with or without fee is hereby granted, provided that the above |
|
* copyright notice and this permission notice appear in all copies. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
|
|
|
#include <string> |
|
#include <vector> |
|
|
|
#include <assert.h> |
|
#include <errno.h> |
|
#include <string.h> |
|
#include <sys/uio.h> |
|
#include <unistd.h> |
|
#include <cstdarg> |
|
|
|
#include <openssl/aes.h> |
|
#include <openssl/bn.h> |
|
#include <openssl/cmac.h> |
|
#include <openssl/digest.h> |
|
#include <openssl/ec.h> |
|
#include <openssl/ec_key.h> |
|
#include <openssl/ecdsa.h> |
|
#include <openssl/hmac.h> |
|
#include <openssl/obj.h> |
|
#include <openssl/sha.h> |
|
#include <openssl/span.h> |
|
|
|
#include "../../../../crypto/fipsmodule/rand/internal.h" |
|
|
|
static constexpr size_t kMaxArgs = 8; |
|
static constexpr size_t kMaxArgLength = (1 << 20); |
|
static constexpr size_t kMaxNameLength = 30; |
|
|
|
static_assert((kMaxArgs - 1 * kMaxArgLength) + kMaxNameLength > (1 << 30), |
|
"Argument limits permit excessive messages"); |
|
|
|
using namespace bssl; |
|
|
|
static bool ReadAll(int fd, void *in_data, size_t data_len) { |
|
uint8_t *data = reinterpret_cast<uint8_t *>(in_data); |
|
size_t done = 0; |
|
|
|
while (done < data_len) { |
|
ssize_t r; |
|
do { |
|
r = read(fd, &data[done], data_len - done); |
|
} while (r == -1 && errno == EINTR); |
|
|
|
if (r <= 0) { |
|
return false; |
|
} |
|
|
|
done += r; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
template <typename... Args> |
|
static bool WriteReply(int fd, Args... args) { |
|
std::vector<Span<const uint8_t>> spans = {args...}; |
|
if (spans.empty() || spans.size() > kMaxArgs) { |
|
abort(); |
|
} |
|
|
|
uint32_t nums[1 + kMaxArgs]; |
|
iovec iovs[kMaxArgs + 1]; |
|
nums[0] = spans.size(); |
|
iovs[0].iov_base = nums; |
|
iovs[0].iov_len = sizeof(uint32_t) * (1 + spans.size()); |
|
|
|
for (size_t i = 0; i < spans.size(); i++) { |
|
const auto &span = spans[i]; |
|
nums[i + 1] = span.size(); |
|
iovs[i + 1].iov_base = const_cast<uint8_t *>(span.data()); |
|
iovs[i + 1].iov_len = span.size(); |
|
} |
|
|
|
const size_t num_iov = spans.size() + 1; |
|
size_t iov_done = 0; |
|
while (iov_done < num_iov) { |
|
ssize_t r; |
|
do { |
|
r = writev(fd, &iovs[iov_done], num_iov - iov_done); |
|
} while (r == -1 && errno == EINTR); |
|
|
|
if (r <= 0) { |
|
return false; |
|
} |
|
|
|
size_t written = r; |
|
for (size_t i = iov_done; written > 0 && i < num_iov; i++) { |
|
iovec &iov = iovs[i]; |
|
|
|
size_t done = written; |
|
if (done > iov.iov_len) { |
|
done = iov.iov_len; |
|
} |
|
|
|
iov.iov_base = reinterpret_cast<uint8_t *>(iov.iov_base) + done; |
|
iov.iov_len -= done; |
|
written -= done; |
|
|
|
if (iov.iov_len == 0) { |
|
iov_done++; |
|
} |
|
} |
|
|
|
assert(written == 0); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static bool GetConfig(const Span<const uint8_t> args[]) { |
|
static constexpr char kConfig[] = |
|
R"([ |
|
{ |
|
"algorithm": "SHA2-224", |
|
"revision": "1.0", |
|
"messageLength": [{ |
|
"min": 0, "max": 65528, "increment": 8 |
|
}] |
|
}, |
|
{ |
|
"algorithm": "SHA2-256", |
|
"revision": "1.0", |
|
"messageLength": [{ |
|
"min": 0, "max": 65528, "increment": 8 |
|
}] |
|
}, |
|
{ |
|
"algorithm": "SHA2-384", |
|
"revision": "1.0", |
|
"messageLength": [{ |
|
"min": 0, "max": 65528, "increment": 8 |
|
}] |
|
}, |
|
{ |
|
"algorithm": "SHA2-512", |
|
"revision": "1.0", |
|
"messageLength": [{ |
|
"min": 0, "max": 65528, "increment": 8 |
|
}] |
|
}, |
|
{ |
|
"algorithm": "SHA-1", |
|
"revision": "1.0", |
|
"messageLength": [{ |
|
"min": 0, "max": 65528, "increment": 8 |
|
}] |
|
}, |
|
{ |
|
"algorithm": "ACVP-AES-ECB", |
|
"revision": "1.0", |
|
"direction": ["encrypt", "decrypt"], |
|
"keyLen": [128, 192, 256] |
|
}, |
|
{ |
|
"algorithm": "ACVP-AES-CBC", |
|
"revision": "1.0", |
|
"direction": ["encrypt", "decrypt"], |
|
"keyLen": [128, 192, 256] |
|
}, |
|
{ |
|
"algorithm": "HMAC-SHA-1", |
|
"revision": "1.0", |
|
"keyLen": [{ |
|
"min": 8, "max": 2048, "increment": 8 |
|
}], |
|
"macLen": [{ |
|
"min": 32, "max": 160, "increment": 8 |
|
}] |
|
}, |
|
{ |
|
"algorithm": "HMAC-SHA2-224", |
|
"revision": "1.0", |
|
"keyLen": [{ |
|
"min": 8, "max": 2048, "increment": 8 |
|
}], |
|
"macLen": [{ |
|
"min": 32, "max": 224, "increment": 8 |
|
}] |
|
}, |
|
{ |
|
"algorithm": "HMAC-SHA2-256", |
|
"revision": "1.0", |
|
"keyLen": [{ |
|
"min": 8, "max": 2048, "increment": 8 |
|
}], |
|
"macLen": [{ |
|
"min": 32, "max": 256, "increment": 8 |
|
}] |
|
}, |
|
{ |
|
"algorithm": "HMAC-SHA2-384", |
|
"revision": "1.0", |
|
"keyLen": [{ |
|
"min": 8, "max": 2048, "increment": 8 |
|
}], |
|
"macLen": [{ |
|
"min": 32, "max": 384, "increment": 8 |
|
}] |
|
}, |
|
{ |
|
"algorithm": "HMAC-SHA2-512", |
|
"revision": "1.0", |
|
"keyLen": [{ |
|
"min": 8, "max": 2048, "increment": 8 |
|
}], |
|
"macLen": [{ |
|
"min": 32, "max": 512, "increment": 8 |
|
}] |
|
}, |
|
{ |
|
"algorithm": "ctrDRBG", |
|
"revision": "1.0", |
|
"predResistanceEnabled": [false], |
|
"reseedImplemented": false, |
|
"capabilities": [{ |
|
"mode": "AES-256", |
|
"derFuncEnabled": false, |
|
"entropyInputLen": [384], |
|
"nonceLen": [0], |
|
"persoStringLen": [{"min": 0, "max": 384, "increment": 16}], |
|
"additionalInputLen": [ |
|
{"min": 0, "max": 384, "increment": 16} |
|
], |
|
"returnedBitsLen": 2048 |
|
}] |
|
}, |
|
{ |
|
"algorithm": "ECDSA", |
|
"mode": "keyGen", |
|
"revision": "1.0", |
|
"curve": [ |
|
"P-224", |
|
"P-256", |
|
"P-384", |
|
"P-521" |
|
], |
|
"secretGenerationMode": [ |
|
"testing candidates" |
|
] |
|
}, |
|
{ |
|
"algorithm": "ECDSA", |
|
"mode": "keyVer", |
|
"revision": "1.0", |
|
"curve": [ |
|
"P-224", |
|
"P-256", |
|
"P-384", |
|
"P-521" |
|
] |
|
}, |
|
{ |
|
"algorithm": "ECDSA", |
|
"mode": "sigGen", |
|
"revision": "1.0", |
|
"capabilities": [{ |
|
"curve": [ |
|
"P-224", |
|
"P-256", |
|
"P-384", |
|
"P-521" |
|
], |
|
"hashAlg": [ |
|
"SHA2-224", |
|
"SHA2-256", |
|
"SHA2-384", |
|
"SHA2-512" |
|
] |
|
}] |
|
}, |
|
{ |
|
"algorithm": "ECDSA", |
|
"mode": "sigVer", |
|
"revision": "1.0", |
|
"capabilities": [{ |
|
"curve": [ |
|
"P-224", |
|
"P-256", |
|
"P-384", |
|
"P-521" |
|
], |
|
"hashAlg": [ |
|
"SHA2-224", |
|
"SHA2-256", |
|
"SHA2-384", |
|
"SHA2-512" |
|
] |
|
}] |
|
}, |
|
{ |
|
"algorithm": "CMAC-AES", |
|
"revision": "1.0", |
|
"capabilities": [{ |
|
"direction": ["gen", "ver"], |
|
"msgLen": [{ |
|
"min": 0, |
|
"max": 65536, |
|
"increment": 8 |
|
}], |
|
"keyLen": [128, 256], |
|
"macLen": [{ |
|
"min": 32, |
|
"max": 128, |
|
"increment": 8 |
|
}] |
|
}] |
|
} |
|
])"; |
|
return WriteReply( |
|
STDOUT_FILENO, |
|
Span<const uint8_t>(reinterpret_cast<const uint8_t *>(kConfig), |
|
sizeof(kConfig) - 1)); |
|
} |
|
|
|
template <uint8_t *(*OneShotHash)(const uint8_t *, size_t, uint8_t *), |
|
size_t DigestLength> |
|
static bool Hash(const Span<const uint8_t> args[]) { |
|
uint8_t digest[DigestLength]; |
|
OneShotHash(args[0].data(), args[0].size(), digest); |
|
return WriteReply(STDOUT_FILENO, Span<const uint8_t>(digest)); |
|
} |
|
|
|
template <int (*SetKey)(const uint8_t *key, unsigned bits, AES_KEY *out), |
|
void (*Block)(const uint8_t *in, uint8_t *out, const AES_KEY *key)> |
|
static bool AES(const Span<const uint8_t> args[]) { |
|
AES_KEY key; |
|
if (SetKey(args[0].data(), args[0].size() * 8, &key) != 0) { |
|
return false; |
|
} |
|
if (args[1].size() % AES_BLOCK_SIZE != 0) { |
|
return false; |
|
} |
|
|
|
std::vector<uint8_t> out; |
|
out.resize(args[1].size()); |
|
for (size_t i = 0; i < args[1].size(); i += AES_BLOCK_SIZE) { |
|
Block(args[1].data() + i, &out[i], &key); |
|
} |
|
return WriteReply(STDOUT_FILENO, Span<const uint8_t>(out)); |
|
} |
|
|
|
template <int (*SetKey)(const uint8_t *key, unsigned bits, AES_KEY *out), |
|
int Direction> |
|
static bool AES_CBC(const Span<const uint8_t> args[]) { |
|
AES_KEY key; |
|
if (SetKey(args[0].data(), args[0].size() * 8, &key) != 0) { |
|
return false; |
|
} |
|
if (args[1].size() % AES_BLOCK_SIZE != 0 || |
|
args[2].size() != AES_BLOCK_SIZE) { |
|
return false; |
|
} |
|
uint8_t iv[AES_BLOCK_SIZE]; |
|
memcpy(iv, args[2].data(), AES_BLOCK_SIZE); |
|
|
|
std::vector<uint8_t> out; |
|
out.resize(args[1].size()); |
|
AES_cbc_encrypt(args[1].data(), out.data(), args[1].size(), &key, iv, |
|
Direction); |
|
return WriteReply(STDOUT_FILENO, Span<const uint8_t>(out)); |
|
} |
|
|
|
template <const EVP_MD *HashFunc()> |
|
static bool HMAC(const Span<const uint8_t> args[]) { |
|
const EVP_MD *const md = HashFunc(); |
|
uint8_t digest[EVP_MAX_MD_SIZE]; |
|
unsigned digest_len; |
|
if (::HMAC(md, args[1].data(), args[1].size(), args[0].data(), args[0].size(), |
|
digest, &digest_len) == nullptr) { |
|
return false; |
|
} |
|
return WriteReply(STDOUT_FILENO, Span<const uint8_t>(digest, digest_len)); |
|
} |
|
|
|
static bool DRBG(const Span<const uint8_t> args[]) { |
|
const auto out_len_bytes = args[0]; |
|
const auto entropy = args[1]; |
|
const auto personalisation = args[2]; |
|
const auto additional_data1 = args[3]; |
|
const auto additional_data2 = args[4]; |
|
const auto nonce = args[5]; |
|
|
|
uint32_t out_len; |
|
if (out_len_bytes.size() != sizeof(out_len) || |
|
entropy.size() != CTR_DRBG_ENTROPY_LEN || |
|
// nonces are not supported |
|
nonce.size() != 0) { |
|
return false; |
|
} |
|
memcpy(&out_len, out_len_bytes.data(), sizeof(out_len)); |
|
if (out_len > (1 << 24)) { |
|
return false; |
|
} |
|
std::vector<uint8_t> out(out_len); |
|
|
|
CTR_DRBG_STATE drbg; |
|
if (!CTR_DRBG_init(&drbg, entropy.data(), personalisation.data(), |
|
personalisation.size()) || |
|
!CTR_DRBG_generate(&drbg, out.data(), out_len, additional_data1.data(), |
|
additional_data1.size()) || |
|
!CTR_DRBG_generate(&drbg, out.data(), out_len, additional_data2.data(), |
|
additional_data2.size())) { |
|
return false; |
|
} |
|
|
|
return WriteReply(STDOUT_FILENO, Span<const uint8_t>(out)); |
|
} |
|
|
|
static bool StringEq(Span<const uint8_t> a, const char *b) { |
|
const size_t len = strlen(b); |
|
return a.size() == len && memcmp(a.data(), b, len) == 0; |
|
} |
|
|
|
static bssl::UniquePtr<EC_KEY> ECKeyFromName(Span<const uint8_t> name) { |
|
int nid; |
|
if (StringEq(name, "P-224")) { |
|
nid = NID_secp224r1; |
|
} else if (StringEq(name, "P-256")) { |
|
nid = NID_X9_62_prime256v1; |
|
} else if (StringEq(name, "P-384")) { |
|
nid = NID_secp384r1; |
|
} else if (StringEq(name, "P-521")) { |
|
nid = NID_secp521r1; |
|
} else { |
|
return nullptr; |
|
} |
|
|
|
return bssl::UniquePtr<EC_KEY>(EC_KEY_new_by_curve_name(nid)); |
|
} |
|
|
|
static std::vector<uint8_t> BIGNUMBytes(const BIGNUM *bn) { |
|
const size_t len = BN_num_bytes(bn); |
|
std::vector<uint8_t> ret(len); |
|
BN_bn2bin(bn, ret.data()); |
|
return ret; |
|
} |
|
|
|
static std::pair<std::vector<uint8_t>, std::vector<uint8_t>> GetPublicKeyBytes( |
|
const EC_KEY *key) { |
|
bssl::UniquePtr<BIGNUM> x(BN_new()); |
|
bssl::UniquePtr<BIGNUM> y(BN_new()); |
|
if (!EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(key), |
|
EC_KEY_get0_public_key(key), x.get(), |
|
y.get(), /*ctx=*/nullptr)) { |
|
abort(); |
|
} |
|
|
|
std::vector<uint8_t> x_bytes = BIGNUMBytes(x.get()); |
|
std::vector<uint8_t> y_bytes = BIGNUMBytes(y.get()); |
|
|
|
return std::make_pair(std::move(x_bytes), std::move(y_bytes)); |
|
} |
|
|
|
static bool ECDSAKeyGen(const Span<const uint8_t> args[]) { |
|
bssl::UniquePtr<EC_KEY> key = ECKeyFromName(args[0]); |
|
if (!key || !EC_KEY_generate_key_fips(key.get())) { |
|
return false; |
|
} |
|
|
|
const auto pub_key = GetPublicKeyBytes(key.get()); |
|
std::vector<uint8_t> d_bytes = |
|
BIGNUMBytes(EC_KEY_get0_private_key(key.get())); |
|
|
|
return WriteReply(STDOUT_FILENO, Span<const uint8_t>(d_bytes), |
|
Span<const uint8_t>(pub_key.first), |
|
Span<const uint8_t>(pub_key.second)); |
|
} |
|
|
|
static bssl::UniquePtr<BIGNUM> BytesToBIGNUM(Span<const uint8_t> bytes) { |
|
bssl::UniquePtr<BIGNUM> bn(BN_new()); |
|
BN_bin2bn(bytes.data(), bytes.size(), bn.get()); |
|
return bn; |
|
} |
|
|
|
static bool ECDSAKeyVer(const Span<const uint8_t> args[]) { |
|
bssl::UniquePtr<EC_KEY> key = ECKeyFromName(args[0]); |
|
if (!key) { |
|
return false; |
|
} |
|
|
|
bssl::UniquePtr<BIGNUM> x(BytesToBIGNUM(args[1])); |
|
bssl::UniquePtr<BIGNUM> y(BytesToBIGNUM(args[2])); |
|
|
|
bssl::UniquePtr<EC_POINT> point(EC_POINT_new(EC_KEY_get0_group(key.get()))); |
|
uint8_t reply[1]; |
|
if (!EC_POINT_set_affine_coordinates_GFp(EC_KEY_get0_group(key.get()), |
|
point.get(), x.get(), y.get(), |
|
/*ctx=*/nullptr) || |
|
!EC_KEY_set_public_key(key.get(), point.get()) || |
|
!EC_KEY_check_fips(key.get())) { |
|
reply[0] = 0; |
|
} else { |
|
reply[0] = 1; |
|
} |
|
|
|
return WriteReply(STDOUT_FILENO, Span<const uint8_t>(reply)); |
|
} |
|
|
|
static const EVP_MD *HashFromName(Span<const uint8_t> name) { |
|
if (StringEq(name, "SHA2-224")) { |
|
return EVP_sha224(); |
|
} else if (StringEq(name, "SHA2-256")) { |
|
return EVP_sha256(); |
|
} else if (StringEq(name, "SHA2-384")) { |
|
return EVP_sha384(); |
|
} else if (StringEq(name, "SHA2-512")) { |
|
return EVP_sha512(); |
|
} else { |
|
return nullptr; |
|
} |
|
} |
|
|
|
static bool ECDSASigGen(const Span<const uint8_t> args[]) { |
|
bssl::UniquePtr<EC_KEY> key = ECKeyFromName(args[0]); |
|
bssl::UniquePtr<BIGNUM> d = BytesToBIGNUM(args[1]); |
|
const EVP_MD *hash = HashFromName(args[2]); |
|
uint8_t digest[EVP_MAX_MD_SIZE]; |
|
unsigned digest_len; |
|
if (!key || !hash || |
|
!EVP_Digest(args[3].data(), args[3].size(), digest, &digest_len, hash, |
|
/*impl=*/nullptr) || |
|
!EC_KEY_set_private_key(key.get(), d.get())) { |
|
return false; |
|
} |
|
|
|
bssl::UniquePtr<ECDSA_SIG> sig(ECDSA_do_sign(digest, digest_len, key.get())); |
|
if (!sig) { |
|
return false; |
|
} |
|
|
|
std::vector<uint8_t> r_bytes(BIGNUMBytes(sig->r)); |
|
std::vector<uint8_t> s_bytes(BIGNUMBytes(sig->s)); |
|
|
|
return WriteReply(STDOUT_FILENO, Span<const uint8_t>(r_bytes), |
|
Span<const uint8_t>(s_bytes)); |
|
} |
|
|
|
static bool ECDSASigVer(const Span<const uint8_t> args[]) { |
|
bssl::UniquePtr<EC_KEY> key = ECKeyFromName(args[0]); |
|
const EVP_MD *hash = HashFromName(args[1]); |
|
auto msg = args[2]; |
|
bssl::UniquePtr<BIGNUM> x(BytesToBIGNUM(args[3])); |
|
bssl::UniquePtr<BIGNUM> y(BytesToBIGNUM(args[4])); |
|
bssl::UniquePtr<BIGNUM> r(BytesToBIGNUM(args[5])); |
|
bssl::UniquePtr<BIGNUM> s(BytesToBIGNUM(args[6])); |
|
ECDSA_SIG sig; |
|
sig.r = r.get(); |
|
sig.s = s.get(); |
|
|
|
uint8_t digest[EVP_MAX_MD_SIZE]; |
|
unsigned digest_len; |
|
if (!key || !hash || |
|
!EVP_Digest(msg.data(), msg.size(), digest, &digest_len, hash, |
|
/*impl=*/nullptr)) { |
|
return false; |
|
} |
|
|
|
bssl::UniquePtr<EC_POINT> point(EC_POINT_new(EC_KEY_get0_group(key.get()))); |
|
uint8_t reply[1]; |
|
if (!EC_POINT_set_affine_coordinates_GFp(EC_KEY_get0_group(key.get()), |
|
point.get(), x.get(), y.get(), |
|
/*ctx=*/nullptr) || |
|
!EC_KEY_set_public_key(key.get(), point.get()) || |
|
!EC_KEY_check_fips(key.get()) || |
|
!ECDSA_do_verify(digest, digest_len, &sig, key.get())) { |
|
reply[0] = 0; |
|
} else { |
|
reply[0] = 1; |
|
} |
|
|
|
return WriteReply(STDOUT_FILENO, Span<const uint8_t>(reply)); |
|
} |
|
|
|
static bool CMAC_AES(const Span<const uint8_t> args[]) { |
|
uint8_t mac[16]; |
|
if (!AES_CMAC(mac, args[1].data(), args[1].size(), args[2].data(), |
|
args[2].size())) { |
|
return false; |
|
} |
|
|
|
uint32_t mac_len; |
|
if (args[0].size() != sizeof(mac_len)) { |
|
return false; |
|
} |
|
memcpy(&mac_len, args[0].data(), sizeof(mac_len)); |
|
if (mac_len > sizeof(mac)) { |
|
return false; |
|
} |
|
|
|
return WriteReply(STDOUT_FILENO, Span<const uint8_t>(mac, mac_len)); |
|
} |
|
|
|
static constexpr struct { |
|
const char name[kMaxNameLength + 1]; |
|
uint8_t expected_args; |
|
bool (*handler)(const Span<const uint8_t>[]); |
|
} kFunctions[] = { |
|
{"getConfig", 0, GetConfig}, |
|
{"SHA-1", 1, Hash<SHA1, SHA_DIGEST_LENGTH>}, |
|
{"SHA2-224", 1, Hash<SHA224, SHA224_DIGEST_LENGTH>}, |
|
{"SHA2-256", 1, Hash<SHA256, SHA256_DIGEST_LENGTH>}, |
|
{"SHA2-384", 1, Hash<SHA384, SHA256_DIGEST_LENGTH>}, |
|
{"SHA2-512", 1, Hash<SHA512, SHA512_DIGEST_LENGTH>}, |
|
{"AES/encrypt", 2, AES<AES_set_encrypt_key, AES_encrypt>}, |
|
{"AES/decrypt", 2, AES<AES_set_decrypt_key, AES_decrypt>}, |
|
{"AES-CBC/encrypt", 3, AES_CBC<AES_set_encrypt_key, AES_ENCRYPT>}, |
|
{"AES-CBC/decrypt", 3, AES_CBC<AES_set_decrypt_key, AES_DECRYPT>}, |
|
{"HMAC-SHA-1", 2, HMAC<EVP_sha1>}, |
|
{"HMAC-SHA2-224", 2, HMAC<EVP_sha224>}, |
|
{"HMAC-SHA2-256", 2, HMAC<EVP_sha256>}, |
|
{"HMAC-SHA2-384", 2, HMAC<EVP_sha384>}, |
|
{"HMAC-SHA2-512", 2, HMAC<EVP_sha512>}, |
|
{"ctrDRBG/AES-256", 6, DRBG}, |
|
{"ECDSA/keyGen", 1, ECDSAKeyGen}, |
|
{"ECDSA/keyVer", 3, ECDSAKeyVer}, |
|
{"ECDSA/sigGen", 4, ECDSASigGen}, |
|
{"ECDSA/sigVer", 7, ECDSASigVer}, |
|
{"CMAC-AES", 3, CMAC_AES}, |
|
}; |
|
|
|
int main() { |
|
uint32_t nums[1 + kMaxArgs]; |
|
std::unique_ptr<uint8_t[]> buf; |
|
size_t buf_len = 0; |
|
Span<const uint8_t> args[kMaxArgs]; |
|
|
|
for (;;) { |
|
if (!ReadAll(STDIN_FILENO, nums, sizeof(uint32_t) * 2)) { |
|
return 1; |
|
} |
|
|
|
const size_t num_args = nums[0]; |
|
if (num_args == 0) { |
|
fprintf(stderr, "Invalid, zero-argument operation requested.\n"); |
|
return 2; |
|
} else if (num_args > kMaxArgs) { |
|
fprintf(stderr, |
|
"Operation requested with %zu args, but %zu is the limit.\n", |
|
num_args, kMaxArgs); |
|
return 2; |
|
} |
|
|
|
if (num_args > 1 && |
|
!ReadAll(STDIN_FILENO, &nums[2], sizeof(uint32_t) * (num_args - 1))) { |
|
return 1; |
|
} |
|
|
|
size_t need = 0; |
|
for (size_t i = 0; i < num_args; i++) { |
|
const size_t arg_length = nums[i + 1]; |
|
if (i == 0 && arg_length > kMaxNameLength) { |
|
fprintf(stderr, |
|
"Operation with name of length %zu exceeded limit of %zu.\n", |
|
arg_length, kMaxNameLength); |
|
return 2; |
|
} else if (arg_length > kMaxArgLength) { |
|
fprintf( |
|
stderr, |
|
"Operation with argument of length %zu exceeded limit of %zu.\n", |
|
arg_length, kMaxArgLength); |
|
return 2; |
|
} |
|
|
|
// static_assert around kMaxArgs etc enforces that this doesn't overflow. |
|
need += arg_length; |
|
} |
|
|
|
if (need > buf_len) { |
|
size_t alloced = need + (need >> 1); |
|
if (alloced < need) { |
|
abort(); |
|
} |
|
buf.reset(new uint8_t[alloced]); |
|
buf_len = alloced; |
|
} |
|
|
|
if (!ReadAll(STDIN_FILENO, buf.get(), need)) { |
|
return 1; |
|
} |
|
|
|
size_t offset = 0; |
|
for (size_t i = 0; i < num_args; i++) { |
|
args[i] = Span<const uint8_t>(&buf[offset], nums[i + 1]); |
|
offset += nums[i + 1]; |
|
} |
|
|
|
bool found = true; |
|
for (const auto &func : kFunctions) { |
|
if (args[0].size() == strlen(func.name) && |
|
memcmp(args[0].data(), func.name, args[0].size()) == 0) { |
|
if (num_args - 1 != func.expected_args) { |
|
fprintf(stderr, |
|
"\'%s\' operation received %zu arguments but expected %u.\n", |
|
func.name, num_args - 1, func.expected_args); |
|
return 2; |
|
} |
|
|
|
if (!func.handler(&args[1])) { |
|
return 4; |
|
} |
|
|
|
found = true; |
|
break; |
|
} |
|
} |
|
|
|
if (!found) { |
|
const std::string name(reinterpret_cast<const char *>(args[0].data()), |
|
args[0].size()); |
|
fprintf(stderr, "Unknown operation: %s\n", name.c_str()); |
|
return 3; |
|
} |
|
} |
|
}
|
|
|