Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
717 lines
21 KiB
717 lines
21 KiB
/* Copyright (c) 2018, Google Inc. |
|
* |
|
* Permission to use, copy, modify, and/or distribute this software for any |
|
* purpose with or without fee is hereby granted, provided that the above |
|
* copyright notice and this permission notice appear in all copies. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
|
|
|
#include "handshake_util.h" |
|
|
|
#include <assert.h> |
|
#if defined(HANDSHAKER_SUPPORTED) |
|
#include <errno.h> |
|
#include <fcntl.h> |
|
#include <spawn.h> |
|
#include <sys/socket.h> |
|
#include <sys/stat.h> |
|
#include <sys/types.h> |
|
#include <sys/wait.h> |
|
#include <unistd.h> |
|
#endif |
|
|
|
#include <functional> |
|
#include <map> |
|
#include <vector> |
|
|
|
#include "async_bio.h" |
|
#include "packeted_bio.h" |
|
#include "test_config.h" |
|
#include "test_state.h" |
|
|
|
#include <openssl/bytestring.h> |
|
#include <openssl/ssl.h> |
|
|
|
using namespace bssl; |
|
|
|
bool RetryAsync(SSL *ssl, int ret) { |
|
const TestConfig *config = GetTestConfig(ssl); |
|
TestState *test_state = GetTestState(ssl); |
|
if (ret >= 0) { |
|
return false; |
|
} |
|
|
|
int ssl_err = SSL_get_error(ssl, ret); |
|
if (ssl_err == SSL_ERROR_WANT_RENEGOTIATE && config->renegotiate_explicit) { |
|
test_state->explicit_renegotiates++; |
|
return SSL_renegotiate(ssl); |
|
} |
|
|
|
if (test_state->quic_transport && ssl_err == SSL_ERROR_WANT_READ) { |
|
return test_state->quic_transport->ReadHandshake(); |
|
} |
|
|
|
if (!config->async) { |
|
// Only asynchronous tests should trigger other retries. |
|
return false; |
|
} |
|
|
|
if (test_state->packeted_bio != nullptr && |
|
PacketedBioAdvanceClock(test_state->packeted_bio)) { |
|
// The DTLS retransmit logic silently ignores write failures. So the test |
|
// may progress, allow writes through synchronously. |
|
AsyncBioEnforceWriteQuota(test_state->async_bio, false); |
|
int timeout_ret = DTLSv1_handle_timeout(ssl); |
|
AsyncBioEnforceWriteQuota(test_state->async_bio, true); |
|
|
|
if (timeout_ret < 0) { |
|
fprintf(stderr, "Error retransmitting.\n"); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
// See if we needed to read or write more. If so, allow one byte through on |
|
// the appropriate end to maximally stress the state machine. |
|
switch (ssl_err) { |
|
case SSL_ERROR_WANT_READ: |
|
AsyncBioAllowRead(test_state->async_bio, 1); |
|
return true; |
|
case SSL_ERROR_WANT_WRITE: |
|
AsyncBioAllowWrite(test_state->async_bio, 1); |
|
return true; |
|
case SSL_ERROR_WANT_X509_LOOKUP: |
|
test_state->cert_ready = true; |
|
return true; |
|
case SSL_ERROR_PENDING_SESSION: |
|
test_state->session = std::move(test_state->pending_session); |
|
return true; |
|
case SSL_ERROR_PENDING_CERTIFICATE: |
|
test_state->early_callback_ready = true; |
|
return true; |
|
case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION: |
|
test_state->private_key_retries++; |
|
return true; |
|
case SSL_ERROR_WANT_CERTIFICATE_VERIFY: |
|
test_state->custom_verify_ready = true; |
|
return true; |
|
default: |
|
return false; |
|
} |
|
} |
|
|
|
int CheckIdempotentError(const char *name, SSL *ssl, |
|
std::function<int()> func) { |
|
int ret = func(); |
|
int ssl_err = SSL_get_error(ssl, ret); |
|
uint32_t err = ERR_peek_error(); |
|
if (ssl_err == SSL_ERROR_SSL || ssl_err == SSL_ERROR_ZERO_RETURN) { |
|
int ret2 = func(); |
|
int ssl_err2 = SSL_get_error(ssl, ret2); |
|
uint32_t err2 = ERR_peek_error(); |
|
if (ret != ret2 || ssl_err != ssl_err2 || err != err2) { |
|
fprintf(stderr, "Repeating %s did not replay the error.\n", name); |
|
char buf[256]; |
|
ERR_error_string_n(err, buf, sizeof(buf)); |
|
fprintf(stderr, "Wanted: %d %d %s\n", ret, ssl_err, buf); |
|
ERR_error_string_n(err2, buf, sizeof(buf)); |
|
fprintf(stderr, "Got: %d %d %s\n", ret2, ssl_err2, buf); |
|
// runner treats exit code 90 as always failing. Otherwise, it may |
|
// accidentally consider the result an expected protocol failure. |
|
exit(90); |
|
} |
|
} |
|
return ret; |
|
} |
|
|
|
#if defined(HANDSHAKER_SUPPORTED) |
|
|
|
// MoveBIOs moves the |BIO|s of |src| to |dst|. It is used for handoff. |
|
static void MoveBIOs(SSL *dest, SSL *src) { |
|
BIO *rbio = SSL_get_rbio(src); |
|
BIO_up_ref(rbio); |
|
SSL_set0_rbio(dest, rbio); |
|
|
|
BIO *wbio = SSL_get_wbio(src); |
|
BIO_up_ref(wbio); |
|
SSL_set0_wbio(dest, wbio); |
|
|
|
SSL_set0_rbio(src, nullptr); |
|
SSL_set0_wbio(src, nullptr); |
|
} |
|
|
|
static bool HandoffReady(SSL *ssl, int ret) { |
|
return ret < 0 && SSL_get_error(ssl, ret) == SSL_ERROR_HANDOFF; |
|
} |
|
|
|
static ssize_t read_eintr(int fd, void *out, size_t len) { |
|
ssize_t ret; |
|
do { |
|
ret = read(fd, out, len); |
|
} while (ret < 0 && errno == EINTR); |
|
return ret; |
|
} |
|
|
|
static ssize_t write_eintr(int fd, const void *in, size_t len) { |
|
ssize_t ret; |
|
do { |
|
ret = write(fd, in, len); |
|
} while (ret < 0 && errno == EINTR); |
|
return ret; |
|
} |
|
|
|
static ssize_t waitpid_eintr(pid_t pid, int *wstatus, int options) { |
|
pid_t ret; |
|
do { |
|
ret = waitpid(pid, wstatus, options); |
|
} while (ret < 0 && errno == EINTR); |
|
return ret; |
|
} |
|
|
|
// Proxy relays data between |socket|, which is connected to the client, and the |
|
// handshaker, which is connected to the numerically specified file descriptors, |
|
// until the handshaker returns control. |
|
static bool Proxy(BIO *socket, bool async, int control, int rfd, int wfd) { |
|
for (;;) { |
|
fd_set rfds; |
|
FD_ZERO(&rfds); |
|
FD_SET(wfd, &rfds); |
|
FD_SET(control, &rfds); |
|
int fd_max = wfd > control ? wfd : control; |
|
if (select(fd_max + 1, &rfds, nullptr, nullptr, nullptr) == -1) { |
|
perror("select"); |
|
return false; |
|
} |
|
|
|
char buf[64]; |
|
ssize_t bytes; |
|
if (FD_ISSET(wfd, &rfds) && |
|
(bytes = read_eintr(wfd, buf, sizeof(buf))) > 0) { |
|
char *b = buf; |
|
while (bytes) { |
|
int written = BIO_write(socket, b, bytes); |
|
if (!written) { |
|
fprintf(stderr, "BIO_write wrote nothing\n"); |
|
return false; |
|
} |
|
if (written < 0) { |
|
if (async) { |
|
AsyncBioAllowWrite(socket, 1); |
|
continue; |
|
} |
|
fprintf(stderr, "BIO_write failed\n"); |
|
return false; |
|
} |
|
b += written; |
|
bytes -= written; |
|
} |
|
// Flush all pending data from the handshaker to the client before |
|
// considering control messages. |
|
continue; |
|
} |
|
|
|
if (!FD_ISSET(control, &rfds)) { |
|
continue; |
|
} |
|
|
|
char msg; |
|
if (read_eintr(control, &msg, 1) != 1) { |
|
perror("read"); |
|
return false; |
|
} |
|
switch (msg) { |
|
case kControlMsgDone: |
|
return true; |
|
case kControlMsgError: |
|
return false; |
|
case kControlMsgWantRead: |
|
break; |
|
default: |
|
fprintf(stderr, "Unknown control message from handshaker: %c\n", msg); |
|
return false; |
|
} |
|
|
|
auto proxy_data = [&](uint8_t *out, size_t len) -> bool { |
|
if (async) { |
|
AsyncBioAllowRead(socket, len); |
|
} |
|
|
|
while (len > 0) { |
|
int bytes_read = BIO_read(socket, out, len); |
|
if (bytes_read < 1) { |
|
fprintf(stderr, "BIO_read failed\n"); |
|
return false; |
|
} |
|
|
|
ssize_t bytes_written = write_eintr(rfd, out, bytes_read); |
|
if (bytes_written == -1) { |
|
perror("write"); |
|
return false; |
|
} |
|
if (bytes_written != bytes_read) { |
|
fprintf(stderr, "short write (%zd of %d bytes)\n", bytes_written, |
|
bytes_read); |
|
return false; |
|
} |
|
|
|
len -= bytes_read; |
|
out += bytes_read; |
|
} |
|
return true; |
|
}; |
|
|
|
// Process one SSL record at a time. That way, we don't send the handshaker |
|
// anything it doesn't want to process, e.g. early data. |
|
uint8_t header[SSL3_RT_HEADER_LENGTH]; |
|
if (!proxy_data(header, sizeof(header))) { |
|
return false; |
|
} |
|
if (header[1] != 3) { |
|
fprintf(stderr, "bad header\n"); |
|
return false; |
|
} |
|
size_t remaining = (header[3] << 8) + header[4]; |
|
while (remaining > 0) { |
|
uint8_t readbuf[64]; |
|
size_t len = remaining > sizeof(readbuf) ? sizeof(readbuf) : remaining; |
|
if (!proxy_data(readbuf, len)) { |
|
return false; |
|
} |
|
remaining -= len; |
|
} |
|
|
|
// The handshaker blocks on the control channel, so we have to signal |
|
// it that the data have been written. |
|
msg = kControlMsgWriteCompleted; |
|
if (write_eintr(control, &msg, 1) != 1) { |
|
perror("write"); |
|
return false; |
|
} |
|
} |
|
} |
|
|
|
class ScopedFD { |
|
public: |
|
ScopedFD() : fd_(-1) {} |
|
explicit ScopedFD(int fd) : fd_(fd) {} |
|
~ScopedFD() { Reset(); } |
|
|
|
ScopedFD(ScopedFD &&other) { *this = std::move(other); } |
|
ScopedFD &operator=(ScopedFD &&other) { |
|
Reset(other.fd_); |
|
other.fd_ = -1; |
|
return *this; |
|
} |
|
|
|
int fd() const { return fd_; } |
|
|
|
void Reset(int fd = -1) { |
|
if (fd_ >= 0) { |
|
close(fd_); |
|
} |
|
fd_ = fd; |
|
} |
|
|
|
private: |
|
int fd_; |
|
}; |
|
|
|
class ScopedProcess { |
|
public: |
|
ScopedProcess() : pid_(-1) {} |
|
~ScopedProcess() { Reset(); } |
|
|
|
ScopedProcess(ScopedProcess &&other) { *this = std::move(other); } |
|
ScopedProcess &operator=(ScopedProcess &&other) { |
|
Reset(other.pid_); |
|
other.pid_ = -1; |
|
return *this; |
|
} |
|
|
|
pid_t pid() const { return pid_; } |
|
|
|
void Reset(pid_t pid = -1) { |
|
if (pid_ >= 0) { |
|
kill(pid_, SIGTERM); |
|
int unused; |
|
Wait(&unused); |
|
} |
|
pid_ = pid; |
|
} |
|
|
|
bool Wait(int *out_status) { |
|
if (pid_ < 0) { |
|
return false; |
|
} |
|
if (waitpid_eintr(pid_, out_status, 0) != pid_) { |
|
return false; |
|
} |
|
pid_ = -1; |
|
return true; |
|
} |
|
|
|
private: |
|
pid_t pid_; |
|
}; |
|
|
|
class FileActionsDestroyer { |
|
public: |
|
explicit FileActionsDestroyer(posix_spawn_file_actions_t *actions) |
|
: actions_(actions) {} |
|
~FileActionsDestroyer() { posix_spawn_file_actions_destroy(actions_); } |
|
FileActionsDestroyer(const FileActionsDestroyer &) = delete; |
|
FileActionsDestroyer &operator=(const FileActionsDestroyer &) = delete; |
|
|
|
private: |
|
posix_spawn_file_actions_t *actions_; |
|
}; |
|
|
|
// StartHandshaker starts the handshaker process and, on success, returns a |
|
// handle to the process in |*out|. It sets |*out_control| to a control pipe to |
|
// the process. |map_fds| maps from desired fd number in the child process to |
|
// the source fd in the calling process. |close_fds| is the list of additional |
|
// fds to close, which may overlap with |map_fds|. Other than stdin, stdout, and |
|
// stderr, the status of fds not listed in either set is undefined. |
|
static bool StartHandshaker(ScopedProcess *out, ScopedFD *out_control, |
|
const TestConfig *config, bool is_resume, |
|
std::map<int, int> map_fds, |
|
std::vector<int> close_fds) { |
|
if (config->handshaker_path.empty()) { |
|
fprintf(stderr, "no -handshaker-path specified\n"); |
|
return false; |
|
} |
|
struct stat dummy; |
|
if (stat(config->handshaker_path.c_str(), &dummy) == -1) { |
|
perror(config->handshaker_path.c_str()); |
|
return false; |
|
} |
|
|
|
std::vector<const char *> args; |
|
args.push_back(config->handshaker_path.c_str()); |
|
static const char kResumeFlag[] = "-handshaker-resume"; |
|
if (is_resume) { |
|
args.push_back(kResumeFlag); |
|
} |
|
// config->handshaker_args omits argv[0]. |
|
for (const char *arg : config->handshaker_args) { |
|
args.push_back(arg); |
|
} |
|
args.push_back(nullptr); |
|
|
|
// A datagram socket guarantees that writes are all-or-nothing. |
|
int control[2]; |
|
if (socketpair(AF_LOCAL, SOCK_DGRAM, 0, control) != 0) { |
|
perror("socketpair"); |
|
return false; |
|
} |
|
ScopedFD scoped_control0(control[0]), scoped_control1(control[1]); |
|
close_fds.push_back(control[0]); |
|
map_fds[kFdControl] = control[1]; |
|
|
|
posix_spawn_file_actions_t actions; |
|
if (posix_spawn_file_actions_init(&actions) != 0) { |
|
return false; |
|
} |
|
FileActionsDestroyer actions_destroyer(&actions); |
|
for (int fd : close_fds) { |
|
if (posix_spawn_file_actions_addclose(&actions, fd) != 0) { |
|
return false; |
|
} |
|
} |
|
if (!map_fds.empty()) { |
|
int max_fd = STDERR_FILENO; |
|
for (const auto &pair : map_fds) { |
|
max_fd = std::max(max_fd, pair.first); |
|
max_fd = std::max(max_fd, pair.second); |
|
} |
|
// |map_fds| may contain cycles, so make a copy of all the source fds. |
|
// |posix_spawn| can only use |dup2|, not |dup|, so we assume |max_fd| is |
|
// the last fd we care about inheriting. |temp_fds| maps from fd number in |
|
// the parent process to a temporary fd number in the child process. |
|
std::map<int, int> temp_fds; |
|
int next_fd = max_fd + 1; |
|
for (const auto &pair : map_fds) { |
|
if (temp_fds.count(pair.second)) { |
|
continue; |
|
} |
|
temp_fds[pair.second] = next_fd; |
|
if (posix_spawn_file_actions_adddup2(&actions, pair.second, next_fd) != |
|
0 || |
|
posix_spawn_file_actions_addclose(&actions, pair.second) != 0) { |
|
return false; |
|
} |
|
next_fd++; |
|
} |
|
for (const auto &pair : map_fds) { |
|
if (posix_spawn_file_actions_adddup2(&actions, temp_fds[pair.second], |
|
pair.first) != 0) { |
|
return false; |
|
} |
|
} |
|
// Clean up temporary fds. |
|
for (int fd = max_fd + 1; fd < next_fd; fd++) { |
|
if (posix_spawn_file_actions_addclose(&actions, fd) != 0) { |
|
return false; |
|
} |
|
} |
|
} |
|
|
|
fflush(stdout); |
|
fflush(stderr); |
|
|
|
// MSan doesn't know that |posix_spawn| initializes its output, so initialize |
|
// it to -1. |
|
pid_t pid = -1; |
|
if (posix_spawn(&pid, args[0], &actions, nullptr, |
|
const_cast<char *const *>(args.data()), environ) != 0) { |
|
return false; |
|
} |
|
|
|
out->Reset(pid); |
|
*out_control = std::move(scoped_control0); |
|
return true; |
|
} |
|
|
|
// RunHandshaker forks and execs the handshaker binary, handing off |input|, |
|
// and, after proxying some amount of handshake traffic, handing back |out|. |
|
static bool RunHandshaker(BIO *bio, const TestConfig *config, bool is_resume, |
|
Span<const uint8_t> input, |
|
std::vector<uint8_t> *out) { |
|
int rfd[2], wfd[2]; |
|
// We use pipes, rather than some other mechanism, for their buffers. During |
|
// the handshake, this process acts as a dumb proxy until receiving the |
|
// handback signal, which arrives asynchronously. The race condition means |
|
// that this process could incorrectly proxy post-handshake data from the |
|
// client to the handshaker. |
|
// |
|
// To avoid this, this process never proxies data to the handshaker that the |
|
// handshaker has not explicitly requested as a result of hitting |
|
// |SSL_ERROR_WANT_READ|. Pipes allow the data to sit in a buffer while the |
|
// two processes synchronize over the |control| channel. |
|
if (pipe(rfd) != 0) { |
|
perror("pipe"); |
|
return false; |
|
} |
|
ScopedFD rfd0_closer(rfd[0]), rfd1_closer(rfd[1]); |
|
|
|
if (pipe(wfd) != 0) { |
|
perror("pipe"); |
|
return false; |
|
} |
|
ScopedFD wfd0_closer(wfd[0]), wfd1_closer(wfd[1]); |
|
|
|
ScopedProcess handshaker; |
|
ScopedFD control; |
|
if (!StartHandshaker( |
|
&handshaker, &control, config, is_resume, |
|
{{kFdProxyToHandshaker, rfd[0]}, {kFdHandshakerToProxy, wfd[1]}}, |
|
{rfd[1], wfd[0]})) { |
|
return false; |
|
} |
|
|
|
rfd0_closer.Reset(); |
|
wfd1_closer.Reset(); |
|
|
|
if (write_eintr(control.fd(), input.data(), input.size()) == -1) { |
|
perror("write"); |
|
return false; |
|
} |
|
bool ok = Proxy(bio, config->async, control.fd(), rfd[1], wfd[0]); |
|
int wstatus; |
|
if (!handshaker.Wait(&wstatus)) { |
|
perror("waitpid"); |
|
return false; |
|
} |
|
if (ok && wstatus) { |
|
fprintf(stderr, "handshaker exited irregularly\n"); |
|
return false; |
|
} |
|
if (!ok) { |
|
return false; // This is a "good", i.e. expected, error. |
|
} |
|
|
|
constexpr size_t kBufSize = 1024 * 1024; |
|
std::vector<uint8_t> buf(kBufSize); |
|
ssize_t len = read_eintr(control.fd(), buf.data(), buf.size()); |
|
if (len == -1) { |
|
perror("read"); |
|
return false; |
|
} |
|
buf.resize(len); |
|
*out = std::move(buf); |
|
return true; |
|
} |
|
|
|
static bool RequestHandshakeHint(const TestConfig *config, bool is_resume, |
|
Span<const uint8_t> input, bool *out_has_hints, |
|
std::vector<uint8_t> *out_hints) { |
|
ScopedProcess handshaker; |
|
ScopedFD control; |
|
if (!StartHandshaker(&handshaker, &control, config, is_resume, {}, {})) { |
|
return false; |
|
} |
|
|
|
if (write_eintr(control.fd(), input.data(), input.size()) == -1) { |
|
perror("write"); |
|
return false; |
|
} |
|
|
|
char msg; |
|
if (read_eintr(control.fd(), &msg, 1) != 1) { |
|
perror("read"); |
|
return false; |
|
} |
|
|
|
switch (msg) { |
|
case kControlMsgDone: { |
|
constexpr size_t kBufSize = 1024 * 1024; |
|
out_hints->resize(kBufSize); |
|
ssize_t len = |
|
read_eintr(control.fd(), out_hints->data(), out_hints->size()); |
|
if (len == -1) { |
|
perror("read"); |
|
return false; |
|
} |
|
out_hints->resize(len); |
|
*out_has_hints = true; |
|
break; |
|
} |
|
case kControlMsgError: |
|
*out_has_hints = false; |
|
break; |
|
default: |
|
fprintf(stderr, "Unknown control message from handshaker: %c\n", msg); |
|
return false; |
|
} |
|
|
|
int wstatus; |
|
if (!handshaker.Wait(&wstatus)) { |
|
perror("waitpid"); |
|
return false; |
|
} |
|
if (wstatus) { |
|
fprintf(stderr, "handshaker exited irregularly\n"); |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
// PrepareHandoff accepts the |ClientHello| from |ssl| and serializes state to |
|
// be passed to the handshaker. The serialized state includes both the SSL |
|
// handoff, as well test-related state. |
|
static bool PrepareHandoff(SSL *ssl, SettingsWriter *writer, |
|
std::vector<uint8_t> *out_handoff) { |
|
SSL_set_handoff_mode(ssl, 1); |
|
|
|
const TestConfig *config = GetTestConfig(ssl); |
|
int ret = -1; |
|
do { |
|
ret = CheckIdempotentError( |
|
"SSL_do_handshake", ssl, |
|
[&]() -> int { return SSL_do_handshake(ssl); }); |
|
} while (!HandoffReady(ssl, ret) && |
|
config->async && |
|
RetryAsync(ssl, ret)); |
|
if (!HandoffReady(ssl, ret)) { |
|
fprintf(stderr, "Handshake failed while waiting for handoff.\n"); |
|
return false; |
|
} |
|
|
|
ScopedCBB cbb; |
|
SSL_CLIENT_HELLO hello; |
|
if (!CBB_init(cbb.get(), 512) || |
|
!SSL_serialize_handoff(ssl, cbb.get(), &hello) || |
|
!writer->WriteHandoff({CBB_data(cbb.get()), CBB_len(cbb.get())}) || |
|
!SerializeContextState(SSL_get_SSL_CTX(ssl), cbb.get()) || |
|
!GetTestState(ssl)->Serialize(cbb.get())) { |
|
fprintf(stderr, "Handoff serialisation failed.\n"); |
|
return false; |
|
} |
|
out_handoff->assign(CBB_data(cbb.get()), |
|
CBB_data(cbb.get()) + CBB_len(cbb.get())); |
|
return true; |
|
} |
|
|
|
// DoSplitHandshake delegates the SSL handshake to a separate process, called |
|
// the handshaker. This process proxies I/O between the handshaker and the |
|
// client, using the |BIO| from |ssl|. After a successful handshake, |ssl| is |
|
// replaced with a new |SSL| object, in a way that is intended to be invisible |
|
// to the caller. |
|
bool DoSplitHandshake(UniquePtr<SSL> *ssl, SettingsWriter *writer, |
|
bool is_resume) { |
|
assert(SSL_get_rbio(ssl->get()) == SSL_get_wbio(ssl->get())); |
|
std::vector<uint8_t> handshaker_input; |
|
const TestConfig *config = GetTestConfig(ssl->get()); |
|
// out is the response from the handshaker, which includes a serialized |
|
// handback message, but also serialized updates to the |TestState|. |
|
std::vector<uint8_t> out; |
|
if (!PrepareHandoff(ssl->get(), writer, &handshaker_input) || |
|
!RunHandshaker(SSL_get_rbio(ssl->get()), config, is_resume, |
|
handshaker_input, &out)) { |
|
fprintf(stderr, "Handoff failed.\n"); |
|
return false; |
|
} |
|
|
|
SSL_CTX *ctx = SSL_get_SSL_CTX(ssl->get()); |
|
UniquePtr<SSL> ssl_handback = config->NewSSL(ctx, nullptr, nullptr); |
|
if (!ssl_handback) { |
|
return false; |
|
} |
|
CBS output, handback; |
|
CBS_init(&output, out.data(), out.size()); |
|
if (!CBS_get_u24_length_prefixed(&output, &handback) || |
|
!DeserializeContextState(&output, ctx) || |
|
!SetTestState(ssl_handback.get(), TestState::Deserialize(&output, ctx)) || |
|
!GetTestState(ssl_handback.get()) || !writer->WriteHandback(handback) || |
|
!SSL_apply_handback(ssl_handback.get(), handback)) { |
|
fprintf(stderr, "Handback failed.\n"); |
|
return false; |
|
} |
|
MoveBIOs(ssl_handback.get(), ssl->get()); |
|
GetTestState(ssl_handback.get())->async_bio = |
|
GetTestState(ssl->get())->async_bio; |
|
GetTestState(ssl->get())->async_bio = nullptr; |
|
|
|
*ssl = std::move(ssl_handback); |
|
return true; |
|
} |
|
|
|
bool GetHandshakeHint(SSL *ssl, SettingsWriter *writer, bool is_resume, |
|
const SSL_CLIENT_HELLO *client_hello) { |
|
ScopedCBB input; |
|
CBB child; |
|
if (!CBB_init(input.get(), client_hello->client_hello_len + 256) || |
|
!CBB_add_u24_length_prefixed(input.get(), &child) || |
|
!CBB_add_bytes(&child, client_hello->client_hello, |
|
client_hello->client_hello_len) || |
|
!CBB_add_u24_length_prefixed(input.get(), &child) || |
|
!SSL_serialize_capabilities(ssl, &child) || // |
|
!CBB_flush(input.get())) { |
|
return false; |
|
} |
|
|
|
bool has_hints; |
|
std::vector<uint8_t> hints; |
|
if (!RequestHandshakeHint( |
|
GetTestConfig(ssl), is_resume, |
|
MakeConstSpan(CBB_data(input.get()), CBB_len(input.get())), |
|
&has_hints, &hints)) { |
|
return false; |
|
} |
|
if (has_hints && |
|
(!writer->WriteHints(hints) || |
|
!SSL_set_handshake_hints(ssl, hints.data(), hints.size()))) { |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
#endif // defined(HANDSHAKER_SUPPORTED)
|
|
|