Mirror of BoringSSL (grpc依赖) https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

717 lines
21 KiB

/* Copyright (c) 2018, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include "handshake_util.h"
#include <assert.h>
#if defined(HANDSHAKER_SUPPORTED)
#include <errno.h>
#include <fcntl.h>
#include <spawn.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#endif
#include <functional>
#include <map>
#include <vector>
#include "async_bio.h"
#include "packeted_bio.h"
#include "test_config.h"
#include "test_state.h"
#include <openssl/bytestring.h>
#include <openssl/ssl.h>
using namespace bssl;
bool RetryAsync(SSL *ssl, int ret) {
const TestConfig *config = GetTestConfig(ssl);
TestState *test_state = GetTestState(ssl);
if (ret >= 0) {
return false;
}
int ssl_err = SSL_get_error(ssl, ret);
if (ssl_err == SSL_ERROR_WANT_RENEGOTIATE && config->renegotiate_explicit) {
test_state->explicit_renegotiates++;
return SSL_renegotiate(ssl);
}
if (test_state->quic_transport && ssl_err == SSL_ERROR_WANT_READ) {
return test_state->quic_transport->ReadHandshake();
}
if (!config->async) {
// Only asynchronous tests should trigger other retries.
return false;
}
if (test_state->packeted_bio != nullptr &&
PacketedBioAdvanceClock(test_state->packeted_bio)) {
// The DTLS retransmit logic silently ignores write failures. So the test
// may progress, allow writes through synchronously.
AsyncBioEnforceWriteQuota(test_state->async_bio, false);
int timeout_ret = DTLSv1_handle_timeout(ssl);
AsyncBioEnforceWriteQuota(test_state->async_bio, true);
if (timeout_ret < 0) {
fprintf(stderr, "Error retransmitting.\n");
return false;
}
return true;
}
// See if we needed to read or write more. If so, allow one byte through on
// the appropriate end to maximally stress the state machine.
switch (ssl_err) {
case SSL_ERROR_WANT_READ:
AsyncBioAllowRead(test_state->async_bio, 1);
return true;
case SSL_ERROR_WANT_WRITE:
AsyncBioAllowWrite(test_state->async_bio, 1);
return true;
case SSL_ERROR_WANT_X509_LOOKUP:
test_state->cert_ready = true;
return true;
case SSL_ERROR_PENDING_SESSION:
test_state->session = std::move(test_state->pending_session);
return true;
case SSL_ERROR_PENDING_CERTIFICATE:
test_state->early_callback_ready = true;
return true;
case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION:
test_state->private_key_retries++;
return true;
case SSL_ERROR_WANT_CERTIFICATE_VERIFY:
test_state->custom_verify_ready = true;
return true;
default:
return false;
}
}
int CheckIdempotentError(const char *name, SSL *ssl,
std::function<int()> func) {
int ret = func();
int ssl_err = SSL_get_error(ssl, ret);
uint32_t err = ERR_peek_error();
if (ssl_err == SSL_ERROR_SSL || ssl_err == SSL_ERROR_ZERO_RETURN) {
int ret2 = func();
int ssl_err2 = SSL_get_error(ssl, ret2);
uint32_t err2 = ERR_peek_error();
if (ret != ret2 || ssl_err != ssl_err2 || err != err2) {
fprintf(stderr, "Repeating %s did not replay the error.\n", name);
char buf[256];
ERR_error_string_n(err, buf, sizeof(buf));
fprintf(stderr, "Wanted: %d %d %s\n", ret, ssl_err, buf);
ERR_error_string_n(err2, buf, sizeof(buf));
fprintf(stderr, "Got: %d %d %s\n", ret2, ssl_err2, buf);
// runner treats exit code 90 as always failing. Otherwise, it may
// accidentally consider the result an expected protocol failure.
exit(90);
}
}
return ret;
}
#if defined(HANDSHAKER_SUPPORTED)
// MoveBIOs moves the |BIO|s of |src| to |dst|. It is used for handoff.
static void MoveBIOs(SSL *dest, SSL *src) {
BIO *rbio = SSL_get_rbio(src);
BIO_up_ref(rbio);
SSL_set0_rbio(dest, rbio);
BIO *wbio = SSL_get_wbio(src);
BIO_up_ref(wbio);
SSL_set0_wbio(dest, wbio);
SSL_set0_rbio(src, nullptr);
SSL_set0_wbio(src, nullptr);
}
static bool HandoffReady(SSL *ssl, int ret) {
return ret < 0 && SSL_get_error(ssl, ret) == SSL_ERROR_HANDOFF;
}
static ssize_t read_eintr(int fd, void *out, size_t len) {
ssize_t ret;
do {
ret = read(fd, out, len);
} while (ret < 0 && errno == EINTR);
return ret;
}
static ssize_t write_eintr(int fd, const void *in, size_t len) {
ssize_t ret;
do {
ret = write(fd, in, len);
} while (ret < 0 && errno == EINTR);
return ret;
}
static ssize_t waitpid_eintr(pid_t pid, int *wstatus, int options) {
pid_t ret;
do {
ret = waitpid(pid, wstatus, options);
} while (ret < 0 && errno == EINTR);
return ret;
}
// Proxy relays data between |socket|, which is connected to the client, and the
// handshaker, which is connected to the numerically specified file descriptors,
// until the handshaker returns control.
static bool Proxy(BIO *socket, bool async, int control, int rfd, int wfd) {
for (;;) {
fd_set rfds;
FD_ZERO(&rfds);
FD_SET(wfd, &rfds);
FD_SET(control, &rfds);
int fd_max = wfd > control ? wfd : control;
if (select(fd_max + 1, &rfds, nullptr, nullptr, nullptr) == -1) {
perror("select");
return false;
}
char buf[64];
ssize_t bytes;
if (FD_ISSET(wfd, &rfds) &&
(bytes = read_eintr(wfd, buf, sizeof(buf))) > 0) {
char *b = buf;
while (bytes) {
int written = BIO_write(socket, b, bytes);
if (!written) {
fprintf(stderr, "BIO_write wrote nothing\n");
return false;
}
if (written < 0) {
if (async) {
AsyncBioAllowWrite(socket, 1);
continue;
}
fprintf(stderr, "BIO_write failed\n");
return false;
}
b += written;
bytes -= written;
}
// Flush all pending data from the handshaker to the client before
// considering control messages.
continue;
}
if (!FD_ISSET(control, &rfds)) {
continue;
}
char msg;
if (read_eintr(control, &msg, 1) != 1) {
perror("read");
return false;
}
switch (msg) {
case kControlMsgDone:
return true;
case kControlMsgError:
return false;
case kControlMsgWantRead:
break;
default:
fprintf(stderr, "Unknown control message from handshaker: %c\n", msg);
return false;
}
auto proxy_data = [&](uint8_t *out, size_t len) -> bool {
if (async) {
AsyncBioAllowRead(socket, len);
}
while (len > 0) {
int bytes_read = BIO_read(socket, out, len);
if (bytes_read < 1) {
fprintf(stderr, "BIO_read failed\n");
return false;
}
ssize_t bytes_written = write_eintr(rfd, out, bytes_read);
if (bytes_written == -1) {
perror("write");
return false;
}
if (bytes_written != bytes_read) {
fprintf(stderr, "short write (%zd of %d bytes)\n", bytes_written,
bytes_read);
return false;
}
len -= bytes_read;
out += bytes_read;
}
return true;
};
// Process one SSL record at a time. That way, we don't send the handshaker
// anything it doesn't want to process, e.g. early data.
uint8_t header[SSL3_RT_HEADER_LENGTH];
if (!proxy_data(header, sizeof(header))) {
return false;
}
if (header[1] != 3) {
fprintf(stderr, "bad header\n");
return false;
}
size_t remaining = (header[3] << 8) + header[4];
while (remaining > 0) {
uint8_t readbuf[64];
size_t len = remaining > sizeof(readbuf) ? sizeof(readbuf) : remaining;
if (!proxy_data(readbuf, len)) {
return false;
}
remaining -= len;
}
// The handshaker blocks on the control channel, so we have to signal
// it that the data have been written.
msg = kControlMsgWriteCompleted;
if (write_eintr(control, &msg, 1) != 1) {
perror("write");
return false;
}
}
}
class ScopedFD {
public:
ScopedFD() : fd_(-1) {}
explicit ScopedFD(int fd) : fd_(fd) {}
~ScopedFD() { Reset(); }
ScopedFD(ScopedFD &&other) { *this = std::move(other); }
ScopedFD &operator=(ScopedFD &&other) {
Reset(other.fd_);
other.fd_ = -1;
return *this;
}
int fd() const { return fd_; }
void Reset(int fd = -1) {
if (fd_ >= 0) {
close(fd_);
}
fd_ = fd;
}
private:
int fd_;
};
class ScopedProcess {
public:
ScopedProcess() : pid_(-1) {}
~ScopedProcess() { Reset(); }
ScopedProcess(ScopedProcess &&other) { *this = std::move(other); }
ScopedProcess &operator=(ScopedProcess &&other) {
Reset(other.pid_);
other.pid_ = -1;
return *this;
}
pid_t pid() const { return pid_; }
void Reset(pid_t pid = -1) {
if (pid_ >= 0) {
kill(pid_, SIGTERM);
int unused;
Wait(&unused);
}
pid_ = pid;
}
bool Wait(int *out_status) {
if (pid_ < 0) {
return false;
}
if (waitpid_eintr(pid_, out_status, 0) != pid_) {
return false;
}
pid_ = -1;
return true;
}
private:
pid_t pid_;
};
class FileActionsDestroyer {
public:
explicit FileActionsDestroyer(posix_spawn_file_actions_t *actions)
: actions_(actions) {}
~FileActionsDestroyer() { posix_spawn_file_actions_destroy(actions_); }
FileActionsDestroyer(const FileActionsDestroyer &) = delete;
FileActionsDestroyer &operator=(const FileActionsDestroyer &) = delete;
private:
posix_spawn_file_actions_t *actions_;
};
// StartHandshaker starts the handshaker process and, on success, returns a
// handle to the process in |*out|. It sets |*out_control| to a control pipe to
// the process. |map_fds| maps from desired fd number in the child process to
// the source fd in the calling process. |close_fds| is the list of additional
// fds to close, which may overlap with |map_fds|. Other than stdin, stdout, and
// stderr, the status of fds not listed in either set is undefined.
static bool StartHandshaker(ScopedProcess *out, ScopedFD *out_control,
const TestConfig *config, bool is_resume,
std::map<int, int> map_fds,
std::vector<int> close_fds) {
if (config->handshaker_path.empty()) {
fprintf(stderr, "no -handshaker-path specified\n");
return false;
}
struct stat dummy;
if (stat(config->handshaker_path.c_str(), &dummy) == -1) {
perror(config->handshaker_path.c_str());
return false;
}
std::vector<const char *> args;
args.push_back(config->handshaker_path.c_str());
static const char kResumeFlag[] = "-handshaker-resume";
if (is_resume) {
args.push_back(kResumeFlag);
}
// config->handshaker_args omits argv[0].
for (const char *arg : config->handshaker_args) {
args.push_back(arg);
}
args.push_back(nullptr);
// A datagram socket guarantees that writes are all-or-nothing.
int control[2];
if (socketpair(AF_LOCAL, SOCK_DGRAM, 0, control) != 0) {
perror("socketpair");
return false;
}
ScopedFD scoped_control0(control[0]), scoped_control1(control[1]);
close_fds.push_back(control[0]);
map_fds[kFdControl] = control[1];
posix_spawn_file_actions_t actions;
if (posix_spawn_file_actions_init(&actions) != 0) {
return false;
}
FileActionsDestroyer actions_destroyer(&actions);
for (int fd : close_fds) {
if (posix_spawn_file_actions_addclose(&actions, fd) != 0) {
return false;
}
}
if (!map_fds.empty()) {
int max_fd = STDERR_FILENO;
for (const auto &pair : map_fds) {
max_fd = std::max(max_fd, pair.first);
max_fd = std::max(max_fd, pair.second);
}
// |map_fds| may contain cycles, so make a copy of all the source fds.
// |posix_spawn| can only use |dup2|, not |dup|, so we assume |max_fd| is
// the last fd we care about inheriting. |temp_fds| maps from fd number in
// the parent process to a temporary fd number in the child process.
std::map<int, int> temp_fds;
int next_fd = max_fd + 1;
for (const auto &pair : map_fds) {
if (temp_fds.count(pair.second)) {
continue;
}
temp_fds[pair.second] = next_fd;
if (posix_spawn_file_actions_adddup2(&actions, pair.second, next_fd) !=
0 ||
posix_spawn_file_actions_addclose(&actions, pair.second) != 0) {
return false;
}
next_fd++;
}
for (const auto &pair : map_fds) {
if (posix_spawn_file_actions_adddup2(&actions, temp_fds[pair.second],
pair.first) != 0) {
return false;
}
}
// Clean up temporary fds.
for (int fd = max_fd + 1; fd < next_fd; fd++) {
if (posix_spawn_file_actions_addclose(&actions, fd) != 0) {
return false;
}
}
}
fflush(stdout);
fflush(stderr);
// MSan doesn't know that |posix_spawn| initializes its output, so initialize
// it to -1.
pid_t pid = -1;
if (posix_spawn(&pid, args[0], &actions, nullptr,
const_cast<char *const *>(args.data()), environ) != 0) {
return false;
}
out->Reset(pid);
*out_control = std::move(scoped_control0);
return true;
}
// RunHandshaker forks and execs the handshaker binary, handing off |input|,
// and, after proxying some amount of handshake traffic, handing back |out|.
static bool RunHandshaker(BIO *bio, const TestConfig *config, bool is_resume,
Span<const uint8_t> input,
std::vector<uint8_t> *out) {
int rfd[2], wfd[2];
// We use pipes, rather than some other mechanism, for their buffers. During
// the handshake, this process acts as a dumb proxy until receiving the
// handback signal, which arrives asynchronously. The race condition means
// that this process could incorrectly proxy post-handshake data from the
// client to the handshaker.
//
// To avoid this, this process never proxies data to the handshaker that the
// handshaker has not explicitly requested as a result of hitting
// |SSL_ERROR_WANT_READ|. Pipes allow the data to sit in a buffer while the
// two processes synchronize over the |control| channel.
if (pipe(rfd) != 0) {
perror("pipe");
return false;
}
ScopedFD rfd0_closer(rfd[0]), rfd1_closer(rfd[1]);
if (pipe(wfd) != 0) {
perror("pipe");
return false;
}
ScopedFD wfd0_closer(wfd[0]), wfd1_closer(wfd[1]);
ScopedProcess handshaker;
ScopedFD control;
if (!StartHandshaker(
&handshaker, &control, config, is_resume,
{{kFdProxyToHandshaker, rfd[0]}, {kFdHandshakerToProxy, wfd[1]}},
{rfd[1], wfd[0]})) {
return false;
}
rfd0_closer.Reset();
wfd1_closer.Reset();
if (write_eintr(control.fd(), input.data(), input.size()) == -1) {
perror("write");
return false;
}
bool ok = Proxy(bio, config->async, control.fd(), rfd[1], wfd[0]);
int wstatus;
if (!handshaker.Wait(&wstatus)) {
perror("waitpid");
return false;
}
if (ok && wstatus) {
fprintf(stderr, "handshaker exited irregularly\n");
return false;
}
if (!ok) {
return false; // This is a "good", i.e. expected, error.
}
constexpr size_t kBufSize = 1024 * 1024;
std::vector<uint8_t> buf(kBufSize);
ssize_t len = read_eintr(control.fd(), buf.data(), buf.size());
if (len == -1) {
perror("read");
return false;
}
buf.resize(len);
*out = std::move(buf);
return true;
}
static bool RequestHandshakeHint(const TestConfig *config, bool is_resume,
Span<const uint8_t> input, bool *out_has_hints,
std::vector<uint8_t> *out_hints) {
ScopedProcess handshaker;
ScopedFD control;
if (!StartHandshaker(&handshaker, &control, config, is_resume, {}, {})) {
return false;
}
if (write_eintr(control.fd(), input.data(), input.size()) == -1) {
perror("write");
return false;
}
char msg;
if (read_eintr(control.fd(), &msg, 1) != 1) {
perror("read");
return false;
}
switch (msg) {
case kControlMsgDone: {
constexpr size_t kBufSize = 1024 * 1024;
out_hints->resize(kBufSize);
ssize_t len =
read_eintr(control.fd(), out_hints->data(), out_hints->size());
if (len == -1) {
perror("read");
return false;
}
out_hints->resize(len);
*out_has_hints = true;
break;
}
case kControlMsgError:
*out_has_hints = false;
break;
default:
fprintf(stderr, "Unknown control message from handshaker: %c\n", msg);
return false;
}
int wstatus;
if (!handshaker.Wait(&wstatus)) {
perror("waitpid");
return false;
}
if (wstatus) {
fprintf(stderr, "handshaker exited irregularly\n");
return false;
}
return true;
}
// PrepareHandoff accepts the |ClientHello| from |ssl| and serializes state to
// be passed to the handshaker. The serialized state includes both the SSL
// handoff, as well test-related state.
static bool PrepareHandoff(SSL *ssl, SettingsWriter *writer,
std::vector<uint8_t> *out_handoff) {
SSL_set_handoff_mode(ssl, 1);
const TestConfig *config = GetTestConfig(ssl);
int ret = -1;
do {
ret = CheckIdempotentError(
"SSL_do_handshake", ssl,
[&]() -> int { return SSL_do_handshake(ssl); });
} while (!HandoffReady(ssl, ret) &&
config->async &&
RetryAsync(ssl, ret));
if (!HandoffReady(ssl, ret)) {
fprintf(stderr, "Handshake failed while waiting for handoff.\n");
return false;
}
ScopedCBB cbb;
SSL_CLIENT_HELLO hello;
if (!CBB_init(cbb.get(), 512) ||
!SSL_serialize_handoff(ssl, cbb.get(), &hello) ||
!writer->WriteHandoff({CBB_data(cbb.get()), CBB_len(cbb.get())}) ||
!SerializeContextState(SSL_get_SSL_CTX(ssl), cbb.get()) ||
!GetTestState(ssl)->Serialize(cbb.get())) {
fprintf(stderr, "Handoff serialisation failed.\n");
return false;
}
out_handoff->assign(CBB_data(cbb.get()),
CBB_data(cbb.get()) + CBB_len(cbb.get()));
return true;
}
// DoSplitHandshake delegates the SSL handshake to a separate process, called
// the handshaker. This process proxies I/O between the handshaker and the
// client, using the |BIO| from |ssl|. After a successful handshake, |ssl| is
// replaced with a new |SSL| object, in a way that is intended to be invisible
// to the caller.
bool DoSplitHandshake(UniquePtr<SSL> *ssl, SettingsWriter *writer,
bool is_resume) {
assert(SSL_get_rbio(ssl->get()) == SSL_get_wbio(ssl->get()));
std::vector<uint8_t> handshaker_input;
const TestConfig *config = GetTestConfig(ssl->get());
// out is the response from the handshaker, which includes a serialized
// handback message, but also serialized updates to the |TestState|.
std::vector<uint8_t> out;
if (!PrepareHandoff(ssl->get(), writer, &handshaker_input) ||
!RunHandshaker(SSL_get_rbio(ssl->get()), config, is_resume,
handshaker_input, &out)) {
fprintf(stderr, "Handoff failed.\n");
return false;
}
SSL_CTX *ctx = SSL_get_SSL_CTX(ssl->get());
UniquePtr<SSL> ssl_handback = config->NewSSL(ctx, nullptr, nullptr);
if (!ssl_handback) {
return false;
}
CBS output, handback;
CBS_init(&output, out.data(), out.size());
if (!CBS_get_u24_length_prefixed(&output, &handback) ||
!DeserializeContextState(&output, ctx) ||
!SetTestState(ssl_handback.get(), TestState::Deserialize(&output, ctx)) ||
!GetTestState(ssl_handback.get()) || !writer->WriteHandback(handback) ||
!SSL_apply_handback(ssl_handback.get(), handback)) {
fprintf(stderr, "Handback failed.\n");
return false;
}
MoveBIOs(ssl_handback.get(), ssl->get());
GetTestState(ssl_handback.get())->async_bio =
GetTestState(ssl->get())->async_bio;
GetTestState(ssl->get())->async_bio = nullptr;
*ssl = std::move(ssl_handback);
return true;
}
bool GetHandshakeHint(SSL *ssl, SettingsWriter *writer, bool is_resume,
const SSL_CLIENT_HELLO *client_hello) {
ScopedCBB input;
CBB child;
if (!CBB_init(input.get(), client_hello->client_hello_len + 256) ||
!CBB_add_u24_length_prefixed(input.get(), &child) ||
!CBB_add_bytes(&child, client_hello->client_hello,
client_hello->client_hello_len) ||
!CBB_add_u24_length_prefixed(input.get(), &child) ||
!SSL_serialize_capabilities(ssl, &child) || //
!CBB_flush(input.get())) {
return false;
}
bool has_hints;
std::vector<uint8_t> hints;
if (!RequestHandshakeHint(
GetTestConfig(ssl), is_resume,
MakeConstSpan(CBB_data(input.get()), CBB_len(input.get())),
&has_hints, &hints)) {
return false;
}
if (has_hints &&
(!writer->WriteHints(hints) ||
!SSL_set_handshake_hints(ssl, hints.data(), hints.size()))) {
return false;
}
return true;
}
#endif // defined(HANDSHAKER_SUPPORTED)