Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
489 lines
17 KiB
489 lines
17 KiB
/* Copyright (c) 2020, Google Inc. |
|
* |
|
* Permission to use, copy, modify, and/or distribute this software for any |
|
* purpose with or without fee is hereby granted, provided that the above |
|
* copyright notice and this permission notice appear in all copies. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
|
|
|
#include <cstdint> |
|
#include <limits> |
|
#include <string> |
|
#include <vector> |
|
|
|
#include <gtest/gtest.h> |
|
|
|
#include <openssl/base.h> |
|
#include <openssl/curve25519.h> |
|
#include <openssl/digest.h> |
|
#include <openssl/err.h> |
|
#include <openssl/evp.h> |
|
#include <openssl/sha.h> |
|
#include <openssl/span.h> |
|
|
|
#include "../test/file_test.h" |
|
#include "../test/test_util.h" |
|
#include "internal.h" |
|
|
|
|
|
namespace bssl { |
|
namespace { |
|
|
|
enum class HPKEMode { |
|
kBase = 0, |
|
kPSK = 1, |
|
}; |
|
|
|
// HPKETestVector corresponds to one array member in the published |
|
// test-vectors.json. |
|
class HPKETestVector { |
|
public: |
|
explicit HPKETestVector() = default; |
|
~HPKETestVector() = default; |
|
|
|
bool ReadFromFileTest(FileTest *t); |
|
|
|
void Verify() const { |
|
ScopedEVP_HPKE_CTX sender_ctx; |
|
ScopedEVP_HPKE_CTX receiver_ctx; |
|
|
|
switch (mode_) { |
|
case HPKEMode::kBase: |
|
ASSERT_GT(secret_key_e_.size(), 0u); |
|
ASSERT_EQ(psk_.size(), 0u); |
|
ASSERT_EQ(psk_id_.size(), 0u); |
|
|
|
// Set up the sender. |
|
ASSERT_TRUE(EVP_HPKE_CTX_setup_base_s_x25519_for_test( |
|
sender_ctx.get(), kdf_id_, aead_id_, public_key_r_.data(), |
|
info_.data(), info_.size(), secret_key_e_.data(), |
|
public_key_e_.data())); |
|
|
|
// Set up the receiver. |
|
ASSERT_TRUE(EVP_HPKE_CTX_setup_base_r_x25519( |
|
receiver_ctx.get(), kdf_id_, aead_id_, public_key_e_.data(), |
|
public_key_r_.data(), secret_key_r_.data(), info_.data(), |
|
info_.size())); |
|
break; |
|
|
|
case HPKEMode::kPSK: |
|
ASSERT_GT(secret_key_e_.size(), 0u); |
|
ASSERT_GT(psk_.size(), 0u); |
|
ASSERT_GT(psk_id_.size(), 0u); |
|
|
|
// Set up the sender. |
|
ASSERT_TRUE(EVP_HPKE_CTX_setup_psk_s_x25519_for_test( |
|
sender_ctx.get(), kdf_id_, aead_id_, public_key_r_.data(), |
|
info_.data(), info_.size(), psk_.data(), psk_.size(), |
|
psk_id_.data(), psk_id_.size(), secret_key_e_.data(), |
|
public_key_e_.data())); |
|
|
|
// Set up the receiver. |
|
ASSERT_TRUE(EVP_HPKE_CTX_setup_psk_r_x25519( |
|
receiver_ctx.get(), kdf_id_, aead_id_, public_key_e_.data(), |
|
public_key_r_.data(), secret_key_r_.data(), info_.data(), |
|
info_.size(), psk_.data(), psk_.size(), psk_id_.data(), |
|
psk_id_.size())); |
|
break; |
|
default: |
|
FAIL() << "Unsupported mode"; |
|
return; |
|
} |
|
|
|
VerifyEncryptions(sender_ctx.get(), receiver_ctx.get()); |
|
VerifyExports(sender_ctx.get()); |
|
VerifyExports(receiver_ctx.get()); |
|
} |
|
|
|
private: |
|
void VerifyEncryptions(EVP_HPKE_CTX *sender_ctx, |
|
EVP_HPKE_CTX *receiver_ctx) const { |
|
for (const Encryption &task : encryptions_) { |
|
std::vector<uint8_t> encrypted(task.plaintext.size() + |
|
EVP_HPKE_CTX_max_overhead(sender_ctx)); |
|
size_t encrypted_len; |
|
ASSERT_TRUE(EVP_HPKE_CTX_seal( |
|
sender_ctx, encrypted.data(), &encrypted_len, encrypted.size(), |
|
task.plaintext.data(), task.plaintext.size(), task.aad.data(), |
|
task.aad.size())); |
|
|
|
ASSERT_EQ(Bytes(encrypted.data(), encrypted_len), Bytes(task.ciphertext)); |
|
|
|
std::vector<uint8_t> decrypted(task.ciphertext.size()); |
|
size_t decrypted_len; |
|
ASSERT_TRUE(EVP_HPKE_CTX_open( |
|
receiver_ctx, decrypted.data(), &decrypted_len, decrypted.size(), |
|
task.ciphertext.data(), task.ciphertext.size(), task.aad.data(), |
|
task.aad.size())); |
|
|
|
ASSERT_EQ(Bytes(decrypted.data(), decrypted_len), Bytes(task.plaintext)); |
|
} |
|
} |
|
|
|
void VerifyExports(EVP_HPKE_CTX *ctx) const { |
|
for (const Export &task : exports_) { |
|
std::vector<uint8_t> exported_secret(task.exportLength); |
|
|
|
ASSERT_TRUE(EVP_HPKE_CTX_export( |
|
ctx, exported_secret.data(), exported_secret.size(), |
|
task.exportContext.data(), task.exportContext.size())); |
|
ASSERT_EQ(Bytes(exported_secret), Bytes(task.exportValue)); |
|
} |
|
} |
|
|
|
struct Encryption { |
|
std::vector<uint8_t> aad; |
|
std::vector<uint8_t> ciphertext; |
|
std::vector<uint8_t> plaintext; |
|
}; |
|
|
|
struct Export { |
|
std::vector<uint8_t> exportContext; |
|
size_t exportLength; |
|
std::vector<uint8_t> exportValue; |
|
}; |
|
|
|
HPKEMode mode_; |
|
uint16_t kdf_id_; |
|
uint16_t aead_id_; |
|
std::vector<uint8_t> context_; |
|
std::vector<uint8_t> info_; |
|
std::vector<uint8_t> public_key_e_; |
|
std::vector<uint8_t> secret_key_e_; |
|
std::vector<uint8_t> public_key_r_; |
|
std::vector<uint8_t> secret_key_r_; |
|
std::vector<Encryption> encryptions_; |
|
std::vector<Export> exports_; |
|
std::vector<uint8_t> psk_; // Empty when mode is not PSK. |
|
std::vector<uint8_t> psk_id_; // Empty when mode is not PSK. |
|
}; |
|
|
|
// Match FileTest's naming scheme for duplicated attribute names. |
|
std::string BuildAttrName(const std::string &name, int iter) { |
|
return iter == 1 ? name : name + "/" + std::to_string(iter); |
|
} |
|
|
|
// Parses |s| as an unsigned integer of type T and writes the value to |out|. |
|
// Returns true on success. If the integer value exceeds the maximum T value, |
|
// returns false. |
|
template <typename T> |
|
bool ParseIntSafe(T *out, const std::string &s) { |
|
T value = 0; |
|
for (char c : s) { |
|
if (c < '0' || c > '9') { |
|
return false; |
|
} |
|
if (value > (std::numeric_limits<T>::max() - (c - '0')) / 10) { |
|
return false; |
|
} |
|
value = 10 * value + (c - '0'); |
|
} |
|
*out = value; |
|
return true; |
|
} |
|
|
|
// Read the |key| attribute from |file_test| and convert it to an integer. |
|
template <typename T> |
|
bool FileTestReadInt(FileTest *file_test, T *out, const std::string &key) { |
|
std::string s; |
|
return file_test->GetAttribute(&s, key) && ParseIntSafe(out, s); |
|
} |
|
|
|
|
|
bool HPKETestVector::ReadFromFileTest(FileTest *t) { |
|
uint8_t mode_tmp; |
|
if (!FileTestReadInt(t, &mode_tmp, "mode")) { |
|
return false; |
|
} |
|
mode_ = static_cast<HPKEMode>(mode_tmp); |
|
|
|
if (!FileTestReadInt(t, &kdf_id_, "kdf_id") || |
|
!FileTestReadInt(t, &aead_id_, "aead_id") || |
|
!t->GetBytes(&info_, "info") || |
|
!t->GetBytes(&secret_key_r_, "skRm") || |
|
!t->GetBytes(&public_key_r_, "pkRm") || |
|
!t->GetBytes(&secret_key_e_, "skEm") || |
|
!t->GetBytes(&public_key_e_, "pkEm")) { |
|
return false; |
|
} |
|
|
|
if (mode_ == HPKEMode::kPSK) { |
|
if (!t->GetBytes(&psk_, "psk") || |
|
!t->GetBytes(&psk_id_, "psk_id")) { |
|
return false; |
|
} |
|
} |
|
|
|
for (int i = 1; t->HasAttribute(BuildAttrName("aad", i)); i++) { |
|
Encryption encryption; |
|
if (!t->GetBytes(&encryption.aad, BuildAttrName("aad", i)) || |
|
!t->GetBytes(&encryption.ciphertext, BuildAttrName("ciphertext", i)) || |
|
!t->GetBytes(&encryption.plaintext, BuildAttrName("plaintext", i))) { |
|
return false; |
|
} |
|
encryptions_.push_back(std::move(encryption)); |
|
} |
|
|
|
for (int i = 1; t->HasAttribute(BuildAttrName("exportContext", i)); i++) { |
|
Export exp; |
|
if (!t->GetBytes(&exp.exportContext, BuildAttrName("exportContext", i)) || |
|
!FileTestReadInt(t, &exp.exportLength, |
|
BuildAttrName("exportLength", i)) || |
|
!t->GetBytes(&exp.exportValue, BuildAttrName("exportValue", i))) { |
|
return false; |
|
} |
|
exports_.push_back(std::move(exp)); |
|
} |
|
return true; |
|
} |
|
|
|
} // namespace |
|
|
|
TEST(HPKETest, VerifyTestVectors) { |
|
FileTestGTest("crypto/hpke/hpke_test_vectors.txt", [](FileTest *t) { |
|
HPKETestVector test_vec; |
|
EXPECT_TRUE(test_vec.ReadFromFileTest(t)); |
|
test_vec.Verify(); |
|
}); |
|
} |
|
|
|
// The test vectors used fixed sender ephemeral keys, while HPKE itself |
|
// generates new keys for each context. Test this codepath by checking we can |
|
// decrypt our own messages. |
|
TEST(HPKETest, RoundTrip) { |
|
uint16_t kdf_ids[] = {EVP_HPKE_HKDF_SHA256, EVP_HPKE_HKDF_SHA384, |
|
EVP_HPKE_HKDF_SHA512}; |
|
uint16_t aead_ids[] = {EVP_HPKE_AEAD_AES_GCM_128, EVP_HPKE_AEAD_AES_GCM_256, |
|
EVP_HPKE_AEAD_CHACHA20POLY1305}; |
|
|
|
const uint8_t info_a[] = {1, 1, 2, 3, 5, 8}; |
|
const uint8_t info_b[] = {42, 42, 42}; |
|
const uint8_t ad_a[] = {1, 2, 4, 8, 16}; |
|
const uint8_t ad_b[] = {7}; |
|
Span<const uint8_t> info_values[] = {{nullptr, 0}, info_a, info_b}; |
|
Span<const uint8_t> ad_values[] = {{nullptr, 0}, ad_a, ad_b}; |
|
|
|
// Generate the receiver's keypair. |
|
uint8_t secret_key_r[X25519_PRIVATE_KEY_LEN]; |
|
uint8_t public_key_r[X25519_PUBLIC_VALUE_LEN]; |
|
X25519_keypair(public_key_r, secret_key_r); |
|
|
|
for (uint16_t kdf_id : kdf_ids) { |
|
for (uint16_t aead_id : aead_ids) { |
|
for (const Span<const uint8_t> &info : info_values) { |
|
for (const Span<const uint8_t> &ad : ad_values) { |
|
// Set up the sender. |
|
ScopedEVP_HPKE_CTX sender_ctx; |
|
uint8_t enc[X25519_PUBLIC_VALUE_LEN]; |
|
ASSERT_TRUE(EVP_HPKE_CTX_setup_base_s_x25519( |
|
sender_ctx.get(), enc, kdf_id, aead_id, public_key_r, info.data(), |
|
info.size())); |
|
|
|
// Set up the receiver. |
|
ScopedEVP_HPKE_CTX receiver_ctx; |
|
ASSERT_TRUE(EVP_HPKE_CTX_setup_base_r_x25519( |
|
receiver_ctx.get(), kdf_id, aead_id, enc, public_key_r, |
|
secret_key_r, info.data(), info.size())); |
|
|
|
const char kCleartextPayload[] = "foobar"; |
|
|
|
// Have sender encrypt message for the receiver. |
|
std::vector<uint8_t> ciphertext( |
|
sizeof(kCleartextPayload) + |
|
EVP_HPKE_CTX_max_overhead(sender_ctx.get())); |
|
size_t ciphertext_len; |
|
ASSERT_TRUE(EVP_HPKE_CTX_seal( |
|
sender_ctx.get(), ciphertext.data(), &ciphertext_len, |
|
ciphertext.size(), |
|
reinterpret_cast<const uint8_t *>(kCleartextPayload), |
|
sizeof(kCleartextPayload), ad.data(), ad.size())); |
|
|
|
// Have receiver decrypt the message. |
|
std::vector<uint8_t> cleartext(ciphertext.size()); |
|
size_t cleartext_len; |
|
ASSERT_TRUE(EVP_HPKE_CTX_open(receiver_ctx.get(), cleartext.data(), |
|
&cleartext_len, cleartext.size(), |
|
ciphertext.data(), ciphertext_len, |
|
ad.data(), ad.size())); |
|
|
|
// Verify that decrypted message matches the original. |
|
ASSERT_EQ(Bytes(cleartext.data(), cleartext_len), |
|
Bytes(kCleartextPayload, sizeof(kCleartextPayload))); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Verify that the DH operations inside Encap() and Decap() both fail when the |
|
// public key is on a small-order point in the curve. |
|
TEST(HPKETest, X25519EncapSmallOrderPoint) { |
|
// Borrowed from X25519Test.SmallOrder. |
|
static const uint8_t kSmallOrderPoint[32] = { |
|
0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae, 0x16, 0x56, 0xe3, |
|
0xfa, 0xf1, 0x9f, 0xc4, 0x6a, 0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, |
|
0xb1, 0xfd, 0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, |
|
}; |
|
|
|
// Generate a valid keypair for the receiver. |
|
uint8_t secret_key_r[X25519_PRIVATE_KEY_LEN]; |
|
uint8_t public_key_r[X25519_PUBLIC_VALUE_LEN]; |
|
X25519_keypair(public_key_r, secret_key_r); |
|
|
|
uint16_t kdf_ids[] = {EVP_HPKE_HKDF_SHA256, EVP_HPKE_HKDF_SHA384, |
|
EVP_HPKE_HKDF_SHA512}; |
|
uint16_t aead_ids[] = {EVP_HPKE_AEAD_AES_GCM_128, EVP_HPKE_AEAD_AES_GCM_256, |
|
EVP_HPKE_AEAD_CHACHA20POLY1305}; |
|
|
|
for (uint16_t kdf_id : kdf_ids) { |
|
for (uint16_t aead_id : aead_ids) { |
|
// Set up the sender, passing in kSmallOrderPoint as |peer_public_value|. |
|
ScopedEVP_HPKE_CTX sender_ctx; |
|
uint8_t enc[X25519_PUBLIC_VALUE_LEN]; |
|
ASSERT_FALSE(EVP_HPKE_CTX_setup_base_s_x25519( |
|
sender_ctx.get(), enc, kdf_id, aead_id, kSmallOrderPoint, nullptr, |
|
0)); |
|
|
|
// Set up the receiver, passing in kSmallOrderPoint as |enc|. |
|
ScopedEVP_HPKE_CTX receiver_ctx; |
|
ASSERT_FALSE(EVP_HPKE_CTX_setup_base_r_x25519( |
|
receiver_ctx.get(), kdf_id, aead_id, kSmallOrderPoint, public_key_r, |
|
secret_key_r, nullptr, 0)); |
|
} |
|
} |
|
} |
|
|
|
// Test that Seal() fails when the context has been initialized as a receiver. |
|
TEST(HPKETest, ReceiverInvalidSeal) { |
|
const uint8_t kMockEnc[X25519_PUBLIC_VALUE_LEN] = {0xff}; |
|
const char kCleartextPayload[] = "foobar"; |
|
|
|
// Generate the receiver's keypair. |
|
uint8_t secret_key_r[X25519_PRIVATE_KEY_LEN]; |
|
uint8_t public_key_r[X25519_PUBLIC_VALUE_LEN]; |
|
X25519_keypair(public_key_r, secret_key_r); |
|
|
|
// Set up the receiver. |
|
ScopedEVP_HPKE_CTX receiver_ctx; |
|
ASSERT_TRUE(EVP_HPKE_CTX_setup_base_r_x25519( |
|
receiver_ctx.get(), EVP_HPKE_HKDF_SHA256, EVP_HPKE_AEAD_AES_GCM_128, |
|
kMockEnc, public_key_r, secret_key_r, nullptr, 0)); |
|
|
|
// Call Seal() on the receiver. |
|
size_t ciphertext_len; |
|
uint8_t ciphertext[100]; |
|
ASSERT_FALSE(EVP_HPKE_CTX_seal( |
|
receiver_ctx.get(), ciphertext, &ciphertext_len, sizeof(ciphertext), |
|
reinterpret_cast<const uint8_t *>(kCleartextPayload), |
|
sizeof(kCleartextPayload), nullptr, 0)); |
|
} |
|
|
|
// Test that Open() fails when the context has been initialized as a sender. |
|
TEST(HPKETest, SenderInvalidOpen) { |
|
const uint8_t kMockCiphertext[100] = {0xff}; |
|
const size_t kMockCiphertextLen = 80; |
|
|
|
// Generate the receiver's keypair. |
|
uint8_t secret_key_r[X25519_PRIVATE_KEY_LEN]; |
|
uint8_t public_key_r[X25519_PUBLIC_VALUE_LEN]; |
|
X25519_keypair(public_key_r, secret_key_r); |
|
|
|
// Set up the sender. |
|
ScopedEVP_HPKE_CTX sender_ctx; |
|
uint8_t enc[X25519_PUBLIC_VALUE_LEN]; |
|
ASSERT_TRUE(EVP_HPKE_CTX_setup_base_s_x25519( |
|
sender_ctx.get(), enc, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AEAD_AES_GCM_128, |
|
public_key_r, nullptr, 0)); |
|
|
|
// Call Open() on the sender. |
|
uint8_t cleartext[128]; |
|
size_t cleartext_len; |
|
ASSERT_FALSE(EVP_HPKE_CTX_open(sender_ctx.get(), cleartext, &cleartext_len, |
|
sizeof(cleartext), kMockCiphertext, |
|
kMockCiphertextLen, nullptr, 0)); |
|
} |
|
|
|
// Test that the PSK variants of Setup functions fail when any of the PSK inputs |
|
// are empty. |
|
TEST(HPKETest, EmptyPSK) { |
|
const uint8_t kMockEnc[X25519_PUBLIC_VALUE_LEN] = {0xff}; |
|
const std::vector<uint8_t> kPSKValues[] = {std::vector<uint8_t>(100, 0xff), |
|
{}}; |
|
|
|
// Generate the receiver's keypair. |
|
uint8_t secret_key_r[X25519_PRIVATE_KEY_LEN]; |
|
uint8_t public_key_r[X25519_PUBLIC_VALUE_LEN]; |
|
X25519_keypair(public_key_r, secret_key_r); |
|
|
|
// Vary the PSK and PSKID inputs for the sender and receiver, trying all four |
|
// permutations of empty and nonempty inputs. |
|
|
|
for (const auto &psk : kPSKValues) { |
|
for (const auto &psk_id : kPSKValues) { |
|
const bool kExpectSuccess = psk.size() > 0 && psk_id.size() > 0; |
|
|
|
ASSERT_EQ(ERR_get_error(), 0u); |
|
|
|
ScopedEVP_HPKE_CTX sender_ctx; |
|
uint8_t enc[X25519_PUBLIC_VALUE_LEN]; |
|
ASSERT_EQ(EVP_HPKE_CTX_setup_psk_s_x25519( |
|
sender_ctx.get(), enc, EVP_HPKE_HKDF_SHA256, |
|
EVP_HPKE_AEAD_AES_GCM_128, public_key_r, nullptr, 0, |
|
psk.data(), psk.size(), psk_id.data(), psk_id.size()), |
|
kExpectSuccess); |
|
|
|
if (!kExpectSuccess) { |
|
uint32_t err = ERR_get_error(); |
|
EXPECT_EQ(ERR_LIB_EVP, ERR_GET_LIB(err)); |
|
EXPECT_EQ(EVP_R_EMPTY_PSK, ERR_GET_REASON(err)); |
|
} |
|
ERR_clear_error(); |
|
|
|
ScopedEVP_HPKE_CTX receiver_ctx; |
|
ASSERT_EQ( |
|
EVP_HPKE_CTX_setup_psk_r_x25519( |
|
receiver_ctx.get(), EVP_HPKE_HKDF_SHA256, |
|
EVP_HPKE_AEAD_AES_GCM_128, kMockEnc, public_key_r, secret_key_r, |
|
nullptr, 0, psk.data(), psk.size(), psk_id.data(), psk_id.size()), |
|
kExpectSuccess); |
|
|
|
if (!kExpectSuccess) { |
|
uint32_t err = ERR_get_error(); |
|
EXPECT_EQ(ERR_LIB_EVP, ERR_GET_LIB(err)); |
|
EXPECT_EQ(EVP_R_EMPTY_PSK, ERR_GET_REASON(err)); |
|
} |
|
ERR_clear_error(); |
|
} |
|
} |
|
} |
|
|
|
TEST(HPKETest, InternalParseIntSafe) { |
|
uint8_t u8 = 0xff; |
|
ASSERT_FALSE(ParseIntSafe(&u8, "-1")); |
|
|
|
ASSERT_TRUE(ParseIntSafe(&u8, "0")); |
|
ASSERT_EQ(u8, 0); |
|
|
|
ASSERT_TRUE(ParseIntSafe(&u8, "255")); |
|
ASSERT_EQ(u8, 255); |
|
|
|
ASSERT_FALSE(ParseIntSafe(&u8, "256")); |
|
|
|
uint16_t u16 = 0xffff; |
|
ASSERT_TRUE(ParseIntSafe(&u16, "257")); |
|
ASSERT_EQ(u16, 257); |
|
|
|
ASSERT_TRUE(ParseIntSafe(&u16, "65535")); |
|
ASSERT_EQ(u16, 65535); |
|
|
|
ASSERT_FALSE(ParseIntSafe(&u16, "65536")); |
|
} |
|
|
|
|
|
} // namespace bssl
|
|
|