Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
316 lines
12 KiB
316 lines
12 KiB
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
|
* project 1999-2004. |
|
*/ |
|
/* ==================================================================== |
|
* Copyright (c) 1999 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* licensing@OpenSSL.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). */ |
|
|
|
#include <openssl/pkcs8.h> |
|
|
|
#include <limits.h> |
|
#include <string.h> |
|
|
|
#include <openssl/bytestring.h> |
|
#include <openssl/cipher.h> |
|
#include <openssl/err.h> |
|
#include <openssl/mem.h> |
|
#include <openssl/nid.h> |
|
#include <openssl/rand.h> |
|
|
|
#include "internal.h" |
|
#include "../internal.h" |
|
|
|
|
|
// 1.2.840.113549.1.5.12 |
|
static const uint8_t kPBKDF2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
|
0x0d, 0x01, 0x05, 0x0c}; |
|
|
|
// 1.2.840.113549.1.5.13 |
|
static const uint8_t kPBES2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
|
0x0d, 0x01, 0x05, 0x0d}; |
|
|
|
// 1.2.840.113549.2.7 |
|
static const uint8_t kHMACWithSHA1[] = {0x2a, 0x86, 0x48, 0x86, |
|
0xf7, 0x0d, 0x02, 0x07}; |
|
|
|
// 1.2.840.113549.2.9 |
|
static const uint8_t kHMACWithSHA256[] = {0x2a, 0x86, 0x48, 0x86, |
|
0xf7, 0x0d, 0x02, 0x09}; |
|
|
|
static const struct { |
|
uint8_t oid[9]; |
|
uint8_t oid_len; |
|
int nid; |
|
const EVP_CIPHER *(*cipher_func)(void); |
|
} kCipherOIDs[] = { |
|
// 1.2.840.113549.3.2 |
|
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x02}, |
|
8, |
|
NID_rc2_cbc, |
|
&EVP_rc2_cbc}, |
|
// 1.2.840.113549.3.7 |
|
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x07}, |
|
8, |
|
NID_des_ede3_cbc, |
|
&EVP_des_ede3_cbc}, |
|
// 2.16.840.1.101.3.4.1.2 |
|
{{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x02}, |
|
9, |
|
NID_aes_128_cbc, |
|
&EVP_aes_128_cbc}, |
|
// 2.16.840.1.101.3.4.1.22 |
|
{{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x16}, |
|
9, |
|
NID_aes_192_cbc, |
|
&EVP_aes_192_cbc}, |
|
// 2.16.840.1.101.3.4.1.42 |
|
{{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x2a}, |
|
9, |
|
NID_aes_256_cbc, |
|
&EVP_aes_256_cbc}, |
|
}; |
|
|
|
static const EVP_CIPHER *cbs_to_cipher(const CBS *cbs) { |
|
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kCipherOIDs); i++) { |
|
if (CBS_mem_equal(cbs, kCipherOIDs[i].oid, kCipherOIDs[i].oid_len)) { |
|
return kCipherOIDs[i].cipher_func(); |
|
} |
|
} |
|
|
|
return NULL; |
|
} |
|
|
|
static int add_cipher_oid(CBB *out, int nid) { |
|
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kCipherOIDs); i++) { |
|
if (kCipherOIDs[i].nid == nid) { |
|
CBB child; |
|
return CBB_add_asn1(out, &child, CBS_ASN1_OBJECT) && |
|
CBB_add_bytes(&child, kCipherOIDs[i].oid, |
|
kCipherOIDs[i].oid_len) && |
|
CBB_flush(out); |
|
} |
|
} |
|
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER); |
|
return 0; |
|
} |
|
|
|
static int pkcs5_pbe2_cipher_init(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
|
const EVP_MD *pbkdf2_md, unsigned iterations, |
|
const char *pass, size_t pass_len, |
|
const uint8_t *salt, size_t salt_len, |
|
const uint8_t *iv, size_t iv_len, int enc) { |
|
if (iv_len != EVP_CIPHER_iv_length(cipher)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ERROR_SETTING_CIPHER_PARAMS); |
|
return 0; |
|
} |
|
|
|
uint8_t key[EVP_MAX_KEY_LENGTH]; |
|
int ret = PKCS5_PBKDF2_HMAC(pass, pass_len, salt, salt_len, iterations, |
|
pbkdf2_md, EVP_CIPHER_key_length(cipher), key) && |
|
EVP_CipherInit_ex(ctx, cipher, NULL /* engine */, key, iv, enc); |
|
OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); |
|
return ret; |
|
} |
|
|
|
int PKCS5_pbe2_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx, |
|
const EVP_CIPHER *cipher, unsigned iterations, |
|
const char *pass, size_t pass_len, |
|
const uint8_t *salt, size_t salt_len) { |
|
int cipher_nid = EVP_CIPHER_nid(cipher); |
|
if (cipher_nid == NID_undef) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER); |
|
return 0; |
|
} |
|
|
|
// Generate a random IV. |
|
uint8_t iv[EVP_MAX_IV_LENGTH]; |
|
if (!RAND_bytes(iv, EVP_CIPHER_iv_length(cipher))) { |
|
return 0; |
|
} |
|
|
|
// See RFC 2898, appendix A. |
|
CBB algorithm, oid, param, kdf, kdf_oid, kdf_param, salt_cbb, cipher_cbb, |
|
iv_cbb; |
|
if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) || |
|
!CBB_add_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) || |
|
!CBB_add_bytes(&oid, kPBES2, sizeof(kPBES2)) || |
|
!CBB_add_asn1(&algorithm, ¶m, CBS_ASN1_SEQUENCE) || |
|
!CBB_add_asn1(¶m, &kdf, CBS_ASN1_SEQUENCE) || |
|
!CBB_add_asn1(&kdf, &kdf_oid, CBS_ASN1_OBJECT) || |
|
!CBB_add_bytes(&kdf_oid, kPBKDF2, sizeof(kPBKDF2)) || |
|
!CBB_add_asn1(&kdf, &kdf_param, CBS_ASN1_SEQUENCE) || |
|
!CBB_add_asn1(&kdf_param, &salt_cbb, CBS_ASN1_OCTETSTRING) || |
|
!CBB_add_bytes(&salt_cbb, salt, salt_len) || |
|
!CBB_add_asn1_uint64(&kdf_param, iterations) || |
|
// Specify a key length for RC2. |
|
(cipher_nid == NID_rc2_cbc && |
|
!CBB_add_asn1_uint64(&kdf_param, EVP_CIPHER_key_length(cipher))) || |
|
// Omit the PRF. We use the default hmacWithSHA1. |
|
!CBB_add_asn1(¶m, &cipher_cbb, CBS_ASN1_SEQUENCE) || |
|
!add_cipher_oid(&cipher_cbb, cipher_nid) || |
|
// RFC 2898 says RC2-CBC and RC5-CBC-Pad use a SEQUENCE with version and |
|
// IV, but OpenSSL always uses an OCTET STRING IV, so we do the same. |
|
!CBB_add_asn1(&cipher_cbb, &iv_cbb, CBS_ASN1_OCTETSTRING) || |
|
!CBB_add_bytes(&iv_cbb, iv, EVP_CIPHER_iv_length(cipher)) || |
|
!CBB_flush(out)) { |
|
return 0; |
|
} |
|
|
|
return pkcs5_pbe2_cipher_init(ctx, cipher, EVP_sha1(), iterations, pass, |
|
pass_len, salt, salt_len, iv, |
|
EVP_CIPHER_iv_length(cipher), 1 /* encrypt */); |
|
} |
|
|
|
int PKCS5_pbe2_decrypt_init(const struct pbe_suite *suite, EVP_CIPHER_CTX *ctx, |
|
const char *pass, size_t pass_len, CBS *param) { |
|
CBS pbe_param, kdf, kdf_obj, enc_scheme, enc_obj; |
|
if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) || |
|
CBS_len(param) != 0 || |
|
!CBS_get_asn1(&pbe_param, &kdf, CBS_ASN1_SEQUENCE) || |
|
!CBS_get_asn1(&pbe_param, &enc_scheme, CBS_ASN1_SEQUENCE) || |
|
CBS_len(&pbe_param) != 0 || |
|
!CBS_get_asn1(&kdf, &kdf_obj, CBS_ASN1_OBJECT) || |
|
!CBS_get_asn1(&enc_scheme, &enc_obj, CBS_ASN1_OBJECT)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
|
return 0; |
|
} |
|
|
|
// Only PBKDF2 is supported. |
|
if (!CBS_mem_equal(&kdf_obj, kPBKDF2, sizeof(kPBKDF2))) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION); |
|
return 0; |
|
} |
|
|
|
// See if we recognise the encryption algorithm. |
|
const EVP_CIPHER *cipher = cbs_to_cipher(&enc_obj); |
|
if (cipher == NULL) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER); |
|
return 0; |
|
} |
|
|
|
// Parse the KDF parameters. See RFC 8018, appendix A.2. |
|
CBS pbkdf2_params, salt; |
|
uint64_t iterations; |
|
if (!CBS_get_asn1(&kdf, &pbkdf2_params, CBS_ASN1_SEQUENCE) || |
|
CBS_len(&kdf) != 0 || |
|
!CBS_get_asn1(&pbkdf2_params, &salt, CBS_ASN1_OCTETSTRING) || |
|
!CBS_get_asn1_uint64(&pbkdf2_params, &iterations)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
|
return 0; |
|
} |
|
|
|
if (!pkcs12_iterations_acceptable(iterations)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); |
|
return 0; |
|
} |
|
|
|
// The optional keyLength parameter, if present, must match the key length of |
|
// the cipher. |
|
if (CBS_peek_asn1_tag(&pbkdf2_params, CBS_ASN1_INTEGER)) { |
|
uint64_t key_len; |
|
if (!CBS_get_asn1_uint64(&pbkdf2_params, &key_len)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
|
return 0; |
|
} |
|
|
|
if (key_len != EVP_CIPHER_key_length(cipher)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEYLENGTH); |
|
return 0; |
|
} |
|
} |
|
|
|
const EVP_MD *md = EVP_sha1(); |
|
if (CBS_len(&pbkdf2_params) != 0) { |
|
CBS alg_id, prf; |
|
if (!CBS_get_asn1(&pbkdf2_params, &alg_id, CBS_ASN1_SEQUENCE) || |
|
!CBS_get_asn1(&alg_id, &prf, CBS_ASN1_OBJECT) || |
|
CBS_len(&pbkdf2_params) != 0) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
|
return 0; |
|
} |
|
|
|
if (CBS_mem_equal(&prf, kHMACWithSHA1, sizeof(kHMACWithSHA1))) { |
|
// hmacWithSHA1 is the DEFAULT, so DER requires it be omitted, but we |
|
// match OpenSSL in tolerating it being present. |
|
md = EVP_sha1(); |
|
} else if (CBS_mem_equal(&prf, kHMACWithSHA256, sizeof(kHMACWithSHA256))) { |
|
md = EVP_sha256(); |
|
} else { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF); |
|
return 0; |
|
} |
|
|
|
// All supported PRFs use a NULL parameter. |
|
CBS null; |
|
if (!CBS_get_asn1(&alg_id, &null, CBS_ASN1_NULL) || |
|
CBS_len(&null) != 0 || |
|
CBS_len(&alg_id) != 0) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
|
return 0; |
|
} |
|
} |
|
|
|
// Parse the encryption scheme parameters. Note OpenSSL does not match the |
|
// specification. Per RFC 2898, this should depend on the encryption scheme. |
|
// In particular, RC2-CBC uses a SEQUENCE with version and IV. We align with |
|
// OpenSSL. |
|
CBS iv; |
|
if (!CBS_get_asn1(&enc_scheme, &iv, CBS_ASN1_OCTETSTRING) || |
|
CBS_len(&enc_scheme) != 0) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF); |
|
return 0; |
|
} |
|
|
|
return pkcs5_pbe2_cipher_init(ctx, cipher, md, (unsigned)iterations, pass, |
|
pass_len, CBS_data(&salt), CBS_len(&salt), |
|
CBS_data(&iv), CBS_len(&iv), 0 /* decrypt */); |
|
}
|
|
|