Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
441 lines
18 KiB
441 lines
18 KiB
/* ==================================================================== |
|
* Copyright (c) 2008 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* openssl-core@openssl.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== */ |
|
|
|
#ifndef OPENSSL_HEADER_MODES_INTERNAL_H |
|
#define OPENSSL_HEADER_MODES_INTERNAL_H |
|
|
|
#include <openssl/base.h> |
|
|
|
#include <openssl/aes.h> |
|
#include <openssl/cpu.h> |
|
|
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
#include "../../internal.h" |
|
|
|
#if defined(__cplusplus) |
|
extern "C" { |
|
#endif |
|
|
|
|
|
static inline uint32_t GETU32(const void *in) { |
|
uint32_t v; |
|
OPENSSL_memcpy(&v, in, sizeof(v)); |
|
return CRYPTO_bswap4(v); |
|
} |
|
|
|
static inline void PUTU32(void *out, uint32_t v) { |
|
v = CRYPTO_bswap4(v); |
|
OPENSSL_memcpy(out, &v, sizeof(v)); |
|
} |
|
|
|
static inline size_t load_word_le(const void *in) { |
|
size_t v; |
|
OPENSSL_memcpy(&v, in, sizeof(v)); |
|
return v; |
|
} |
|
|
|
static inline void store_word_le(void *out, size_t v) { |
|
OPENSSL_memcpy(out, &v, sizeof(v)); |
|
} |
|
|
|
// block128_f is the type of an AES block cipher implementation. |
|
// |
|
// Unlike upstream OpenSSL, it and the other functions in this file hard-code |
|
// |AES_KEY|. It is undefined in C to call a function pointer with anything |
|
// other than the original type. Thus we either must match |block128_f| to the |
|
// type signature of |AES_encrypt| and friends or pass in |void*| wrapper |
|
// functions. |
|
// |
|
// These functions are called exclusively with AES, so we use the former. |
|
typedef void (*block128_f)(const uint8_t in[16], uint8_t out[16], |
|
const AES_KEY *key); |
|
|
|
|
|
// CTR. |
|
|
|
// ctr128_f is the type of a function that performs CTR-mode encryption. |
|
typedef void (*ctr128_f)(const uint8_t *in, uint8_t *out, size_t blocks, |
|
const AES_KEY *key, const uint8_t ivec[16]); |
|
|
|
// CRYPTO_ctr128_encrypt encrypts (or decrypts, it's the same in CTR mode) |
|
// |len| bytes from |in| to |out| using |block| in counter mode. There's no |
|
// requirement that |len| be a multiple of any value and any partial blocks are |
|
// stored in |ecount_buf| and |*num|, which must be zeroed before the initial |
|
// call. The counter is a 128-bit, big-endian value in |ivec| and is |
|
// incremented by this function. |
|
void CRYPTO_ctr128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
|
const AES_KEY *key, uint8_t ivec[16], |
|
uint8_t ecount_buf[16], unsigned *num, |
|
block128_f block); |
|
|
|
// CRYPTO_ctr128_encrypt_ctr32 acts like |CRYPTO_ctr128_encrypt| but takes |
|
// |ctr|, a function that performs CTR mode but only deals with the lower 32 |
|
// bits of the counter. This is useful when |ctr| can be an optimised |
|
// function. |
|
void CRYPTO_ctr128_encrypt_ctr32(const uint8_t *in, uint8_t *out, size_t len, |
|
const AES_KEY *key, uint8_t ivec[16], |
|
uint8_t ecount_buf[16], unsigned *num, |
|
ctr128_f ctr); |
|
|
|
|
|
// GCM. |
|
// |
|
// This API differs from the upstream API slightly. The |GCM128_CONTEXT| does |
|
// not have a |key| pointer that points to the key as upstream's version does. |
|
// Instead, every function takes a |key| parameter. This way |GCM128_CONTEXT| |
|
// can be safely copied. Additionally, |gcm_key| is split into a separate |
|
// struct. |
|
|
|
typedef struct { uint64_t hi,lo; } u128; |
|
|
|
// gmult_func multiplies |Xi| by the GCM key and writes the result back to |
|
// |Xi|. |
|
typedef void (*gmult_func)(uint64_t Xi[2], const u128 Htable[16]); |
|
|
|
// ghash_func repeatedly multiplies |Xi| by the GCM key and adds in blocks from |
|
// |inp|. The result is written back to |Xi| and the |len| argument must be a |
|
// multiple of 16. |
|
typedef void (*ghash_func)(uint64_t Xi[2], const u128 Htable[16], |
|
const uint8_t *inp, size_t len); |
|
|
|
typedef struct gcm128_key_st { |
|
// Note the MOVBE-based, x86-64, GHASH assembly requires |H| and |Htable| to |
|
// be the first two elements of this struct. Additionally, some assembly |
|
// routines require a 16-byte-aligned |Htable| when hashing data, but not |
|
// initialization. |GCM128_KEY| is not itself aligned to simplify embedding in |
|
// |EVP_AEAD_CTX|, but |Htable|'s offset must be a multiple of 16. |
|
u128 H; |
|
u128 Htable[16]; |
|
gmult_func gmult; |
|
ghash_func ghash; |
|
|
|
block128_f block; |
|
|
|
// use_aesni_gcm_crypt is true if this context should use the assembly |
|
// functions |aesni_gcm_encrypt| and |aesni_gcm_decrypt| to process data. |
|
unsigned use_aesni_gcm_crypt:1; |
|
} GCM128_KEY; |
|
|
|
// GCM128_CONTEXT contains state for a single GCM operation. The structure |
|
// should be zero-initialized before use. |
|
typedef struct { |
|
// The following 5 names follow names in GCM specification |
|
union { |
|
uint64_t u[2]; |
|
uint32_t d[4]; |
|
uint8_t c[16]; |
|
size_t t[16 / sizeof(size_t)]; |
|
} Yi, EKi, EK0, len, Xi; |
|
|
|
// Note that the order of |Xi| and |gcm_key| is fixed by the MOVBE-based, |
|
// x86-64, GHASH assembly. Additionally, some assembly routines require |
|
// |gcm_key| to be 16-byte aligned. |GCM128_KEY| is not itself aligned to |
|
// simplify embedding in |EVP_AEAD_CTX|. |
|
alignas(16) GCM128_KEY gcm_key; |
|
|
|
unsigned mres, ares; |
|
} GCM128_CONTEXT; |
|
|
|
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
|
// crypto_gcm_clmul_enabled returns one if the CLMUL implementation of GCM is |
|
// used. |
|
int crypto_gcm_clmul_enabled(void); |
|
#endif |
|
|
|
// CRYPTO_ghash_init writes a precomputed table of powers of |gcm_key| to |
|
// |out_table| and sets |*out_mult| and |*out_hash| to (potentially hardware |
|
// accelerated) functions for performing operations in the GHASH field. If the |
|
// AVX implementation was used |*out_is_avx| will be true. |
|
void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash, |
|
u128 *out_key, u128 out_table[16], int *out_is_avx, |
|
const uint8_t gcm_key[16]); |
|
|
|
// CRYPTO_gcm128_init_key initialises |gcm_key| to use |block| (typically AES) |
|
// with the given key. |block_is_hwaes| is one if |block| is |aes_hw_encrypt|. |
|
OPENSSL_EXPORT void CRYPTO_gcm128_init_key(GCM128_KEY *gcm_key, |
|
const AES_KEY *key, block128_f block, |
|
int block_is_hwaes); |
|
|
|
// CRYPTO_gcm128_setiv sets the IV (nonce) for |ctx|. The |key| must be the |
|
// same key that was passed to |CRYPTO_gcm128_init|. |
|
OPENSSL_EXPORT void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const AES_KEY *key, |
|
const uint8_t *iv, size_t iv_len); |
|
|
|
// CRYPTO_gcm128_aad sets the authenticated data for an instance of GCM. |
|
// This must be called before and data is encrypted. It returns one on success |
|
// and zero otherwise. |
|
OPENSSL_EXPORT int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad, |
|
size_t len); |
|
|
|
// CRYPTO_gcm128_encrypt encrypts |len| bytes from |in| to |out|. The |key| |
|
// must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one |
|
// on success and zero otherwise. |
|
OPENSSL_EXPORT int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, |
|
const AES_KEY *key, const uint8_t *in, |
|
uint8_t *out, size_t len); |
|
|
|
// CRYPTO_gcm128_decrypt decrypts |len| bytes from |in| to |out|. The |key| |
|
// must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one |
|
// on success and zero otherwise. |
|
OPENSSL_EXPORT int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, |
|
const AES_KEY *key, const uint8_t *in, |
|
uint8_t *out, size_t len); |
|
|
|
// CRYPTO_gcm128_encrypt_ctr32 encrypts |len| bytes from |in| to |out| using |
|
// a CTR function that only handles the bottom 32 bits of the nonce, like |
|
// |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was |
|
// passed to |CRYPTO_gcm128_init|. It returns one on success and zero |
|
// otherwise. |
|
OPENSSL_EXPORT int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, |
|
const AES_KEY *key, |
|
const uint8_t *in, uint8_t *out, |
|
size_t len, ctr128_f stream); |
|
|
|
// CRYPTO_gcm128_decrypt_ctr32 decrypts |len| bytes from |in| to |out| using |
|
// a CTR function that only handles the bottom 32 bits of the nonce, like |
|
// |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was |
|
// passed to |CRYPTO_gcm128_init|. It returns one on success and zero |
|
// otherwise. |
|
OPENSSL_EXPORT int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, |
|
const AES_KEY *key, |
|
const uint8_t *in, uint8_t *out, |
|
size_t len, ctr128_f stream); |
|
|
|
// CRYPTO_gcm128_finish calculates the authenticator and compares it against |
|
// |len| bytes of |tag|. It returns one on success and zero otherwise. |
|
OPENSSL_EXPORT int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag, |
|
size_t len); |
|
|
|
// CRYPTO_gcm128_tag calculates the authenticator and copies it into |tag|. |
|
// The minimum of |len| and 16 bytes are copied into |tag|. |
|
OPENSSL_EXPORT void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, uint8_t *tag, |
|
size_t len); |
|
|
|
|
|
// GCM assembly. |
|
|
|
void gcm_init_nohw(u128 Htable[16], const uint64_t H[2]); |
|
void gcm_gmult_nohw(uint64_t Xi[2], const u128 Htable[16]); |
|
void gcm_ghash_nohw(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
|
size_t len); |
|
|
|
#if !defined(OPENSSL_NO_ASM) |
|
|
|
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
|
#define GCM_FUNCREF |
|
void gcm_init_clmul(u128 Htable[16], const uint64_t Xi[2]); |
|
void gcm_gmult_clmul(uint64_t Xi[2], const u128 Htable[16]); |
|
void gcm_ghash_clmul(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
|
size_t len); |
|
|
|
OPENSSL_INLINE char gcm_ssse3_capable(void) { |
|
return (OPENSSL_ia32cap_get()[1] & (1 << (41 - 32))) != 0; |
|
} |
|
|
|
// |gcm_gmult_ssse3| and |gcm_ghash_ssse3| require |Htable| to be |
|
// 16-byte-aligned, but |gcm_init_ssse3| does not. |
|
void gcm_init_ssse3(u128 Htable[16], const uint64_t Xi[2]); |
|
void gcm_gmult_ssse3(uint64_t Xi[2], const u128 Htable[16]); |
|
void gcm_ghash_ssse3(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in, |
|
size_t len); |
|
|
|
#if defined(OPENSSL_X86_64) |
|
#define GHASH_ASM_X86_64 |
|
void gcm_init_avx(u128 Htable[16], const uint64_t Xi[2]); |
|
void gcm_gmult_avx(uint64_t Xi[2], const u128 Htable[16]); |
|
void gcm_ghash_avx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in, |
|
size_t len); |
|
|
|
#define AESNI_GCM |
|
size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
|
const AES_KEY *key, uint8_t ivec[16], uint64_t *Xi); |
|
size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len, |
|
const AES_KEY *key, uint8_t ivec[16], uint64_t *Xi); |
|
#endif // OPENSSL_X86_64 |
|
|
|
#if defined(OPENSSL_X86) |
|
#define GHASH_ASM_X86 |
|
#endif // OPENSSL_X86 |
|
|
|
#elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) |
|
#define GHASH_ASM_ARM |
|
#define GCM_FUNCREF |
|
|
|
OPENSSL_INLINE int gcm_pmull_capable(void) { |
|
return CRYPTO_is_ARMv8_PMULL_capable(); |
|
} |
|
|
|
void gcm_init_v8(u128 Htable[16], const uint64_t Xi[2]); |
|
void gcm_gmult_v8(uint64_t Xi[2], const u128 Htable[16]); |
|
void gcm_ghash_v8(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
|
size_t len); |
|
|
|
OPENSSL_INLINE int gcm_neon_capable(void) { return CRYPTO_is_NEON_capable(); } |
|
|
|
void gcm_init_neon(u128 Htable[16], const uint64_t Xi[2]); |
|
void gcm_gmult_neon(uint64_t Xi[2], const u128 Htable[16]); |
|
void gcm_ghash_neon(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
|
size_t len); |
|
|
|
#elif defined(OPENSSL_PPC64LE) |
|
#define GHASH_ASM_PPC64LE |
|
#define GCM_FUNCREF |
|
void gcm_init_p8(u128 Htable[16], const uint64_t Xi[2]); |
|
void gcm_gmult_p8(uint64_t Xi[2], const u128 Htable[16]); |
|
void gcm_ghash_p8(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
|
size_t len); |
|
#endif |
|
#endif // OPENSSL_NO_ASM |
|
|
|
|
|
// CBC. |
|
|
|
// cbc128_f is the type of a function that performs CBC-mode encryption. |
|
typedef void (*cbc128_f)(const uint8_t *in, uint8_t *out, size_t len, |
|
const AES_KEY *key, uint8_t ivec[16], int enc); |
|
|
|
// CRYPTO_cbc128_encrypt encrypts |len| bytes from |in| to |out| using the |
|
// given IV and block cipher in CBC mode. The input need not be a multiple of |
|
// 128 bits long, but the output will round up to the nearest 128 bit multiple, |
|
// zero padding the input if needed. The IV will be updated on return. |
|
void CRYPTO_cbc128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
|
const AES_KEY *key, uint8_t ivec[16], |
|
block128_f block); |
|
|
|
// CRYPTO_cbc128_decrypt decrypts |len| bytes from |in| to |out| using the |
|
// given IV and block cipher in CBC mode. If |len| is not a multiple of 128 |
|
// bits then only that many bytes will be written, but a multiple of 128 bits |
|
// is always read from |in|. The IV will be updated on return. |
|
void CRYPTO_cbc128_decrypt(const uint8_t *in, uint8_t *out, size_t len, |
|
const AES_KEY *key, uint8_t ivec[16], |
|
block128_f block); |
|
|
|
|
|
// OFB. |
|
|
|
// CRYPTO_ofb128_encrypt encrypts (or decrypts, it's the same with OFB mode) |
|
// |len| bytes from |in| to |out| using |block| in OFB mode. There's no |
|
// requirement that |len| be a multiple of any value and any partial blocks are |
|
// stored in |ivec| and |*num|, the latter must be zero before the initial |
|
// call. |
|
void CRYPTO_ofb128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
|
const AES_KEY *key, uint8_t ivec[16], unsigned *num, |
|
block128_f block); |
|
|
|
|
|
// CFB. |
|
|
|
// CRYPTO_cfb128_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes |
|
// from |in| to |out| using |block| in CFB mode. There's no requirement that |
|
// |len| be a multiple of any value and any partial blocks are stored in |ivec| |
|
// and |*num|, the latter must be zero before the initial call. |
|
void CRYPTO_cfb128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
|
const AES_KEY *key, uint8_t ivec[16], unsigned *num, |
|
int enc, block128_f block); |
|
|
|
// CRYPTO_cfb128_8_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes |
|
// from |in| to |out| using |block| in CFB-8 mode. Prior to the first call |
|
// |num| should be set to zero. |
|
void CRYPTO_cfb128_8_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
|
const AES_KEY *key, uint8_t ivec[16], |
|
unsigned *num, int enc, block128_f block); |
|
|
|
// CRYPTO_cfb128_1_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes |
|
// from |in| to |out| using |block| in CFB-1 mode. Prior to the first call |
|
// |num| should be set to zero. |
|
void CRYPTO_cfb128_1_encrypt(const uint8_t *in, uint8_t *out, size_t bits, |
|
const AES_KEY *key, uint8_t ivec[16], |
|
unsigned *num, int enc, block128_f block); |
|
|
|
size_t CRYPTO_cts128_encrypt_block(const uint8_t *in, uint8_t *out, size_t len, |
|
const AES_KEY *key, uint8_t ivec[16], |
|
block128_f block); |
|
|
|
|
|
// POLYVAL. |
|
// |
|
// POLYVAL is a polynomial authenticator that operates over a field very |
|
// similar to the one that GHASH uses. See |
|
// https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02#section-3. |
|
|
|
typedef union { |
|
uint64_t u[2]; |
|
uint8_t c[16]; |
|
} polyval_block; |
|
|
|
struct polyval_ctx { |
|
// Note that the order of |S|, |H| and |Htable| is fixed by the MOVBE-based, |
|
// x86-64, GHASH assembly. Additionally, some assembly routines require |
|
// |Htable| to be 16-byte aligned. |
|
polyval_block S; |
|
u128 H; |
|
alignas(16) u128 Htable[16]; |
|
gmult_func gmult; |
|
ghash_func ghash; |
|
}; |
|
|
|
// CRYPTO_POLYVAL_init initialises |ctx| using |key|. |
|
void CRYPTO_POLYVAL_init(struct polyval_ctx *ctx, const uint8_t key[16]); |
|
|
|
// CRYPTO_POLYVAL_update_blocks updates the accumulator in |ctx| given the |
|
// blocks from |in|. Only a whole number of blocks can be processed so |in_len| |
|
// must be a multiple of 16. |
|
void CRYPTO_POLYVAL_update_blocks(struct polyval_ctx *ctx, const uint8_t *in, |
|
size_t in_len); |
|
|
|
// CRYPTO_POLYVAL_finish writes the accumulator from |ctx| to |out|. |
|
void CRYPTO_POLYVAL_finish(const struct polyval_ctx *ctx, uint8_t out[16]); |
|
|
|
|
|
#if defined(__cplusplus) |
|
} // extern C |
|
#endif |
|
|
|
#endif // OPENSSL_HEADER_MODES_INTERNAL_H
|
|
|