Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
464 lines
14 KiB
464 lines
14 KiB
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.]. */ |
|
|
|
#include <openssl/cast.h> |
|
#include <openssl/cipher.h> |
|
#include <openssl/obj.h> |
|
|
|
#if defined(OPENSSL_WINDOWS) |
|
OPENSSL_MSVC_PRAGMA(warning(push, 3)) |
|
#include <intrin.h> |
|
OPENSSL_MSVC_PRAGMA(warning(pop)) |
|
#endif |
|
|
|
#include "../../crypto/internal.h" |
|
#include "internal.h" |
|
#include "../macros.h" |
|
|
|
|
|
void CAST_ecb_encrypt(const uint8_t *in, uint8_t *out, const CAST_KEY *ks, |
|
int enc) { |
|
uint32_t d[2]; |
|
|
|
n2l(in, d[0]); |
|
n2l(in, d[1]); |
|
if (enc) { |
|
CAST_encrypt(d, ks); |
|
} else { |
|
CAST_decrypt(d, ks); |
|
} |
|
l2n(d[0], out); |
|
l2n(d[1], out); |
|
} |
|
|
|
#if defined(OPENSSL_WINDOWS) && defined(_MSC_VER) |
|
#define ROTL(a, n) (_lrotl(a, n)) |
|
#else |
|
#define ROTL(a, n) ((((a) << (n)) | ((a) >> ((-(n))&31))) & 0xffffffffL) |
|
#endif |
|
|
|
#define E_CAST(n, key, L, R, OP1, OP2, OP3) \ |
|
{ \ |
|
uint32_t a, b, c, d; \ |
|
t = (key[n * 2] OP1 R) & 0xffffffff; \ |
|
t = ROTL(t, (key[n * 2 + 1])); \ |
|
a = CAST_S_table0[(t >> 8) & 0xff]; \ |
|
b = CAST_S_table1[(t)&0xff]; \ |
|
c = CAST_S_table2[(t >> 24) & 0xff]; \ |
|
d = CAST_S_table3[(t >> 16) & 0xff]; \ |
|
L ^= (((((a OP2 b)&0xffffffffL)OP3 c) & 0xffffffffL)OP1 d) & 0xffffffffL; \ |
|
} |
|
|
|
void CAST_encrypt(uint32_t *data, const CAST_KEY *key) { |
|
uint32_t l, r, t; |
|
const uint32_t *k; |
|
|
|
k = &key->data[0]; |
|
l = data[0]; |
|
r = data[1]; |
|
|
|
E_CAST(0, k, l, r, +, ^, -); |
|
E_CAST(1, k, r, l, ^, -, +); |
|
E_CAST(2, k, l, r, -, +, ^); |
|
E_CAST(3, k, r, l, +, ^, -); |
|
E_CAST(4, k, l, r, ^, -, +); |
|
E_CAST(5, k, r, l, -, +, ^); |
|
E_CAST(6, k, l, r, +, ^, -); |
|
E_CAST(7, k, r, l, ^, -, +); |
|
E_CAST(8, k, l, r, -, +, ^); |
|
E_CAST(9, k, r, l, +, ^, -); |
|
E_CAST(10, k, l, r, ^, -, +); |
|
E_CAST(11, k, r, l, -, +, ^); |
|
|
|
if (!key->short_key) { |
|
E_CAST(12, k, l, r, +, ^, -); |
|
E_CAST(13, k, r, l, ^, -, +); |
|
E_CAST(14, k, l, r, -, +, ^); |
|
E_CAST(15, k, r, l, +, ^, -); |
|
} |
|
|
|
data[1] = l & 0xffffffffL; |
|
data[0] = r & 0xffffffffL; |
|
} |
|
|
|
void CAST_decrypt(uint32_t *data, const CAST_KEY *key) { |
|
uint32_t l, r, t; |
|
const uint32_t *k; |
|
|
|
k = &key->data[0]; |
|
l = data[0]; |
|
r = data[1]; |
|
|
|
if (!key->short_key) { |
|
E_CAST(15, k, l, r, +, ^, -); |
|
E_CAST(14, k, r, l, -, +, ^); |
|
E_CAST(13, k, l, r, ^, -, +); |
|
E_CAST(12, k, r, l, +, ^, -); |
|
} |
|
|
|
E_CAST(11, k, l, r, -, +, ^); |
|
E_CAST(10, k, r, l, ^, -, +); |
|
E_CAST(9, k, l, r, +, ^, -); |
|
E_CAST(8, k, r, l, -, +, ^); |
|
E_CAST(7, k, l, r, ^, -, +); |
|
E_CAST(6, k, r, l, +, ^, -); |
|
E_CAST(5, k, l, r, -, +, ^); |
|
E_CAST(4, k, r, l, ^, -, +); |
|
E_CAST(3, k, l, r, +, ^, -); |
|
E_CAST(2, k, r, l, -, +, ^); |
|
E_CAST(1, k, l, r, ^, -, +); |
|
E_CAST(0, k, r, l, +, ^, -); |
|
|
|
data[1] = l & 0xffffffffL; |
|
data[0] = r & 0xffffffffL; |
|
} |
|
|
|
void CAST_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
|
const CAST_KEY *ks, uint8_t *iv, int enc) { |
|
uint32_t tin0, tin1; |
|
uint32_t tout0, tout1, xor0, xor1; |
|
size_t l = length; |
|
uint32_t tin[2]; |
|
|
|
if (enc) { |
|
n2l(iv, tout0); |
|
n2l(iv, tout1); |
|
iv -= 8; |
|
while (l >= 8) { |
|
n2l(in, tin0); |
|
n2l(in, tin1); |
|
tin0 ^= tout0; |
|
tin1 ^= tout1; |
|
tin[0] = tin0; |
|
tin[1] = tin1; |
|
CAST_encrypt(tin, ks); |
|
tout0 = tin[0]; |
|
tout1 = tin[1]; |
|
l2n(tout0, out); |
|
l2n(tout1, out); |
|
l -= 8; |
|
} |
|
if (l != 0) { |
|
n2ln(in, tin0, tin1, l); |
|
tin0 ^= tout0; |
|
tin1 ^= tout1; |
|
tin[0] = tin0; |
|
tin[1] = tin1; |
|
CAST_encrypt(tin, ks); |
|
tout0 = tin[0]; |
|
tout1 = tin[1]; |
|
l2n(tout0, out); |
|
l2n(tout1, out); |
|
} |
|
l2n(tout0, iv); |
|
l2n(tout1, iv); |
|
} else { |
|
n2l(iv, xor0); |
|
n2l(iv, xor1); |
|
iv -= 8; |
|
while (l >= 8) { |
|
n2l(in, tin0); |
|
n2l(in, tin1); |
|
tin[0] = tin0; |
|
tin[1] = tin1; |
|
CAST_decrypt(tin, ks); |
|
tout0 = tin[0] ^ xor0; |
|
tout1 = tin[1] ^ xor1; |
|
l2n(tout0, out); |
|
l2n(tout1, out); |
|
xor0 = tin0; |
|
xor1 = tin1; |
|
l -= 8; |
|
} |
|
if (l != 0) { |
|
n2l(in, tin0); |
|
n2l(in, tin1); |
|
tin[0] = tin0; |
|
tin[1] = tin1; |
|
CAST_decrypt(tin, ks); |
|
tout0 = tin[0] ^ xor0; |
|
tout1 = tin[1] ^ xor1; |
|
l2nn(tout0, tout1, out, l); |
|
xor0 = tin0; |
|
xor1 = tin1; |
|
} |
|
l2n(xor0, iv); |
|
l2n(xor1, iv); |
|
} |
|
tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0; |
|
tin[0] = tin[1] = 0; |
|
} |
|
|
|
#define CAST_exp(l, A, a, n) \ |
|
A[n / 4] = l; \ |
|
a[n + 3] = (l)&0xff; \ |
|
a[n + 2] = (l >> 8) & 0xff; \ |
|
a[n + 1] = (l >> 16) & 0xff; \ |
|
a[n + 0] = (l >> 24) & 0xff; |
|
#define S4 CAST_S_table4 |
|
#define S5 CAST_S_table5 |
|
#define S6 CAST_S_table6 |
|
#define S7 CAST_S_table7 |
|
|
|
void CAST_set_key(CAST_KEY *key, size_t len, const uint8_t *data) { |
|
uint32_t x[16]; |
|
uint32_t z[16]; |
|
uint32_t k[32]; |
|
uint32_t X[4], Z[4]; |
|
uint32_t l, *K; |
|
size_t i; |
|
|
|
for (i = 0; i < 16; i++) { |
|
x[i] = 0; |
|
} |
|
|
|
if (len > 16) { |
|
len = 16; |
|
} |
|
|
|
for (i = 0; i < len; i++) { |
|
x[i] = data[i]; |
|
} |
|
|
|
if (len <= 10) { |
|
key->short_key = 1; |
|
} else { |
|
key->short_key = 0; |
|
} |
|
|
|
K = &k[0]; |
|
X[0] = ((x[0] << 24) | (x[1] << 16) | (x[2] << 8) | x[3]) & 0xffffffffL; |
|
X[1] = ((x[4] << 24) | (x[5] << 16) | (x[6] << 8) | x[7]) & 0xffffffffL; |
|
X[2] = ((x[8] << 24) | (x[9] << 16) | (x[10] << 8) | x[11]) & 0xffffffffL; |
|
X[3] = ((x[12] << 24) | (x[13] << 16) | (x[14] << 8) | x[15]) & 0xffffffffL; |
|
|
|
for (;;) { |
|
l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]]; |
|
CAST_exp(l, Z, z, 0); |
|
l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]]; |
|
CAST_exp(l, Z, z, 4); |
|
l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]]; |
|
CAST_exp(l, Z, z, 8); |
|
l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]]; |
|
CAST_exp(l, Z, z, 12); |
|
|
|
K[0] = S4[z[8]] ^ S5[z[9]] ^ S6[z[7]] ^ S7[z[6]] ^ S4[z[2]]; |
|
K[1] = S4[z[10]] ^ S5[z[11]] ^ S6[z[5]] ^ S7[z[4]] ^ S5[z[6]]; |
|
K[2] = S4[z[12]] ^ S5[z[13]] ^ S6[z[3]] ^ S7[z[2]] ^ S6[z[9]]; |
|
K[3] = S4[z[14]] ^ S5[z[15]] ^ S6[z[1]] ^ S7[z[0]] ^ S7[z[12]]; |
|
|
|
l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]]; |
|
CAST_exp(l, X, x, 0); |
|
l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]]; |
|
CAST_exp(l, X, x, 4); |
|
l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]]; |
|
CAST_exp(l, X, x, 8); |
|
l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]]; |
|
CAST_exp(l, X, x, 12); |
|
|
|
K[4] = S4[x[3]] ^ S5[x[2]] ^ S6[x[12]] ^ S7[x[13]] ^ S4[x[8]]; |
|
K[5] = S4[x[1]] ^ S5[x[0]] ^ S6[x[14]] ^ S7[x[15]] ^ S5[x[13]]; |
|
K[6] = S4[x[7]] ^ S5[x[6]] ^ S6[x[8]] ^ S7[x[9]] ^ S6[x[3]]; |
|
K[7] = S4[x[5]] ^ S5[x[4]] ^ S6[x[10]] ^ S7[x[11]] ^ S7[x[7]]; |
|
|
|
l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]]; |
|
CAST_exp(l, Z, z, 0); |
|
l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]]; |
|
CAST_exp(l, Z, z, 4); |
|
l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]]; |
|
CAST_exp(l, Z, z, 8); |
|
l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]]; |
|
CAST_exp(l, Z, z, 12); |
|
|
|
K[8] = S4[z[3]] ^ S5[z[2]] ^ S6[z[12]] ^ S7[z[13]] ^ S4[z[9]]; |
|
K[9] = S4[z[1]] ^ S5[z[0]] ^ S6[z[14]] ^ S7[z[15]] ^ S5[z[12]]; |
|
K[10] = S4[z[7]] ^ S5[z[6]] ^ S6[z[8]] ^ S7[z[9]] ^ S6[z[2]]; |
|
K[11] = S4[z[5]] ^ S5[z[4]] ^ S6[z[10]] ^ S7[z[11]] ^ S7[z[6]]; |
|
|
|
l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]]; |
|
CAST_exp(l, X, x, 0); |
|
l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]]; |
|
CAST_exp(l, X, x, 4); |
|
l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]]; |
|
CAST_exp(l, X, x, 8); |
|
l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]]; |
|
CAST_exp(l, X, x, 12); |
|
|
|
K[12] = S4[x[8]] ^ S5[x[9]] ^ S6[x[7]] ^ S7[x[6]] ^ S4[x[3]]; |
|
K[13] = S4[x[10]] ^ S5[x[11]] ^ S6[x[5]] ^ S7[x[4]] ^ S5[x[7]]; |
|
K[14] = S4[x[12]] ^ S5[x[13]] ^ S6[x[3]] ^ S7[x[2]] ^ S6[x[8]]; |
|
K[15] = S4[x[14]] ^ S5[x[15]] ^ S6[x[1]] ^ S7[x[0]] ^ S7[x[13]]; |
|
if (K != k) { |
|
break; |
|
} |
|
K += 16; |
|
} |
|
|
|
for (i = 0; i < 16; i++) { |
|
key->data[i * 2] = k[i]; |
|
key->data[i * 2 + 1] = ((k[i + 16]) + 16) & 0x1f; |
|
} |
|
} |
|
|
|
// The input and output encrypted as though 64bit cfb mode is being used. The |
|
// extra state information to record how much of the 64bit block we have used |
|
// is contained in *num. |
|
void CAST_cfb64_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
|
const CAST_KEY *schedule, uint8_t *ivec, int *num, |
|
int enc) { |
|
uint32_t v0, v1, t; |
|
int n = *num; |
|
size_t l = length; |
|
uint32_t ti[2]; |
|
uint8_t *iv, c, cc; |
|
|
|
iv = ivec; |
|
if (enc) { |
|
while (l--) { |
|
if (n == 0) { |
|
n2l(iv, v0); |
|
ti[0] = v0; |
|
n2l(iv, v1); |
|
ti[1] = v1; |
|
CAST_encrypt((uint32_t *)ti, schedule); |
|
iv = ivec; |
|
t = ti[0]; |
|
l2n(t, iv); |
|
t = ti[1]; |
|
l2n(t, iv); |
|
iv = ivec; |
|
} |
|
c = *(in++) ^ iv[n]; |
|
*(out++) = c; |
|
iv[n] = c; |
|
n = (n + 1) & 0x07; |
|
} |
|
} else { |
|
while (l--) { |
|
if (n == 0) { |
|
n2l(iv, v0); |
|
ti[0] = v0; |
|
n2l(iv, v1); |
|
ti[1] = v1; |
|
CAST_encrypt((uint32_t *)ti, schedule); |
|
iv = ivec; |
|
t = ti[0]; |
|
l2n(t, iv); |
|
t = ti[1]; |
|
l2n(t, iv); |
|
iv = ivec; |
|
} |
|
cc = *(in++); |
|
c = iv[n]; |
|
iv[n] = cc; |
|
*(out++) = c ^ cc; |
|
n = (n + 1) & 0x07; |
|
} |
|
} |
|
v0 = v1 = ti[0] = ti[1] = t = c = cc = 0; |
|
*num = n; |
|
} |
|
|
|
static int cast_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, |
|
const uint8_t *iv, int enc) { |
|
CAST_KEY *cast_key = ctx->cipher_data; |
|
CAST_set_key(cast_key, ctx->key_len, key); |
|
return 1; |
|
} |
|
|
|
static int cast_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
|
size_t len) { |
|
CAST_KEY *cast_key = ctx->cipher_data; |
|
|
|
while (len >= CAST_BLOCK) { |
|
CAST_ecb_encrypt(in, out, cast_key, ctx->encrypt); |
|
in += CAST_BLOCK; |
|
out += CAST_BLOCK; |
|
len -= CAST_BLOCK; |
|
} |
|
assert(len == 0); |
|
|
|
return 1; |
|
} |
|
|
|
static int cast_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
|
size_t len) { |
|
CAST_KEY *cast_key = ctx->cipher_data; |
|
CAST_cbc_encrypt(in, out, len, cast_key, ctx->iv, ctx->encrypt); |
|
return 1; |
|
} |
|
|
|
static const EVP_CIPHER cast5_ecb = { |
|
NID_cast5_ecb, CAST_BLOCK, |
|
CAST_KEY_LENGTH, CAST_BLOCK /* iv_len */, |
|
sizeof(CAST_KEY), EVP_CIPH_ECB_MODE | EVP_CIPH_VARIABLE_LENGTH, |
|
NULL /* app_data */, cast_init_key, |
|
cast_ecb_cipher, NULL /* cleanup */, |
|
NULL /* ctrl */, |
|
}; |
|
|
|
static const EVP_CIPHER cast5_cbc = { |
|
NID_cast5_cbc, CAST_BLOCK, |
|
CAST_KEY_LENGTH, CAST_BLOCK /* iv_len */, |
|
sizeof(CAST_KEY), EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH, |
|
NULL /* app_data */, cast_init_key, |
|
cast_cbc_cipher, NULL /* cleanup */, |
|
NULL /* ctrl */, |
|
}; |
|
|
|
const EVP_CIPHER *EVP_cast5_ecb(void) { return &cast5_ecb; } |
|
|
|
const EVP_CIPHER *EVP_cast5_cbc(void) { return &cast5_cbc; }
|
|
|