Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
902 lines
30 KiB
902 lines
30 KiB
/* |
|
* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
|
* project. |
|
*/ |
|
/* ==================================================================== |
|
* Copyright (c) 2015 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* licensing@OpenSSL.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
*/ |
|
|
|
#include <openssl/evp.h> |
|
|
|
#include <stdio.h> |
|
#include <stdint.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
OPENSSL_MSVC_PRAGMA(warning(push)) |
|
OPENSSL_MSVC_PRAGMA(warning(disable: 4702)) |
|
|
|
#include <map> |
|
#include <string> |
|
#include <utility> |
|
#include <vector> |
|
|
|
OPENSSL_MSVC_PRAGMA(warning(pop)) |
|
|
|
#include <gtest/gtest.h> |
|
|
|
#include <openssl/bytestring.h> |
|
#include <openssl/crypto.h> |
|
#include <openssl/digest.h> |
|
#include <openssl/dsa.h> |
|
#include <openssl/err.h> |
|
#include <openssl/rsa.h> |
|
|
|
#include "../test/file_test.h" |
|
#include "../test/test_util.h" |
|
#include "../test/wycheproof_util.h" |
|
|
|
|
|
// evp_test dispatches between multiple test types. PrivateKey tests take a key |
|
// name parameter and single block, decode it as a PEM private key, and save it |
|
// under that key name. Decrypt, Sign, and Verify tests take a previously |
|
// imported key name as parameter and test their respective operations. |
|
|
|
static const EVP_MD *GetDigest(FileTest *t, const std::string &name) { |
|
if (name == "MD5") { |
|
return EVP_md5(); |
|
} else if (name == "SHA1") { |
|
return EVP_sha1(); |
|
} else if (name == "SHA224") { |
|
return EVP_sha224(); |
|
} else if (name == "SHA256") { |
|
return EVP_sha256(); |
|
} else if (name == "SHA384") { |
|
return EVP_sha384(); |
|
} else if (name == "SHA512") { |
|
return EVP_sha512(); |
|
} |
|
ADD_FAILURE() << "Unknown digest: " << name; |
|
return nullptr; |
|
} |
|
|
|
static int GetKeyType(FileTest *t, const std::string &name) { |
|
if (name == "RSA") { |
|
return EVP_PKEY_RSA; |
|
} |
|
if (name == "EC") { |
|
return EVP_PKEY_EC; |
|
} |
|
if (name == "DSA") { |
|
return EVP_PKEY_DSA; |
|
} |
|
if (name == "Ed25519") { |
|
return EVP_PKEY_ED25519; |
|
} |
|
if (name == "X25519") { |
|
return EVP_PKEY_X25519; |
|
} |
|
ADD_FAILURE() << "Unknown key type: " << name; |
|
return EVP_PKEY_NONE; |
|
} |
|
|
|
static int GetRSAPadding(FileTest *t, int *out, const std::string &name) { |
|
if (name == "PKCS1") { |
|
*out = RSA_PKCS1_PADDING; |
|
return true; |
|
} |
|
if (name == "PSS") { |
|
*out = RSA_PKCS1_PSS_PADDING; |
|
return true; |
|
} |
|
if (name == "OAEP") { |
|
*out = RSA_PKCS1_OAEP_PADDING; |
|
return true; |
|
} |
|
ADD_FAILURE() << "Unknown RSA padding mode: " << name; |
|
return false; |
|
} |
|
|
|
using KeyMap = std::map<std::string, bssl::UniquePtr<EVP_PKEY>>; |
|
|
|
static bool ImportKey(FileTest *t, KeyMap *key_map, |
|
EVP_PKEY *(*parse_func)(CBS *cbs), |
|
int (*marshal_func)(CBB *cbb, const EVP_PKEY *key)) { |
|
std::vector<uint8_t> input; |
|
if (!t->GetBytes(&input, "Input")) { |
|
return false; |
|
} |
|
|
|
CBS cbs; |
|
CBS_init(&cbs, input.data(), input.size()); |
|
bssl::UniquePtr<EVP_PKEY> pkey(parse_func(&cbs)); |
|
if (!pkey) { |
|
return false; |
|
} |
|
|
|
std::string key_type; |
|
if (!t->GetAttribute(&key_type, "Type")) { |
|
return false; |
|
} |
|
EXPECT_EQ(GetKeyType(t, key_type), EVP_PKEY_id(pkey.get())); |
|
|
|
// The key must re-encode correctly. |
|
bssl::ScopedCBB cbb; |
|
uint8_t *der; |
|
size_t der_len; |
|
if (!CBB_init(cbb.get(), 0) || |
|
!marshal_func(cbb.get(), pkey.get()) || |
|
!CBB_finish(cbb.get(), &der, &der_len)) { |
|
return false; |
|
} |
|
bssl::UniquePtr<uint8_t> free_der(der); |
|
|
|
std::vector<uint8_t> output = input; |
|
if (t->HasAttribute("Output") && |
|
!t->GetBytes(&output, "Output")) { |
|
return false; |
|
} |
|
EXPECT_EQ(Bytes(output), Bytes(der, der_len)) |
|
<< "Re-encoding the key did not match."; |
|
|
|
if (t->HasAttribute("ExpectNoRawPrivate")) { |
|
size_t len; |
|
EXPECT_FALSE(EVP_PKEY_get_raw_private_key(pkey.get(), nullptr, &len)); |
|
} else if (t->HasAttribute("ExpectRawPrivate")) { |
|
std::vector<uint8_t> expected; |
|
if (!t->GetBytes(&expected, "ExpectRawPrivate")) { |
|
return false; |
|
} |
|
|
|
std::vector<uint8_t> raw; |
|
size_t len; |
|
if (!EVP_PKEY_get_raw_private_key(pkey.get(), nullptr, &len)) { |
|
return false; |
|
} |
|
raw.resize(len); |
|
if (!EVP_PKEY_get_raw_private_key(pkey.get(), raw.data(), &len)) { |
|
return false; |
|
} |
|
raw.resize(len); |
|
EXPECT_EQ(Bytes(raw), Bytes(expected)); |
|
|
|
// Short buffers should be rejected. |
|
raw.resize(len - 1); |
|
len = raw.size(); |
|
EXPECT_FALSE(EVP_PKEY_get_raw_private_key(pkey.get(), raw.data(), &len)); |
|
} |
|
|
|
if (t->HasAttribute("ExpectNoRawPublic")) { |
|
size_t len; |
|
EXPECT_FALSE(EVP_PKEY_get_raw_public_key(pkey.get(), nullptr, &len)); |
|
} else if (t->HasAttribute("ExpectRawPublic")) { |
|
std::vector<uint8_t> expected; |
|
if (!t->GetBytes(&expected, "ExpectRawPublic")) { |
|
return false; |
|
} |
|
|
|
std::vector<uint8_t> raw; |
|
size_t len; |
|
if (!EVP_PKEY_get_raw_public_key(pkey.get(), nullptr, &len)) { |
|
return false; |
|
} |
|
raw.resize(len); |
|
if (!EVP_PKEY_get_raw_public_key(pkey.get(), raw.data(), &len)) { |
|
return false; |
|
} |
|
raw.resize(len); |
|
EXPECT_EQ(Bytes(raw), Bytes(expected)); |
|
|
|
// Short buffers should be rejected. |
|
raw.resize(len - 1); |
|
len = raw.size(); |
|
EXPECT_FALSE(EVP_PKEY_get_raw_public_key(pkey.get(), raw.data(), &len)); |
|
} |
|
|
|
// Save the key for future tests. |
|
const std::string &key_name = t->GetParameter(); |
|
EXPECT_EQ(0u, key_map->count(key_name)) << "Duplicate key: " << key_name; |
|
(*key_map)[key_name] = std::move(pkey); |
|
return true; |
|
} |
|
|
|
// SetupContext configures |ctx| based on attributes in |t|, with the exception |
|
// of the signing digest which must be configured externally. |
|
static bool SetupContext(FileTest *t, KeyMap *key_map, EVP_PKEY_CTX *ctx) { |
|
if (t->HasAttribute("RSAPadding")) { |
|
int padding; |
|
if (!GetRSAPadding(t, &padding, t->GetAttributeOrDie("RSAPadding")) || |
|
!EVP_PKEY_CTX_set_rsa_padding(ctx, padding)) { |
|
return false; |
|
} |
|
} |
|
if (t->HasAttribute("PSSSaltLength") && |
|
!EVP_PKEY_CTX_set_rsa_pss_saltlen( |
|
ctx, atoi(t->GetAttributeOrDie("PSSSaltLength").c_str()))) { |
|
return false; |
|
} |
|
if (t->HasAttribute("MGF1Digest")) { |
|
const EVP_MD *digest = GetDigest(t, t->GetAttributeOrDie("MGF1Digest")); |
|
if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, digest)) { |
|
return false; |
|
} |
|
} |
|
if (t->HasAttribute("OAEPDigest")) { |
|
const EVP_MD *digest = GetDigest(t, t->GetAttributeOrDie("OAEPDigest")); |
|
if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_oaep_md(ctx, digest)) { |
|
return false; |
|
} |
|
} |
|
if (t->HasAttribute("OAEPLabel")) { |
|
std::vector<uint8_t> label; |
|
if (!t->GetBytes(&label, "OAEPLabel")) { |
|
return false; |
|
} |
|
// For historical reasons, |EVP_PKEY_CTX_set0_rsa_oaep_label| expects to be |
|
// take ownership of the input. |
|
bssl::UniquePtr<uint8_t> buf(reinterpret_cast<uint8_t *>( |
|
OPENSSL_memdup(label.data(), label.size()))); |
|
if (!buf || |
|
!EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, buf.get(), label.size())) { |
|
return false; |
|
} |
|
buf.release(); |
|
} |
|
if (t->HasAttribute("DerivePeer")) { |
|
std::string derive_peer = t->GetAttributeOrDie("DerivePeer"); |
|
if (key_map->count(derive_peer) == 0) { |
|
ADD_FAILURE() << "Could not find key " << derive_peer; |
|
return false; |
|
} |
|
EVP_PKEY *derive_peer_key = (*key_map)[derive_peer].get(); |
|
if (!EVP_PKEY_derive_set_peer(ctx, derive_peer_key)) { |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
static bool TestDerive(FileTest *t, KeyMap *key_map, EVP_PKEY *key) { |
|
bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key, nullptr)); |
|
if (!ctx || |
|
!EVP_PKEY_derive_init(ctx.get()) || |
|
!SetupContext(t, key_map, ctx.get())) { |
|
return false; |
|
} |
|
|
|
bssl::UniquePtr<EVP_PKEY_CTX> copy(EVP_PKEY_CTX_dup(ctx.get())); |
|
if (!copy) { |
|
return false; |
|
} |
|
|
|
for (EVP_PKEY_CTX *pctx : {ctx.get(), copy.get()}) { |
|
size_t len; |
|
std::vector<uint8_t> actual, output; |
|
if (!EVP_PKEY_derive(pctx, nullptr, &len)) { |
|
return false; |
|
} |
|
actual.resize(len); |
|
if (!EVP_PKEY_derive(pctx, actual.data(), &len)) { |
|
return false; |
|
} |
|
actual.resize(len); |
|
|
|
// Defer looking up the attribute so Error works properly. |
|
if (!t->GetBytes(&output, "Output")) { |
|
return false; |
|
} |
|
EXPECT_EQ(Bytes(output), Bytes(actual)); |
|
|
|
// Test when the buffer is too large. |
|
actual.resize(len + 1); |
|
len = actual.size(); |
|
if (!EVP_PKEY_derive(pctx, actual.data(), &len)) { |
|
return false; |
|
} |
|
actual.resize(len); |
|
EXPECT_EQ(Bytes(output), Bytes(actual)); |
|
|
|
// Test when the buffer is too small. |
|
actual.resize(len - 1); |
|
len = actual.size(); |
|
if (t->HasAttribute("SmallBufferTruncates")) { |
|
if (!EVP_PKEY_derive(pctx, actual.data(), &len)) { |
|
return false; |
|
} |
|
actual.resize(len); |
|
EXPECT_EQ(Bytes(output.data(), len), Bytes(actual)); |
|
} else { |
|
EXPECT_FALSE(EVP_PKEY_derive(pctx, actual.data(), &len)); |
|
ERR_clear_error(); |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
static bool TestEVP(FileTest *t, KeyMap *key_map) { |
|
if (t->GetType() == "PrivateKey") { |
|
return ImportKey(t, key_map, EVP_parse_private_key, |
|
EVP_marshal_private_key); |
|
} |
|
|
|
if (t->GetType() == "PublicKey") { |
|
return ImportKey(t, key_map, EVP_parse_public_key, EVP_marshal_public_key); |
|
} |
|
|
|
// Load the key. |
|
const std::string &key_name = t->GetParameter(); |
|
if (key_map->count(key_name) == 0) { |
|
ADD_FAILURE() << "Could not find key " << key_name; |
|
return false; |
|
} |
|
EVP_PKEY *key = (*key_map)[key_name].get(); |
|
|
|
int (*key_op_init)(EVP_PKEY_CTX *ctx) = nullptr; |
|
int (*key_op)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len, |
|
const uint8_t *in, size_t in_len) = nullptr; |
|
int (*md_op_init)(EVP_MD_CTX * ctx, EVP_PKEY_CTX * *pctx, const EVP_MD *type, |
|
ENGINE *e, EVP_PKEY *pkey) = nullptr; |
|
bool is_verify = false; |
|
if (t->GetType() == "Decrypt") { |
|
key_op_init = EVP_PKEY_decrypt_init; |
|
key_op = EVP_PKEY_decrypt; |
|
} else if (t->GetType() == "Sign") { |
|
key_op_init = EVP_PKEY_sign_init; |
|
key_op = EVP_PKEY_sign; |
|
} else if (t->GetType() == "Verify") { |
|
key_op_init = EVP_PKEY_verify_init; |
|
is_verify = true; |
|
} else if (t->GetType() == "SignMessage") { |
|
md_op_init = EVP_DigestSignInit; |
|
} else if (t->GetType() == "VerifyMessage") { |
|
md_op_init = EVP_DigestVerifyInit; |
|
is_verify = true; |
|
} else if (t->GetType() == "Encrypt") { |
|
key_op_init = EVP_PKEY_encrypt_init; |
|
key_op = EVP_PKEY_encrypt; |
|
} else if (t->GetType() == "Derive") { |
|
return TestDerive(t, key_map, key); |
|
} else { |
|
ADD_FAILURE() << "Unknown test " << t->GetType(); |
|
return false; |
|
} |
|
|
|
const EVP_MD *digest = nullptr; |
|
if (t->HasAttribute("Digest")) { |
|
digest = GetDigest(t, t->GetAttributeOrDie("Digest")); |
|
if (digest == nullptr) { |
|
return false; |
|
} |
|
} |
|
|
|
// For verify tests, the "output" is the signature. Read it now so that, for |
|
// tests which expect a failure in SetupContext, the attribute is still |
|
// consumed. |
|
std::vector<uint8_t> input, actual, output; |
|
if (!t->GetBytes(&input, "Input") || |
|
(is_verify && !t->GetBytes(&output, "Output"))) { |
|
return false; |
|
} |
|
|
|
if (md_op_init) { |
|
bssl::ScopedEVP_MD_CTX ctx, copy; |
|
EVP_PKEY_CTX *pctx; |
|
if (!md_op_init(ctx.get(), &pctx, digest, nullptr, key) || |
|
!SetupContext(t, key_map, pctx) || |
|
!EVP_MD_CTX_copy_ex(copy.get(), ctx.get())) { |
|
return false; |
|
} |
|
|
|
if (is_verify) { |
|
return EVP_DigestVerify(ctx.get(), output.data(), output.size(), |
|
input.data(), input.size()) && |
|
EVP_DigestVerify(copy.get(), output.data(), output.size(), |
|
input.data(), input.size()); |
|
} |
|
|
|
size_t len; |
|
if (!EVP_DigestSign(ctx.get(), nullptr, &len, input.data(), input.size())) { |
|
return false; |
|
} |
|
actual.resize(len); |
|
if (!EVP_DigestSign(ctx.get(), actual.data(), &len, input.data(), |
|
input.size()) || |
|
!t->GetBytes(&output, "Output")) { |
|
return false; |
|
} |
|
actual.resize(len); |
|
EXPECT_EQ(Bytes(output), Bytes(actual)); |
|
|
|
// Repeat the test with |copy|, to check |EVP_MD_CTX_copy_ex| duplicated |
|
// everything. |
|
if (!EVP_DigestSign(copy.get(), nullptr, &len, input.data(), |
|
input.size())) { |
|
return false; |
|
} |
|
actual.resize(len); |
|
if (!EVP_DigestSign(copy.get(), actual.data(), &len, input.data(), |
|
input.size()) || |
|
!t->GetBytes(&output, "Output")) { |
|
return false; |
|
} |
|
actual.resize(len); |
|
EXPECT_EQ(Bytes(output), Bytes(actual)); |
|
return true; |
|
} |
|
|
|
bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key, nullptr)); |
|
if (!ctx || |
|
!key_op_init(ctx.get()) || |
|
(digest != nullptr && |
|
!EVP_PKEY_CTX_set_signature_md(ctx.get(), digest)) || |
|
!SetupContext(t, key_map, ctx.get())) { |
|
return false; |
|
} |
|
|
|
bssl::UniquePtr<EVP_PKEY_CTX> copy(EVP_PKEY_CTX_dup(ctx.get())); |
|
if (!copy) { |
|
return false; |
|
} |
|
|
|
if (is_verify) { |
|
return EVP_PKEY_verify(ctx.get(), output.data(), output.size(), |
|
input.data(), input.size()) && |
|
EVP_PKEY_verify(copy.get(), output.data(), output.size(), |
|
input.data(), input.size()); |
|
} |
|
|
|
for (EVP_PKEY_CTX *pctx : {ctx.get(), copy.get()}) { |
|
size_t len; |
|
if (!key_op(pctx, nullptr, &len, input.data(), input.size())) { |
|
return false; |
|
} |
|
actual.resize(len); |
|
if (!key_op(pctx, actual.data(), &len, input.data(), input.size())) { |
|
return false; |
|
} |
|
|
|
if (t->HasAttribute("CheckDecrypt")) { |
|
// Encryption is non-deterministic, so we check by decrypting. |
|
size_t plaintext_len; |
|
bssl::UniquePtr<EVP_PKEY_CTX> decrypt_ctx(EVP_PKEY_CTX_new(key, nullptr)); |
|
if (!decrypt_ctx || |
|
!EVP_PKEY_decrypt_init(decrypt_ctx.get()) || |
|
(digest != nullptr && |
|
!EVP_PKEY_CTX_set_signature_md(decrypt_ctx.get(), digest)) || |
|
!SetupContext(t, key_map, decrypt_ctx.get()) || |
|
!EVP_PKEY_decrypt(decrypt_ctx.get(), nullptr, &plaintext_len, |
|
actual.data(), actual.size())) { |
|
return false; |
|
} |
|
output.resize(plaintext_len); |
|
if (!EVP_PKEY_decrypt(decrypt_ctx.get(), output.data(), &plaintext_len, |
|
actual.data(), actual.size())) { |
|
ADD_FAILURE() << "Could not decrypt result."; |
|
return false; |
|
} |
|
output.resize(plaintext_len); |
|
EXPECT_EQ(Bytes(input), Bytes(output)) << "Decrypted result mismatch."; |
|
} else if (t->HasAttribute("CheckVerify")) { |
|
// Some signature schemes are non-deterministic, so we check by verifying. |
|
bssl::UniquePtr<EVP_PKEY_CTX> verify_ctx(EVP_PKEY_CTX_new(key, nullptr)); |
|
if (!verify_ctx || |
|
!EVP_PKEY_verify_init(verify_ctx.get()) || |
|
(digest != nullptr && |
|
!EVP_PKEY_CTX_set_signature_md(verify_ctx.get(), digest)) || |
|
!SetupContext(t, key_map, verify_ctx.get())) { |
|
return false; |
|
} |
|
if (t->HasAttribute("VerifyPSSSaltLength")) { |
|
if (!EVP_PKEY_CTX_set_rsa_pss_saltlen( |
|
verify_ctx.get(), |
|
atoi(t->GetAttributeOrDie("VerifyPSSSaltLength").c_str()))) { |
|
return false; |
|
} |
|
} |
|
EXPECT_TRUE(EVP_PKEY_verify(verify_ctx.get(), actual.data(), |
|
actual.size(), input.data(), input.size())) |
|
<< "Could not verify result."; |
|
} else { |
|
// By default, check by comparing the result against Output. |
|
if (!t->GetBytes(&output, "Output")) { |
|
return false; |
|
} |
|
actual.resize(len); |
|
EXPECT_EQ(Bytes(output), Bytes(actual)); |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
TEST(EVPTest, TestVectors) { |
|
KeyMap key_map; |
|
FileTestGTest("crypto/evp/evp_tests.txt", [&](FileTest *t) { |
|
bool result = TestEVP(t, &key_map); |
|
if (t->HasAttribute("Error")) { |
|
ASSERT_FALSE(result) << "Operation unexpectedly succeeded."; |
|
uint32_t err = ERR_peek_error(); |
|
EXPECT_EQ(t->GetAttributeOrDie("Error"), ERR_reason_error_string(err)); |
|
} else if (!result) { |
|
ADD_FAILURE() << "Operation unexpectedly failed."; |
|
} |
|
}); |
|
} |
|
|
|
static void RunWycheproofVerifyTest(const char *path) { |
|
SCOPED_TRACE(path); |
|
FileTestGTest(path, [](FileTest *t) { |
|
t->IgnoreAllUnusedInstructions(); |
|
|
|
std::vector<uint8_t> der; |
|
ASSERT_TRUE(t->GetInstructionBytes(&der, "keyDer")); |
|
CBS cbs; |
|
CBS_init(&cbs, der.data(), der.size()); |
|
bssl::UniquePtr<EVP_PKEY> key(EVP_parse_public_key(&cbs)); |
|
ASSERT_TRUE(key); |
|
|
|
const EVP_MD *md = nullptr; |
|
if (t->HasInstruction("sha")) { |
|
md = GetWycheproofDigest(t, "sha", true); |
|
ASSERT_TRUE(md); |
|
} |
|
|
|
bool is_pss = t->HasInstruction("mgf"); |
|
const EVP_MD *mgf1_md = nullptr; |
|
int pss_salt_len = -1; |
|
if (is_pss) { |
|
ASSERT_EQ("MGF1", t->GetInstructionOrDie("mgf")); |
|
mgf1_md = GetWycheproofDigest(t, "mgfSha", true); |
|
|
|
std::string s_len; |
|
ASSERT_TRUE(t->GetInstruction(&s_len, "sLen")); |
|
pss_salt_len = atoi(s_len.c_str()); |
|
} |
|
|
|
std::vector<uint8_t> msg; |
|
ASSERT_TRUE(t->GetBytes(&msg, "msg")); |
|
std::vector<uint8_t> sig; |
|
ASSERT_TRUE(t->GetBytes(&sig, "sig")); |
|
WycheproofResult result; |
|
ASSERT_TRUE(GetWycheproofResult(t, &result)); |
|
|
|
if (EVP_PKEY_id(key.get()) == EVP_PKEY_DSA) { |
|
// DSA is deprecated and is not usable via EVP. |
|
DSA *dsa = EVP_PKEY_get0_DSA(key.get()); |
|
uint8_t digest[EVP_MAX_MD_SIZE]; |
|
unsigned digest_len; |
|
ASSERT_TRUE( |
|
EVP_Digest(msg.data(), msg.size(), digest, &digest_len, md, nullptr)); |
|
int valid; |
|
bool sig_ok = DSA_check_signature(&valid, digest, digest_len, sig.data(), |
|
sig.size(), dsa) && |
|
valid; |
|
EXPECT_EQ(sig_ok, result.IsValid()); |
|
} else { |
|
bssl::ScopedEVP_MD_CTX ctx; |
|
EVP_PKEY_CTX *pctx; |
|
ASSERT_TRUE( |
|
EVP_DigestVerifyInit(ctx.get(), &pctx, md, nullptr, key.get())); |
|
if (is_pss) { |
|
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING)); |
|
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_mgf1_md(pctx, mgf1_md)); |
|
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, pss_salt_len)); |
|
} |
|
int ret = EVP_DigestVerify(ctx.get(), sig.data(), sig.size(), msg.data(), |
|
msg.size()); |
|
// BoringSSL does not enforce policies on weak keys and leaves it to the |
|
// caller. |
|
EXPECT_EQ(ret, |
|
result.IsValid({"SmallModulus", "SmallPublicKey", "WeakHash"}) |
|
? 1 |
|
: 0); |
|
} |
|
}); |
|
} |
|
|
|
TEST(EVPTest, WycheproofDSA) { |
|
RunWycheproofVerifyTest("third_party/wycheproof_testvectors/dsa_test.txt"); |
|
} |
|
|
|
TEST(EVPTest, WycheproofECDSAP224) { |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/ecdsa_secp224r1_sha224_test.txt"); |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/ecdsa_secp224r1_sha256_test.txt"); |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/ecdsa_secp224r1_sha512_test.txt"); |
|
} |
|
|
|
TEST(EVPTest, WycheproofECDSAP256) { |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/ecdsa_secp256r1_sha256_test.txt"); |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/ecdsa_secp256r1_sha512_test.txt"); |
|
} |
|
|
|
TEST(EVPTest, WycheproofECDSAP384) { |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/ecdsa_secp384r1_sha384_test.txt"); |
|
} |
|
|
|
TEST(EVPTest, WycheproofECDSAP521) { |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/ecdsa_secp384r1_sha512_test.txt"); |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/ecdsa_secp521r1_sha512_test.txt"); |
|
} |
|
|
|
TEST(EVPTest, WycheproofEdDSA) { |
|
RunWycheproofVerifyTest("third_party/wycheproof_testvectors/eddsa_test.txt"); |
|
} |
|
|
|
TEST(EVPTest, WycheproofRSAPKCS1) { |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/rsa_signature_2048_sha224_test.txt"); |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/rsa_signature_2048_sha256_test.txt"); |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/rsa_signature_2048_sha384_test.txt"); |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/rsa_signature_2048_sha512_test.txt"); |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/rsa_signature_3072_sha256_test.txt"); |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/rsa_signature_3072_sha384_test.txt"); |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/rsa_signature_3072_sha512_test.txt"); |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/rsa_signature_4096_sha384_test.txt"); |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/rsa_signature_4096_sha512_test.txt"); |
|
// TODO(davidben): Is this file redundant with the tests above? |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/rsa_signature_test.txt"); |
|
} |
|
|
|
TEST(EVPTest, WycheproofRSAPKCS1Sign) { |
|
FileTestGTest( |
|
"third_party/wycheproof_testvectors/rsa_sig_gen_misc_test.txt", |
|
[](FileTest *t) { |
|
t->IgnoreAllUnusedInstructions(); |
|
|
|
std::vector<uint8_t> pkcs8; |
|
ASSERT_TRUE(t->GetInstructionBytes(&pkcs8, "privateKeyPkcs8")); |
|
CBS cbs; |
|
CBS_init(&cbs, pkcs8.data(), pkcs8.size()); |
|
bssl::UniquePtr<EVP_PKEY> key(EVP_parse_private_key(&cbs)); |
|
ASSERT_TRUE(key); |
|
|
|
const EVP_MD *md = GetWycheproofDigest(t, "sha", true); |
|
ASSERT_TRUE(md); |
|
|
|
std::vector<uint8_t> msg, sig; |
|
ASSERT_TRUE(t->GetBytes(&msg, "msg")); |
|
ASSERT_TRUE(t->GetBytes(&sig, "sig")); |
|
WycheproofResult result; |
|
ASSERT_TRUE(GetWycheproofResult(t, &result)); |
|
|
|
bssl::ScopedEVP_MD_CTX ctx; |
|
EVP_PKEY_CTX *pctx; |
|
ASSERT_TRUE( |
|
EVP_DigestSignInit(ctx.get(), &pctx, md, nullptr, key.get())); |
|
std::vector<uint8_t> out(EVP_PKEY_size(key.get())); |
|
size_t len = out.size(); |
|
int ret = |
|
EVP_DigestSign(ctx.get(), out.data(), &len, msg.data(), msg.size()); |
|
// BoringSSL does not enforce policies on weak keys and leaves it to the |
|
// caller. |
|
bool is_valid = |
|
result.IsValid({"SmallModulus", "SmallPublicKey", "WeakHash"}); |
|
EXPECT_EQ(ret, is_valid ? 1 : 0); |
|
if (is_valid) { |
|
out.resize(len); |
|
EXPECT_EQ(Bytes(sig), Bytes(out)); |
|
} |
|
}); |
|
} |
|
|
|
TEST(EVPTest, WycheproofRSAPSS) { |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/rsa_pss_2048_sha1_mgf1_20_test.txt"); |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/rsa_pss_2048_sha256_mgf1_0_test.txt"); |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_pss_2048_sha256_mgf1_32_test.txt"); |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_pss_3072_sha256_mgf1_32_test.txt"); |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_pss_4096_sha256_mgf1_32_test.txt"); |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_pss_4096_sha512_mgf1_32_test.txt"); |
|
RunWycheproofVerifyTest( |
|
"third_party/wycheproof_testvectors/rsa_pss_misc_test.txt"); |
|
} |
|
|
|
static void RunWycheproofDecryptTest( |
|
const char *path, |
|
std::function<void(FileTest *, EVP_PKEY_CTX *)> setup_cb) { |
|
FileTestGTest(path, [&](FileTest *t) { |
|
t->IgnoreAllUnusedInstructions(); |
|
|
|
std::vector<uint8_t> pkcs8; |
|
ASSERT_TRUE(t->GetInstructionBytes(&pkcs8, "privateKeyPkcs8")); |
|
CBS cbs; |
|
CBS_init(&cbs, pkcs8.data(), pkcs8.size()); |
|
bssl::UniquePtr<EVP_PKEY> key(EVP_parse_private_key(&cbs)); |
|
ASSERT_TRUE(key); |
|
|
|
std::vector<uint8_t> ct, msg; |
|
ASSERT_TRUE(t->GetBytes(&ct, "ct")); |
|
ASSERT_TRUE(t->GetBytes(&msg, "msg")); |
|
WycheproofResult result; |
|
ASSERT_TRUE(GetWycheproofResult(t, &result)); |
|
|
|
bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key.get(), nullptr)); |
|
ASSERT_TRUE(ctx); |
|
ASSERT_TRUE(EVP_PKEY_decrypt_init(ctx.get())); |
|
ASSERT_NO_FATAL_FAILURE(setup_cb(t, ctx.get())); |
|
std::vector<uint8_t> out(EVP_PKEY_size(key.get())); |
|
size_t len = out.size(); |
|
int ret = |
|
EVP_PKEY_decrypt(ctx.get(), out.data(), &len, ct.data(), ct.size()); |
|
// BoringSSL does not enforce policies on weak keys and leaves it to the |
|
// caller. |
|
bool is_valid = result.IsValid({"SmallModulus"}); |
|
EXPECT_EQ(ret, is_valid ? 1 : 0); |
|
if (is_valid) { |
|
out.resize(len); |
|
EXPECT_EQ(Bytes(msg), Bytes(out)); |
|
} |
|
}); |
|
} |
|
|
|
static void RunWycheproofOAEPTest(const char *path) { |
|
RunWycheproofDecryptTest(path, [](FileTest *t, EVP_PKEY_CTX *ctx) { |
|
const EVP_MD *md = GetWycheproofDigest(t, "sha", true); |
|
ASSERT_TRUE(md); |
|
const EVP_MD *mgf1_md = GetWycheproofDigest(t, "mgfSha", true); |
|
ASSERT_TRUE(mgf1_md); |
|
std::vector<uint8_t> label; |
|
ASSERT_TRUE(t->GetBytes(&label, "label")); |
|
|
|
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING)); |
|
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_oaep_md(ctx, md)); |
|
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, mgf1_md)); |
|
bssl::UniquePtr<uint8_t> label_copy( |
|
static_cast<uint8_t *>(OPENSSL_memdup(label.data(), label.size()))); |
|
ASSERT_TRUE(label_copy || label.empty()); |
|
ASSERT_TRUE( |
|
EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, label_copy.get(), label.size())); |
|
// |EVP_PKEY_CTX_set0_rsa_oaep_label| takes ownership on success. |
|
label_copy.release(); |
|
}); |
|
} |
|
|
|
TEST(EVPTest, WycheproofRSAOAEP2048) { |
|
RunWycheproofOAEPTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_oaep_2048_sha1_mgf1sha1_test.txt"); |
|
RunWycheproofOAEPTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_oaep_2048_sha224_mgf1sha1_test.txt"); |
|
RunWycheproofOAEPTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_oaep_2048_sha224_mgf1sha224_test.txt"); |
|
RunWycheproofOAEPTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_oaep_2048_sha256_mgf1sha1_test.txt"); |
|
RunWycheproofOAEPTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_oaep_2048_sha256_mgf1sha256_test.txt"); |
|
RunWycheproofOAEPTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_oaep_2048_sha384_mgf1sha1_test.txt"); |
|
RunWycheproofOAEPTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_oaep_2048_sha384_mgf1sha384_test.txt"); |
|
RunWycheproofOAEPTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_oaep_2048_sha512_mgf1sha1_test.txt"); |
|
RunWycheproofOAEPTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_oaep_2048_sha512_mgf1sha512_test.txt"); |
|
} |
|
|
|
TEST(EVPTest, WycheproofRSAOAEP3072) { |
|
RunWycheproofOAEPTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_oaep_3072_sha256_mgf1sha1_test.txt"); |
|
RunWycheproofOAEPTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_oaep_3072_sha256_mgf1sha256_test.txt"); |
|
RunWycheproofOAEPTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_oaep_3072_sha512_mgf1sha1_test.txt"); |
|
RunWycheproofOAEPTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_oaep_3072_sha512_mgf1sha512_test.txt"); |
|
} |
|
|
|
TEST(EVPTest, WycheproofRSAOAEP4096) { |
|
RunWycheproofOAEPTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_oaep_4096_sha256_mgf1sha1_test.txt"); |
|
RunWycheproofOAEPTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_oaep_4096_sha256_mgf1sha256_test.txt"); |
|
RunWycheproofOAEPTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_oaep_4096_sha512_mgf1sha1_test.txt"); |
|
RunWycheproofOAEPTest( |
|
"third_party/wycheproof_testvectors/" |
|
"rsa_oaep_4096_sha512_mgf1sha512_test.txt"); |
|
} |
|
|
|
TEST(EVPTest, WycheproofRSAOAEPMisc) { |
|
RunWycheproofOAEPTest( |
|
"third_party/wycheproof_testvectors/rsa_oaep_misc_test.txt"); |
|
} |
|
|
|
static void RunWycheproofPKCS1DecryptTest(const char *path) { |
|
RunWycheproofDecryptTest(path, [](FileTest *t, EVP_PKEY_CTX *ctx) { |
|
// No setup needed. PKCS#1 is, sadly, the default. |
|
}); |
|
} |
|
|
|
TEST(EVPTest, WycheproofRSAPKCS1Decrypt) { |
|
RunWycheproofPKCS1DecryptTest( |
|
"third_party/wycheproof_testvectors/rsa_pkcs1_2048_test.txt"); |
|
RunWycheproofPKCS1DecryptTest( |
|
"third_party/wycheproof_testvectors/rsa_pkcs1_3072_test.txt"); |
|
RunWycheproofPKCS1DecryptTest( |
|
"third_party/wycheproof_testvectors/rsa_pkcs1_4096_test.txt"); |
|
}
|
|
|