Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
547 lines
14 KiB
547 lines
14 KiB
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] */ |
|
|
|
#include <openssl/evp.h> |
|
|
|
#include <string.h> |
|
|
|
#include <openssl/bytestring.h> |
|
#include <openssl/dsa.h> |
|
#include <openssl/ec_key.h> |
|
#include <openssl/err.h> |
|
#include <openssl/rsa.h> |
|
|
|
#include "internal.h" |
|
#include "../bytestring/internal.h" |
|
#include "../internal.h" |
|
|
|
|
|
static const EVP_PKEY_ASN1_METHOD *const kASN1Methods[] = { |
|
&rsa_asn1_meth, |
|
&ec_asn1_meth, |
|
&dsa_asn1_meth, |
|
&ed25519_asn1_meth, |
|
&x25519_asn1_meth, |
|
}; |
|
|
|
static int parse_key_type(CBS *cbs, int *out_type) { |
|
CBS oid; |
|
if (!CBS_get_asn1(cbs, &oid, CBS_ASN1_OBJECT)) { |
|
return 0; |
|
} |
|
|
|
for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kASN1Methods); i++) { |
|
const EVP_PKEY_ASN1_METHOD *method = kASN1Methods[i]; |
|
if (CBS_len(&oid) == method->oid_len && |
|
OPENSSL_memcmp(CBS_data(&oid), method->oid, method->oid_len) == 0) { |
|
*out_type = method->pkey_id; |
|
return 1; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
EVP_PKEY *EVP_parse_public_key(CBS *cbs) { |
|
// Parse the SubjectPublicKeyInfo. |
|
CBS spki, algorithm, key; |
|
int type; |
|
uint8_t padding; |
|
if (!CBS_get_asn1(cbs, &spki, CBS_ASN1_SEQUENCE) || |
|
!CBS_get_asn1(&spki, &algorithm, CBS_ASN1_SEQUENCE) || |
|
!CBS_get_asn1(&spki, &key, CBS_ASN1_BITSTRING) || |
|
CBS_len(&spki) != 0) { |
|
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
|
return NULL; |
|
} |
|
if (!parse_key_type(&algorithm, &type)) { |
|
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
|
return NULL; |
|
} |
|
if (// Every key type defined encodes the key as a byte string with the same |
|
// conversion to BIT STRING. |
|
!CBS_get_u8(&key, &padding) || |
|
padding != 0) { |
|
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
|
return NULL; |
|
} |
|
|
|
// Set up an |EVP_PKEY| of the appropriate type. |
|
EVP_PKEY *ret = EVP_PKEY_new(); |
|
if (ret == NULL || |
|
!EVP_PKEY_set_type(ret, type)) { |
|
goto err; |
|
} |
|
|
|
// Call into the type-specific SPKI decoding function. |
|
if (ret->ameth->pub_decode == NULL) { |
|
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
|
goto err; |
|
} |
|
if (!ret->ameth->pub_decode(ret, &algorithm, &key)) { |
|
goto err; |
|
} |
|
|
|
return ret; |
|
|
|
err: |
|
EVP_PKEY_free(ret); |
|
return NULL; |
|
} |
|
|
|
int EVP_marshal_public_key(CBB *cbb, const EVP_PKEY *key) { |
|
if (key->ameth == NULL || key->ameth->pub_encode == NULL) { |
|
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
|
return 0; |
|
} |
|
|
|
return key->ameth->pub_encode(cbb, key); |
|
} |
|
|
|
EVP_PKEY *EVP_parse_private_key(CBS *cbs) { |
|
// Parse the PrivateKeyInfo. |
|
CBS pkcs8, algorithm, key; |
|
uint64_t version; |
|
int type; |
|
if (!CBS_get_asn1(cbs, &pkcs8, CBS_ASN1_SEQUENCE) || |
|
!CBS_get_asn1_uint64(&pkcs8, &version) || |
|
version != 0 || |
|
!CBS_get_asn1(&pkcs8, &algorithm, CBS_ASN1_SEQUENCE) || |
|
!CBS_get_asn1(&pkcs8, &key, CBS_ASN1_OCTETSTRING)) { |
|
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
|
return NULL; |
|
} |
|
if (!parse_key_type(&algorithm, &type)) { |
|
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
|
return NULL; |
|
} |
|
|
|
// A PrivateKeyInfo ends with a SET of Attributes which we ignore. |
|
|
|
// Set up an |EVP_PKEY| of the appropriate type. |
|
EVP_PKEY *ret = EVP_PKEY_new(); |
|
if (ret == NULL || |
|
!EVP_PKEY_set_type(ret, type)) { |
|
goto err; |
|
} |
|
|
|
// Call into the type-specific PrivateKeyInfo decoding function. |
|
if (ret->ameth->priv_decode == NULL) { |
|
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
|
goto err; |
|
} |
|
if (!ret->ameth->priv_decode(ret, &algorithm, &key)) { |
|
goto err; |
|
} |
|
|
|
return ret; |
|
|
|
err: |
|
EVP_PKEY_free(ret); |
|
return NULL; |
|
} |
|
|
|
int EVP_marshal_private_key(CBB *cbb, const EVP_PKEY *key) { |
|
if (key->ameth == NULL || key->ameth->priv_encode == NULL) { |
|
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
|
return 0; |
|
} |
|
|
|
return key->ameth->priv_encode(cbb, key); |
|
} |
|
|
|
static EVP_PKEY *old_priv_decode(CBS *cbs, int type) { |
|
EVP_PKEY *ret = EVP_PKEY_new(); |
|
if (ret == NULL) { |
|
return NULL; |
|
} |
|
|
|
switch (type) { |
|
case EVP_PKEY_EC: { |
|
EC_KEY *ec_key = EC_KEY_parse_private_key(cbs, NULL); |
|
if (ec_key == NULL || !EVP_PKEY_assign_EC_KEY(ret, ec_key)) { |
|
EC_KEY_free(ec_key); |
|
goto err; |
|
} |
|
return ret; |
|
} |
|
case EVP_PKEY_DSA: { |
|
DSA *dsa = DSA_parse_private_key(cbs); |
|
if (dsa == NULL || !EVP_PKEY_assign_DSA(ret, dsa)) { |
|
DSA_free(dsa); |
|
goto err; |
|
} |
|
return ret; |
|
} |
|
case EVP_PKEY_RSA: { |
|
RSA *rsa = RSA_parse_private_key(cbs); |
|
if (rsa == NULL || !EVP_PKEY_assign_RSA(ret, rsa)) { |
|
RSA_free(rsa); |
|
goto err; |
|
} |
|
return ret; |
|
} |
|
default: |
|
OPENSSL_PUT_ERROR(EVP, EVP_R_UNKNOWN_PUBLIC_KEY_TYPE); |
|
goto err; |
|
} |
|
|
|
err: |
|
EVP_PKEY_free(ret); |
|
return NULL; |
|
} |
|
|
|
EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **out, const uint8_t **inp, |
|
long len) { |
|
if (len < 0) { |
|
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
|
return NULL; |
|
} |
|
|
|
// Parse with the legacy format. |
|
CBS cbs; |
|
CBS_init(&cbs, *inp, (size_t)len); |
|
EVP_PKEY *ret = old_priv_decode(&cbs, type); |
|
if (ret == NULL) { |
|
// Try again with PKCS#8. |
|
ERR_clear_error(); |
|
CBS_init(&cbs, *inp, (size_t)len); |
|
ret = EVP_parse_private_key(&cbs); |
|
if (ret == NULL) { |
|
return NULL; |
|
} |
|
if (ret->type != type) { |
|
OPENSSL_PUT_ERROR(EVP, EVP_R_DIFFERENT_KEY_TYPES); |
|
EVP_PKEY_free(ret); |
|
return NULL; |
|
} |
|
} |
|
|
|
if (out != NULL) { |
|
EVP_PKEY_free(*out); |
|
*out = ret; |
|
} |
|
*inp = CBS_data(&cbs); |
|
return ret; |
|
} |
|
|
|
// num_elements parses one SEQUENCE from |in| and returns the number of elements |
|
// in it. On parse error, it returns zero. |
|
static size_t num_elements(const uint8_t *in, size_t in_len) { |
|
CBS cbs, sequence; |
|
CBS_init(&cbs, in, (size_t)in_len); |
|
|
|
if (!CBS_get_asn1(&cbs, &sequence, CBS_ASN1_SEQUENCE)) { |
|
return 0; |
|
} |
|
|
|
size_t count = 0; |
|
while (CBS_len(&sequence) > 0) { |
|
if (!CBS_get_any_asn1_element(&sequence, NULL, NULL, NULL)) { |
|
return 0; |
|
} |
|
|
|
count++; |
|
} |
|
|
|
return count; |
|
} |
|
|
|
EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **out, const uint8_t **inp, long len) { |
|
if (len < 0) { |
|
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
|
return NULL; |
|
} |
|
|
|
// Parse the input as a PKCS#8 PrivateKeyInfo. |
|
CBS cbs; |
|
CBS_init(&cbs, *inp, (size_t)len); |
|
EVP_PKEY *ret = EVP_parse_private_key(&cbs); |
|
if (ret != NULL) { |
|
if (out != NULL) { |
|
EVP_PKEY_free(*out); |
|
*out = ret; |
|
} |
|
*inp = CBS_data(&cbs); |
|
return ret; |
|
} |
|
ERR_clear_error(); |
|
|
|
// Count the elements to determine the legacy key format. |
|
switch (num_elements(*inp, (size_t)len)) { |
|
case 4: |
|
return d2i_PrivateKey(EVP_PKEY_EC, out, inp, len); |
|
|
|
case 6: |
|
return d2i_PrivateKey(EVP_PKEY_DSA, out, inp, len); |
|
|
|
default: |
|
return d2i_PrivateKey(EVP_PKEY_RSA, out, inp, len); |
|
} |
|
} |
|
|
|
int i2d_PublicKey(const EVP_PKEY *key, uint8_t **outp) { |
|
switch (key->type) { |
|
case EVP_PKEY_RSA: |
|
return i2d_RSAPublicKey(key->pkey.rsa, outp); |
|
case EVP_PKEY_DSA: |
|
return i2d_DSAPublicKey(key->pkey.dsa, outp); |
|
case EVP_PKEY_EC: |
|
return i2o_ECPublicKey(key->pkey.ec, outp); |
|
default: |
|
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE); |
|
return -1; |
|
} |
|
} |
|
|
|
EVP_PKEY *d2i_PublicKey(int type, EVP_PKEY **out, const uint8_t **inp, |
|
long len) { |
|
EVP_PKEY *ret = EVP_PKEY_new(); |
|
if (ret == NULL) { |
|
return NULL; |
|
} |
|
|
|
CBS cbs; |
|
CBS_init(&cbs, *inp, len < 0 ? 0 : (size_t)len); |
|
switch (type) { |
|
case EVP_PKEY_RSA: { |
|
RSA *rsa = RSA_parse_public_key(&cbs); |
|
if (rsa == NULL || !EVP_PKEY_assign_RSA(ret, rsa)) { |
|
RSA_free(rsa); |
|
goto err; |
|
} |
|
break; |
|
} |
|
|
|
// Unlike OpenSSL, we do not support EC keys with this API. The raw EC |
|
// public key serialization requires knowing the group. In OpenSSL, calling |
|
// this function with |EVP_PKEY_EC| and setting |out| to NULL does not work. |
|
// It requires |*out| to include a partially-initiazed |EVP_PKEY| to extract |
|
// the group. |
|
default: |
|
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE); |
|
goto err; |
|
} |
|
|
|
*inp = CBS_data(&cbs); |
|
if (out != NULL) { |
|
EVP_PKEY_free(*out); |
|
*out = ret; |
|
} |
|
return ret; |
|
|
|
err: |
|
EVP_PKEY_free(ret); |
|
return NULL; |
|
} |
|
|
|
EVP_PKEY *d2i_PUBKEY(EVP_PKEY **out, const uint8_t **inp, long len) { |
|
if (len < 0) { |
|
return NULL; |
|
} |
|
CBS cbs; |
|
CBS_init(&cbs, *inp, (size_t)len); |
|
EVP_PKEY *ret = EVP_parse_public_key(&cbs); |
|
if (ret == NULL) { |
|
return NULL; |
|
} |
|
if (out != NULL) { |
|
EVP_PKEY_free(*out); |
|
*out = ret; |
|
} |
|
*inp = CBS_data(&cbs); |
|
return ret; |
|
} |
|
|
|
int i2d_PUBKEY(const EVP_PKEY *pkey, uint8_t **outp) { |
|
if (pkey == NULL) { |
|
return 0; |
|
} |
|
|
|
CBB cbb; |
|
if (!CBB_init(&cbb, 128) || |
|
!EVP_marshal_public_key(&cbb, pkey)) { |
|
CBB_cleanup(&cbb); |
|
return -1; |
|
} |
|
return CBB_finish_i2d(&cbb, outp); |
|
} |
|
|
|
RSA *d2i_RSA_PUBKEY(RSA **out, const uint8_t **inp, long len) { |
|
if (len < 0) { |
|
return NULL; |
|
} |
|
CBS cbs; |
|
CBS_init(&cbs, *inp, (size_t)len); |
|
EVP_PKEY *pkey = EVP_parse_public_key(&cbs); |
|
if (pkey == NULL) { |
|
return NULL; |
|
} |
|
RSA *rsa = EVP_PKEY_get1_RSA(pkey); |
|
EVP_PKEY_free(pkey); |
|
if (rsa == NULL) { |
|
return NULL; |
|
} |
|
if (out != NULL) { |
|
RSA_free(*out); |
|
*out = rsa; |
|
} |
|
*inp = CBS_data(&cbs); |
|
return rsa; |
|
} |
|
|
|
int i2d_RSA_PUBKEY(const RSA *rsa, uint8_t **outp) { |
|
if (rsa == NULL) { |
|
return 0; |
|
} |
|
|
|
int ret = -1; |
|
EVP_PKEY *pkey = EVP_PKEY_new(); |
|
if (pkey == NULL || |
|
!EVP_PKEY_set1_RSA(pkey, (RSA *)rsa)) { |
|
goto err; |
|
} |
|
|
|
ret = i2d_PUBKEY(pkey, outp); |
|
|
|
err: |
|
EVP_PKEY_free(pkey); |
|
return ret; |
|
} |
|
|
|
DSA *d2i_DSA_PUBKEY(DSA **out, const uint8_t **inp, long len) { |
|
if (len < 0) { |
|
return NULL; |
|
} |
|
CBS cbs; |
|
CBS_init(&cbs, *inp, (size_t)len); |
|
EVP_PKEY *pkey = EVP_parse_public_key(&cbs); |
|
if (pkey == NULL) { |
|
return NULL; |
|
} |
|
DSA *dsa = EVP_PKEY_get1_DSA(pkey); |
|
EVP_PKEY_free(pkey); |
|
if (dsa == NULL) { |
|
return NULL; |
|
} |
|
if (out != NULL) { |
|
DSA_free(*out); |
|
*out = dsa; |
|
} |
|
*inp = CBS_data(&cbs); |
|
return dsa; |
|
} |
|
|
|
int i2d_DSA_PUBKEY(const DSA *dsa, uint8_t **outp) { |
|
if (dsa == NULL) { |
|
return 0; |
|
} |
|
|
|
int ret = -1; |
|
EVP_PKEY *pkey = EVP_PKEY_new(); |
|
if (pkey == NULL || |
|
!EVP_PKEY_set1_DSA(pkey, (DSA *)dsa)) { |
|
goto err; |
|
} |
|
|
|
ret = i2d_PUBKEY(pkey, outp); |
|
|
|
err: |
|
EVP_PKEY_free(pkey); |
|
return ret; |
|
} |
|
|
|
EC_KEY *d2i_EC_PUBKEY(EC_KEY **out, const uint8_t **inp, long len) { |
|
if (len < 0) { |
|
return NULL; |
|
} |
|
CBS cbs; |
|
CBS_init(&cbs, *inp, (size_t)len); |
|
EVP_PKEY *pkey = EVP_parse_public_key(&cbs); |
|
if (pkey == NULL) { |
|
return NULL; |
|
} |
|
EC_KEY *ec_key = EVP_PKEY_get1_EC_KEY(pkey); |
|
EVP_PKEY_free(pkey); |
|
if (ec_key == NULL) { |
|
return NULL; |
|
} |
|
if (out != NULL) { |
|
EC_KEY_free(*out); |
|
*out = ec_key; |
|
} |
|
*inp = CBS_data(&cbs); |
|
return ec_key; |
|
} |
|
|
|
int i2d_EC_PUBKEY(const EC_KEY *ec_key, uint8_t **outp) { |
|
if (ec_key == NULL) { |
|
return 0; |
|
} |
|
|
|
int ret = -1; |
|
EVP_PKEY *pkey = EVP_PKEY_new(); |
|
if (pkey == NULL || |
|
!EVP_PKEY_set1_EC_KEY(pkey, (EC_KEY *)ec_key)) { |
|
goto err; |
|
} |
|
|
|
ret = i2d_PUBKEY(pkey, outp); |
|
|
|
err: |
|
EVP_PKEY_free(pkey); |
|
return ret; |
|
}
|
|
|