Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1268 lines
51 KiB
1268 lines
51 KiB
/* Copyright (c) 2014, Google Inc. |
|
* |
|
* Permission to use, copy, modify, and/or distribute this software for any |
|
* purpose with or without fee is hereby granted, provided that the above |
|
* copyright notice and this permission notice appear in all copies. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
|
|
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
#include <vector> |
|
|
|
#include <gtest/gtest.h> |
|
|
|
#include <openssl/bn.h> |
|
#include <openssl/bytestring.h> |
|
#include <openssl/crypto.h> |
|
#include <openssl/ec_key.h> |
|
#include <openssl/err.h> |
|
#include <openssl/mem.h> |
|
#include <openssl/nid.h> |
|
#include <openssl/obj.h> |
|
#include <openssl/span.h> |
|
|
|
#include "../../ec_extra/internal.h" |
|
#include "../../test/file_test.h" |
|
#include "../../test/test_util.h" |
|
#include "../bn/internal.h" |
|
#include "internal.h" |
|
|
|
|
|
// kECKeyWithoutPublic is an ECPrivateKey with the optional publicKey field |
|
// omitted. |
|
static const uint8_t kECKeyWithoutPublic[] = { |
|
0x30, 0x31, 0x02, 0x01, 0x01, 0x04, 0x20, 0xc6, 0xc1, 0xaa, 0xda, 0x15, 0xb0, |
|
0x76, 0x61, 0xf8, 0x14, 0x2c, 0x6c, 0xaf, 0x0f, 0xdb, 0x24, 0x1a, 0xff, 0x2e, |
|
0xfe, 0x46, 0xc0, 0x93, 0x8b, 0x74, 0xf2, 0xbc, 0xc5, 0x30, 0x52, 0xb0, 0x77, |
|
0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, |
|
}; |
|
|
|
// kECKeySpecifiedCurve is the above key with P-256's parameters explicitly |
|
// spelled out rather than using a named curve. |
|
static const uint8_t kECKeySpecifiedCurve[] = { |
|
0x30, 0x82, 0x01, 0x22, 0x02, 0x01, 0x01, 0x04, 0x20, 0xc6, 0xc1, 0xaa, |
|
0xda, 0x15, 0xb0, 0x76, 0x61, 0xf8, 0x14, 0x2c, 0x6c, 0xaf, 0x0f, 0xdb, |
|
0x24, 0x1a, 0xff, 0x2e, 0xfe, 0x46, 0xc0, 0x93, 0x8b, 0x74, 0xf2, 0xbc, |
|
0xc5, 0x30, 0x52, 0xb0, 0x77, 0xa0, 0x81, 0xfa, 0x30, 0x81, 0xf7, 0x02, |
|
0x01, 0x01, 0x30, 0x2c, 0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x01, |
|
0x01, 0x02, 0x21, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
|
0x30, 0x5b, 0x04, 0x20, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, |
|
0x04, 0x20, 0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb, |
|
0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, |
|
0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b, 0x03, 0x15, |
|
0x00, 0xc4, 0x9d, 0x36, 0x08, 0x86, 0xe7, 0x04, 0x93, 0x6a, 0x66, 0x78, |
|
0xe1, 0x13, 0x9d, 0x26, 0xb7, 0x81, 0x9f, 0x7e, 0x90, 0x04, 0x41, 0x04, |
|
0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, |
|
0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, |
|
0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2, |
|
0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, |
|
0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, |
|
0x37, 0xbf, 0x51, 0xf5, 0x02, 0x21, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, |
|
0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xbc, |
|
0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc, |
|
0x63, 0x25, 0x51, 0x02, 0x01, 0x01, |
|
}; |
|
|
|
// kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where |
|
// the private key is one. The private key is incorrectly encoded without zero |
|
// padding. |
|
static const uint8_t kECKeyMissingZeros[] = { |
|
0x30, 0x58, 0x02, 0x01, 0x01, 0x04, 0x01, 0x01, 0xa0, 0x0a, 0x06, 0x08, 0x2a, |
|
0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1, 0x44, 0x03, 0x42, 0x00, 0x04, |
|
0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, 0x63, |
|
0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1, |
|
0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, |
|
0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, |
|
0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, |
|
}; |
|
|
|
// kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where |
|
// the private key is one. The private key is encoded with the required zero |
|
// padding. |
|
static const uint8_t kECKeyWithZeros[] = { |
|
0x30, 0x77, 0x02, 0x01, 0x01, 0x04, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, |
|
0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1, |
|
0x44, 0x03, 0x42, 0x00, 0x04, 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, |
|
0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, |
|
0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, |
|
0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, |
|
0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, |
|
0x37, 0xbf, 0x51, 0xf5, |
|
}; |
|
|
|
// DecodeECPrivateKey decodes |in| as an ECPrivateKey structure and returns the |
|
// result or nullptr on error. |
|
static bssl::UniquePtr<EC_KEY> DecodeECPrivateKey(const uint8_t *in, |
|
size_t in_len) { |
|
CBS cbs; |
|
CBS_init(&cbs, in, in_len); |
|
bssl::UniquePtr<EC_KEY> ret(EC_KEY_parse_private_key(&cbs, NULL)); |
|
if (!ret || CBS_len(&cbs) != 0) { |
|
return nullptr; |
|
} |
|
return ret; |
|
} |
|
|
|
// EncodeECPrivateKey encodes |key| as an ECPrivateKey structure into |*out|. It |
|
// returns true on success or false on error. |
|
static bool EncodeECPrivateKey(std::vector<uint8_t> *out, const EC_KEY *key) { |
|
bssl::ScopedCBB cbb; |
|
uint8_t *der; |
|
size_t der_len; |
|
if (!CBB_init(cbb.get(), 0) || |
|
!EC_KEY_marshal_private_key(cbb.get(), key, EC_KEY_get_enc_flags(key)) || |
|
!CBB_finish(cbb.get(), &der, &der_len)) { |
|
return false; |
|
} |
|
out->assign(der, der + der_len); |
|
OPENSSL_free(der); |
|
return true; |
|
} |
|
|
|
static bool EncodeECPoint(std::vector<uint8_t> *out, const EC_GROUP *group, |
|
const EC_POINT *p, point_conversion_form_t form) { |
|
size_t len = EC_POINT_point2oct(group, p, form, nullptr, 0, nullptr); |
|
if (len == 0) { |
|
return false; |
|
} |
|
|
|
out->resize(len); |
|
len = EC_POINT_point2oct(group, p, form, out->data(), out->size(), nullptr); |
|
if (len != out->size()) { |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
TEST(ECTest, Encoding) { |
|
bssl::UniquePtr<EC_KEY> key = |
|
DecodeECPrivateKey(kECKeyWithoutPublic, sizeof(kECKeyWithoutPublic)); |
|
ASSERT_TRUE(key); |
|
|
|
// Test that the encoding round-trips. |
|
std::vector<uint8_t> out; |
|
ASSERT_TRUE(EncodeECPrivateKey(&out, key.get())); |
|
EXPECT_EQ(Bytes(kECKeyWithoutPublic), Bytes(out.data(), out.size())); |
|
|
|
const EC_POINT *pub_key = EC_KEY_get0_public_key(key.get()); |
|
ASSERT_TRUE(pub_key) << "Public key missing"; |
|
|
|
bssl::UniquePtr<BIGNUM> x(BN_new()); |
|
bssl::UniquePtr<BIGNUM> y(BN_new()); |
|
ASSERT_TRUE(x); |
|
ASSERT_TRUE(y); |
|
ASSERT_TRUE(EC_POINT_get_affine_coordinates_GFp( |
|
EC_KEY_get0_group(key.get()), pub_key, x.get(), y.get(), NULL)); |
|
bssl::UniquePtr<char> x_hex(BN_bn2hex(x.get())); |
|
bssl::UniquePtr<char> y_hex(BN_bn2hex(y.get())); |
|
ASSERT_TRUE(x_hex); |
|
ASSERT_TRUE(y_hex); |
|
|
|
EXPECT_STREQ( |
|
"c81561ecf2e54edefe6617db1c7a34a70744ddb261f269b83dacfcd2ade5a681", |
|
x_hex.get()); |
|
EXPECT_STREQ( |
|
"e0e2afa3f9b6abe4c698ef6495f1be49a3196c5056acb3763fe4507eec596e88", |
|
y_hex.get()); |
|
} |
|
|
|
TEST(ECTest, ZeroPadding) { |
|
// Check that the correct encoding round-trips. |
|
bssl::UniquePtr<EC_KEY> key = |
|
DecodeECPrivateKey(kECKeyWithZeros, sizeof(kECKeyWithZeros)); |
|
ASSERT_TRUE(key); |
|
std::vector<uint8_t> out; |
|
EXPECT_TRUE(EncodeECPrivateKey(&out, key.get())); |
|
EXPECT_EQ(Bytes(kECKeyWithZeros), Bytes(out.data(), out.size())); |
|
|
|
// Keys without leading zeros also parse, but they encode correctly. |
|
key = DecodeECPrivateKey(kECKeyMissingZeros, sizeof(kECKeyMissingZeros)); |
|
ASSERT_TRUE(key); |
|
EXPECT_TRUE(EncodeECPrivateKey(&out, key.get())); |
|
EXPECT_EQ(Bytes(kECKeyWithZeros), Bytes(out.data(), out.size())); |
|
} |
|
|
|
TEST(ECTest, SpecifiedCurve) { |
|
// Test keys with specified curves may be decoded. |
|
bssl::UniquePtr<EC_KEY> key = |
|
DecodeECPrivateKey(kECKeySpecifiedCurve, sizeof(kECKeySpecifiedCurve)); |
|
ASSERT_TRUE(key); |
|
|
|
// The group should have been interpreted as P-256. |
|
EXPECT_EQ(NID_X9_62_prime256v1, |
|
EC_GROUP_get_curve_name(EC_KEY_get0_group(key.get()))); |
|
|
|
// Encoding the key should still use named form. |
|
std::vector<uint8_t> out; |
|
EXPECT_TRUE(EncodeECPrivateKey(&out, key.get())); |
|
EXPECT_EQ(Bytes(kECKeyWithoutPublic), Bytes(out.data(), out.size())); |
|
} |
|
|
|
TEST(ECTest, ArbitraryCurve) { |
|
// Make a P-256 key and extract the affine coordinates. |
|
bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(NID_X9_62_prime256v1)); |
|
ASSERT_TRUE(key); |
|
ASSERT_TRUE(EC_KEY_generate_key(key.get())); |
|
|
|
// Make an arbitrary curve which is identical to P-256. |
|
static const uint8_t kP[] = { |
|
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, |
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
|
}; |
|
static const uint8_t kA[] = { |
|
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, |
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, |
|
}; |
|
static const uint8_t kB[] = { |
|
0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb, 0xbd, |
|
0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, |
|
0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b, |
|
}; |
|
static const uint8_t kX[] = { |
|
0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, |
|
0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, |
|
0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, |
|
}; |
|
static const uint8_t kY[] = { |
|
0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, |
|
0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, |
|
0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, |
|
}; |
|
static const uint8_t kOrder[] = { |
|
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, |
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17, |
|
0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc, 0x63, 0x25, 0x51, |
|
}; |
|
bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
|
ASSERT_TRUE(ctx); |
|
bssl::UniquePtr<BIGNUM> p(BN_bin2bn(kP, sizeof(kP), nullptr)); |
|
ASSERT_TRUE(p); |
|
bssl::UniquePtr<BIGNUM> a(BN_bin2bn(kA, sizeof(kA), nullptr)); |
|
ASSERT_TRUE(a); |
|
bssl::UniquePtr<BIGNUM> b(BN_bin2bn(kB, sizeof(kB), nullptr)); |
|
ASSERT_TRUE(b); |
|
bssl::UniquePtr<BIGNUM> gx(BN_bin2bn(kX, sizeof(kX), nullptr)); |
|
ASSERT_TRUE(gx); |
|
bssl::UniquePtr<BIGNUM> gy(BN_bin2bn(kY, sizeof(kY), nullptr)); |
|
ASSERT_TRUE(gy); |
|
bssl::UniquePtr<BIGNUM> order(BN_bin2bn(kOrder, sizeof(kOrder), nullptr)); |
|
ASSERT_TRUE(order); |
|
|
|
bssl::UniquePtr<EC_GROUP> group( |
|
EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get())); |
|
ASSERT_TRUE(group); |
|
bssl::UniquePtr<EC_POINT> generator(EC_POINT_new(group.get())); |
|
ASSERT_TRUE(generator); |
|
ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( |
|
group.get(), generator.get(), gx.get(), gy.get(), ctx.get())); |
|
ASSERT_TRUE(EC_GROUP_set_generator(group.get(), generator.get(), order.get(), |
|
BN_value_one())); |
|
|
|
// |group| should not have a curve name. |
|
EXPECT_EQ(NID_undef, EC_GROUP_get_curve_name(group.get())); |
|
|
|
// Copy |key| to |key2| using |group|. |
|
bssl::UniquePtr<EC_KEY> key2(EC_KEY_new()); |
|
ASSERT_TRUE(key2); |
|
bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group.get())); |
|
ASSERT_TRUE(point); |
|
bssl::UniquePtr<BIGNUM> x(BN_new()), y(BN_new()); |
|
ASSERT_TRUE(x); |
|
ASSERT_TRUE(EC_KEY_set_group(key2.get(), group.get())); |
|
ASSERT_TRUE( |
|
EC_KEY_set_private_key(key2.get(), EC_KEY_get0_private_key(key.get()))); |
|
ASSERT_TRUE(EC_POINT_get_affine_coordinates_GFp( |
|
EC_KEY_get0_group(key.get()), EC_KEY_get0_public_key(key.get()), x.get(), |
|
y.get(), nullptr)); |
|
ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp(group.get(), point.get(), |
|
x.get(), y.get(), nullptr)); |
|
ASSERT_TRUE(EC_KEY_set_public_key(key2.get(), point.get())); |
|
|
|
// The key must be valid according to the new group too. |
|
EXPECT_TRUE(EC_KEY_check_key(key2.get())); |
|
|
|
// Make a second instance of |group|. |
|
bssl::UniquePtr<EC_GROUP> group2( |
|
EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get())); |
|
ASSERT_TRUE(group2); |
|
bssl::UniquePtr<EC_POINT> generator2(EC_POINT_new(group2.get())); |
|
ASSERT_TRUE(generator2); |
|
ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( |
|
group2.get(), generator2.get(), gx.get(), gy.get(), ctx.get())); |
|
ASSERT_TRUE(EC_GROUP_set_generator(group2.get(), generator2.get(), |
|
order.get(), BN_value_one())); |
|
|
|
EXPECT_EQ(0, EC_GROUP_cmp(group.get(), group.get(), NULL)); |
|
EXPECT_EQ(0, EC_GROUP_cmp(group2.get(), group.get(), NULL)); |
|
|
|
// group3 uses the wrong generator. |
|
bssl::UniquePtr<EC_GROUP> group3( |
|
EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get())); |
|
ASSERT_TRUE(group3); |
|
bssl::UniquePtr<EC_POINT> generator3(EC_POINT_new(group3.get())); |
|
ASSERT_TRUE(generator3); |
|
ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( |
|
group3.get(), generator3.get(), x.get(), y.get(), ctx.get())); |
|
ASSERT_TRUE(EC_GROUP_set_generator(group3.get(), generator3.get(), |
|
order.get(), BN_value_one())); |
|
|
|
EXPECT_NE(0, EC_GROUP_cmp(group.get(), group3.get(), NULL)); |
|
|
|
#if !defined(BORINGSSL_SHARED_LIBRARY) |
|
// group4 has non-minimal components that do not fit in |EC_SCALAR| and the |
|
// future |EC_FELEM|. |
|
ASSERT_TRUE(bn_resize_words(p.get(), 32)); |
|
ASSERT_TRUE(bn_resize_words(a.get(), 32)); |
|
ASSERT_TRUE(bn_resize_words(b.get(), 32)); |
|
ASSERT_TRUE(bn_resize_words(gx.get(), 32)); |
|
ASSERT_TRUE(bn_resize_words(gy.get(), 32)); |
|
ASSERT_TRUE(bn_resize_words(order.get(), 32)); |
|
|
|
bssl::UniquePtr<EC_GROUP> group4( |
|
EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get())); |
|
ASSERT_TRUE(group4); |
|
bssl::UniquePtr<EC_POINT> generator4(EC_POINT_new(group4.get())); |
|
ASSERT_TRUE(generator4); |
|
ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( |
|
group4.get(), generator4.get(), gx.get(), gy.get(), ctx.get())); |
|
ASSERT_TRUE(EC_GROUP_set_generator(group4.get(), generator4.get(), |
|
order.get(), BN_value_one())); |
|
|
|
EXPECT_EQ(0, EC_GROUP_cmp(group.get(), group4.get(), NULL)); |
|
#endif |
|
|
|
// group5 is the same group, but the curve coefficients are passed in |
|
// unreduced and the caller does not pass in a |BN_CTX|. |
|
ASSERT_TRUE(BN_sub(a.get(), a.get(), p.get())); |
|
ASSERT_TRUE(BN_add(b.get(), b.get(), p.get())); |
|
bssl::UniquePtr<EC_GROUP> group5( |
|
EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), NULL)); |
|
ASSERT_TRUE(group5); |
|
bssl::UniquePtr<EC_POINT> generator5(EC_POINT_new(group5.get())); |
|
ASSERT_TRUE(generator5); |
|
ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp( |
|
group5.get(), generator5.get(), gx.get(), gy.get(), ctx.get())); |
|
ASSERT_TRUE(EC_GROUP_set_generator(group5.get(), generator5.get(), |
|
order.get(), BN_value_one())); |
|
|
|
EXPECT_EQ(0, EC_GROUP_cmp(group.get(), group.get(), NULL)); |
|
EXPECT_EQ(0, EC_GROUP_cmp(group5.get(), group.get(), NULL)); |
|
} |
|
|
|
TEST(ECTest, SetKeyWithoutGroup) { |
|
bssl::UniquePtr<EC_KEY> key(EC_KEY_new()); |
|
ASSERT_TRUE(key); |
|
|
|
// Private keys may not be configured without a group. |
|
EXPECT_FALSE(EC_KEY_set_private_key(key.get(), BN_value_one())); |
|
|
|
// Public keys may not be configured without a group. |
|
bssl::UniquePtr<EC_GROUP> group( |
|
EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); |
|
ASSERT_TRUE(group); |
|
EXPECT_FALSE( |
|
EC_KEY_set_public_key(key.get(), EC_GROUP_get0_generator(group.get()))); |
|
} |
|
|
|
TEST(ECTest, SetNULLKey) { |
|
bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(NID_X9_62_prime256v1)); |
|
ASSERT_TRUE(key); |
|
|
|
EXPECT_TRUE(EC_KEY_set_public_key( |
|
key.get(), EC_GROUP_get0_generator(EC_KEY_get0_group(key.get())))); |
|
EXPECT_TRUE(EC_KEY_get0_public_key(key.get())); |
|
|
|
// Setting a NULL public-key should clear the public-key and return zero, in |
|
// order to match OpenSSL behaviour exactly. |
|
EXPECT_FALSE(EC_KEY_set_public_key(key.get(), nullptr)); |
|
EXPECT_FALSE(EC_KEY_get0_public_key(key.get())); |
|
} |
|
|
|
TEST(ECTest, GroupMismatch) { |
|
bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(NID_secp384r1)); |
|
ASSERT_TRUE(key); |
|
bssl::UniquePtr<EC_GROUP> p256( |
|
EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); |
|
ASSERT_TRUE(p256); |
|
|
|
// Changing a key's group is invalid. |
|
EXPECT_FALSE(EC_KEY_set_group(key.get(), p256.get())); |
|
|
|
// Configuring a public key with the wrong group is invalid. |
|
EXPECT_FALSE( |
|
EC_KEY_set_public_key(key.get(), EC_GROUP_get0_generator(p256.get()))); |
|
} |
|
|
|
TEST(ECTest, EmptyKey) { |
|
bssl::UniquePtr<EC_KEY> key(EC_KEY_new()); |
|
ASSERT_TRUE(key); |
|
EXPECT_FALSE(EC_KEY_get0_group(key.get())); |
|
EXPECT_FALSE(EC_KEY_get0_public_key(key.get())); |
|
EXPECT_FALSE(EC_KEY_get0_private_key(key.get())); |
|
} |
|
|
|
static bssl::UniquePtr<BIGNUM> HexToBIGNUM(const char *hex) { |
|
BIGNUM *bn = nullptr; |
|
BN_hex2bn(&bn, hex); |
|
return bssl::UniquePtr<BIGNUM>(bn); |
|
} |
|
|
|
// Test that point arithmetic works with custom curves using an arbitrary |a|, |
|
// rather than -3, as is common (and more efficient). |
|
TEST(ECTest, BrainpoolP256r1) { |
|
static const char kP[] = |
|
"a9fb57dba1eea9bc3e660a909d838d726e3bf623d52620282013481d1f6e5377"; |
|
static const char kA[] = |
|
"7d5a0975fc2c3057eef67530417affe7fb8055c126dc5c6ce94a4b44f330b5d9"; |
|
static const char kB[] = |
|
"26dc5c6ce94a4b44f330b5d9bbd77cbf958416295cf7e1ce6bccdc18ff8c07b6"; |
|
static const char kX[] = |
|
"8bd2aeb9cb7e57cb2c4b482ffc81b7afb9de27e1e3bd23c23a4453bd9ace3262"; |
|
static const char kY[] = |
|
"547ef835c3dac4fd97f8461a14611dc9c27745132ded8e545c1d54c72f046997"; |
|
static const char kN[] = |
|
"a9fb57dba1eea9bc3e660a909d838d718c397aa3b561a6f7901e0e82974856a7"; |
|
static const char kD[] = |
|
"0da21d76fed40dd82ac3314cce91abb585b5c4246e902b238a839609ea1e7ce1"; |
|
static const char kQX[] = |
|
"3a55e0341cab50452fe27b8a87e4775dec7a9daca94b0d84ad1e9f85b53ea513"; |
|
static const char kQY[] = |
|
"40088146b33bbbe81b092b41146774b35dd478cf056437cfb35ef0df2d269339"; |
|
|
|
bssl::UniquePtr<BIGNUM> p = HexToBIGNUM(kP), a = HexToBIGNUM(kA), |
|
b = HexToBIGNUM(kB), x = HexToBIGNUM(kX), |
|
y = HexToBIGNUM(kY), n = HexToBIGNUM(kN), |
|
d = HexToBIGNUM(kD), qx = HexToBIGNUM(kQX), |
|
qy = HexToBIGNUM(kQY); |
|
ASSERT_TRUE(p && a && b && x && y && n && d && qx && qy); |
|
|
|
bssl::UniquePtr<EC_GROUP> group( |
|
EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), nullptr)); |
|
ASSERT_TRUE(group); |
|
bssl::UniquePtr<EC_POINT> g(EC_POINT_new(group.get())); |
|
ASSERT_TRUE(g); |
|
ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp(group.get(), g.get(), x.get(), |
|
y.get(), nullptr)); |
|
ASSERT_TRUE( |
|
EC_GROUP_set_generator(group.get(), g.get(), n.get(), BN_value_one())); |
|
|
|
bssl::UniquePtr<EC_POINT> q(EC_POINT_new(group.get())); |
|
ASSERT_TRUE(q); |
|
ASSERT_TRUE( |
|
EC_POINT_mul(group.get(), q.get(), d.get(), nullptr, nullptr, nullptr)); |
|
ASSERT_TRUE(EC_POINT_get_affine_coordinates_GFp(group.get(), q.get(), x.get(), |
|
y.get(), nullptr)); |
|
EXPECT_EQ(0, BN_cmp(x.get(), qx.get())); |
|
EXPECT_EQ(0, BN_cmp(y.get(), qy.get())); |
|
} |
|
|
|
class ECCurveTest : public testing::TestWithParam<EC_builtin_curve> { |
|
public: |
|
const EC_GROUP *group() const { return group_.get(); } |
|
|
|
void SetUp() override { |
|
group_.reset(EC_GROUP_new_by_curve_name(GetParam().nid)); |
|
ASSERT_TRUE(group_); |
|
} |
|
|
|
private: |
|
bssl::UniquePtr<EC_GROUP> group_; |
|
}; |
|
|
|
TEST_P(ECCurveTest, SetAffine) { |
|
// Generate an EC_KEY. |
|
bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(GetParam().nid)); |
|
ASSERT_TRUE(key); |
|
ASSERT_TRUE(EC_KEY_generate_key(key.get())); |
|
|
|
// Get the public key's coordinates. |
|
bssl::UniquePtr<BIGNUM> x(BN_new()); |
|
ASSERT_TRUE(x); |
|
bssl::UniquePtr<BIGNUM> y(BN_new()); |
|
ASSERT_TRUE(y); |
|
bssl::UniquePtr<BIGNUM> p(BN_new()); |
|
ASSERT_TRUE(p); |
|
EXPECT_TRUE(EC_POINT_get_affine_coordinates_GFp( |
|
group(), EC_KEY_get0_public_key(key.get()), x.get(), y.get(), nullptr)); |
|
EXPECT_TRUE( |
|
EC_GROUP_get_curve_GFp(group(), p.get(), nullptr, nullptr, nullptr)); |
|
|
|
// Points on the curve should be accepted. |
|
auto point = bssl::UniquePtr<EC_POINT>(EC_POINT_new(group())); |
|
ASSERT_TRUE(point); |
|
EXPECT_TRUE(EC_POINT_set_affine_coordinates_GFp(group(), point.get(), x.get(), |
|
y.get(), nullptr)); |
|
|
|
// Subtract one from |y| to make the point no longer on the curve. |
|
EXPECT_TRUE(BN_sub(y.get(), y.get(), BN_value_one())); |
|
|
|
// Points not on the curve should be rejected. |
|
bssl::UniquePtr<EC_POINT> invalid_point(EC_POINT_new(group())); |
|
ASSERT_TRUE(invalid_point); |
|
EXPECT_FALSE(EC_POINT_set_affine_coordinates_GFp(group(), invalid_point.get(), |
|
x.get(), y.get(), nullptr)); |
|
|
|
// Coordinates out of range should be rejected. |
|
EXPECT_TRUE(BN_add(y.get(), y.get(), BN_value_one())); |
|
EXPECT_TRUE(BN_add(y.get(), y.get(), p.get())); |
|
|
|
EXPECT_FALSE(EC_POINT_set_affine_coordinates_GFp(group(), invalid_point.get(), |
|
x.get(), y.get(), nullptr)); |
|
EXPECT_FALSE( |
|
EC_KEY_set_public_key_affine_coordinates(key.get(), x.get(), y.get())); |
|
} |
|
|
|
TEST_P(ECCurveTest, IsOnCurve) { |
|
bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(GetParam().nid)); |
|
ASSERT_TRUE(key); |
|
ASSERT_TRUE(EC_KEY_generate_key(key.get())); |
|
|
|
// The generated point is on the curve. |
|
EXPECT_TRUE(EC_POINT_is_on_curve(group(), EC_KEY_get0_public_key(key.get()), |
|
nullptr)); |
|
|
|
bssl::UniquePtr<EC_POINT> p(EC_POINT_new(group())); |
|
ASSERT_TRUE(p); |
|
ASSERT_TRUE(EC_POINT_copy(p.get(), EC_KEY_get0_public_key(key.get()))); |
|
|
|
// This should never happen outside of a bug, but |EC_POINT_is_on_curve| |
|
// rejects points not on the curve. |
|
OPENSSL_memset(&p->raw.X, 0, sizeof(p->raw.X)); |
|
EXPECT_FALSE(EC_POINT_is_on_curve(group(), p.get(), nullptr)); |
|
|
|
// The point at infinity is always on the curve. |
|
ASSERT_TRUE(EC_POINT_copy(p.get(), EC_KEY_get0_public_key(key.get()))); |
|
OPENSSL_memset(&p->raw.Z, 0, sizeof(p->raw.Z)); |
|
EXPECT_TRUE(EC_POINT_is_on_curve(group(), p.get(), nullptr)); |
|
} |
|
|
|
TEST_P(ECCurveTest, Compare) { |
|
bssl::UniquePtr<EC_KEY> key1(EC_KEY_new_by_curve_name(GetParam().nid)); |
|
ASSERT_TRUE(key1); |
|
ASSERT_TRUE(EC_KEY_generate_key(key1.get())); |
|
const EC_POINT *pub1 = EC_KEY_get0_public_key(key1.get()); |
|
|
|
bssl::UniquePtr<EC_KEY> key2(EC_KEY_new_by_curve_name(GetParam().nid)); |
|
ASSERT_TRUE(key2); |
|
ASSERT_TRUE(EC_KEY_generate_key(key2.get())); |
|
const EC_POINT *pub2 = EC_KEY_get0_public_key(key2.get()); |
|
|
|
// Two different points should not compare as equal. |
|
EXPECT_EQ(1, EC_POINT_cmp(group(), pub1, pub2, nullptr)); |
|
|
|
// Serialize |pub1| and parse it back out. This gives a point in affine |
|
// coordinates. |
|
std::vector<uint8_t> serialized; |
|
ASSERT_TRUE( |
|
EncodeECPoint(&serialized, group(), pub1, POINT_CONVERSION_UNCOMPRESSED)); |
|
bssl::UniquePtr<EC_POINT> p(EC_POINT_new(group())); |
|
ASSERT_TRUE(p); |
|
ASSERT_TRUE(EC_POINT_oct2point(group(), p.get(), serialized.data(), |
|
serialized.size(), nullptr)); |
|
|
|
// The points should be equal. |
|
EXPECT_EQ(0, EC_POINT_cmp(group(), p.get(), pub1, nullptr)); |
|
|
|
// Add something to the point. It no longer compares as equal. |
|
ASSERT_TRUE(EC_POINT_add(group(), p.get(), p.get(), pub2, nullptr)); |
|
EXPECT_EQ(1, EC_POINT_cmp(group(), p.get(), pub1, nullptr)); |
|
|
|
// Negate |pub2|. It should no longer compare as equal. This tests that we |
|
// check both x and y coordinate. |
|
bssl::UniquePtr<EC_POINT> q(EC_POINT_new(group())); |
|
ASSERT_TRUE(q); |
|
ASSERT_TRUE(EC_POINT_copy(q.get(), pub2)); |
|
ASSERT_TRUE(EC_POINT_invert(group(), q.get(), nullptr)); |
|
EXPECT_EQ(1, EC_POINT_cmp(group(), q.get(), pub2, nullptr)); |
|
|
|
// Return |p| to the original value. It should be equal to |pub1| again. |
|
ASSERT_TRUE(EC_POINT_add(group(), p.get(), p.get(), q.get(), nullptr)); |
|
EXPECT_EQ(0, EC_POINT_cmp(group(), p.get(), pub1, nullptr)); |
|
|
|
// Infinity compares as equal to itself, but not other points. |
|
bssl::UniquePtr<EC_POINT> inf1(EC_POINT_new(group())), |
|
inf2(EC_POINT_new(group())); |
|
ASSERT_TRUE(inf1); |
|
ASSERT_TRUE(EC_POINT_set_to_infinity(group(), inf1.get())); |
|
// |q| is currently -|pub2|. |
|
ASSERT_TRUE(EC_POINT_add(group(), inf2.get(), pub2, q.get(), nullptr)); |
|
EXPECT_EQ(0, EC_POINT_cmp(group(), inf1.get(), inf2.get(), nullptr)); |
|
EXPECT_EQ(1, EC_POINT_cmp(group(), inf1.get(), p.get(), nullptr)); |
|
} |
|
|
|
TEST_P(ECCurveTest, GenerateFIPS) { |
|
// Generate an EC_KEY. |
|
bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(GetParam().nid)); |
|
ASSERT_TRUE(key); |
|
ASSERT_TRUE(EC_KEY_generate_key_fips(key.get())); |
|
} |
|
|
|
TEST_P(ECCurveTest, AddingEqualPoints) { |
|
bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(GetParam().nid)); |
|
ASSERT_TRUE(key); |
|
ASSERT_TRUE(EC_KEY_generate_key(key.get())); |
|
|
|
bssl::UniquePtr<EC_POINT> p1(EC_POINT_new(group())); |
|
ASSERT_TRUE(p1); |
|
ASSERT_TRUE(EC_POINT_copy(p1.get(), EC_KEY_get0_public_key(key.get()))); |
|
|
|
bssl::UniquePtr<EC_POINT> p2(EC_POINT_new(group())); |
|
ASSERT_TRUE(p2); |
|
ASSERT_TRUE(EC_POINT_copy(p2.get(), EC_KEY_get0_public_key(key.get()))); |
|
|
|
bssl::UniquePtr<EC_POINT> double_p1(EC_POINT_new(group())); |
|
ASSERT_TRUE(double_p1); |
|
bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
|
ASSERT_TRUE(ctx); |
|
ASSERT_TRUE(EC_POINT_dbl(group(), double_p1.get(), p1.get(), ctx.get())); |
|
|
|
bssl::UniquePtr<EC_POINT> p1_plus_p2(EC_POINT_new(group())); |
|
ASSERT_TRUE(p1_plus_p2); |
|
ASSERT_TRUE( |
|
EC_POINT_add(group(), p1_plus_p2.get(), p1.get(), p2.get(), ctx.get())); |
|
|
|
EXPECT_EQ(0, |
|
EC_POINT_cmp(group(), double_p1.get(), p1_plus_p2.get(), ctx.get())) |
|
<< "A+A != 2A"; |
|
} |
|
|
|
TEST_P(ECCurveTest, MulZero) { |
|
bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group())); |
|
ASSERT_TRUE(point); |
|
bssl::UniquePtr<BIGNUM> zero(BN_new()); |
|
ASSERT_TRUE(zero); |
|
BN_zero(zero.get()); |
|
ASSERT_TRUE(EC_POINT_mul(group(), point.get(), zero.get(), nullptr, nullptr, |
|
nullptr)); |
|
|
|
EXPECT_TRUE(EC_POINT_is_at_infinity(group(), point.get())) |
|
<< "g * 0 did not return point at infinity."; |
|
|
|
// Test that zero times an arbitrary point is also infinity. The generator is |
|
// used as the arbitrary point. |
|
bssl::UniquePtr<EC_POINT> generator(EC_POINT_new(group())); |
|
ASSERT_TRUE(generator); |
|
ASSERT_TRUE(EC_POINT_mul(group(), generator.get(), BN_value_one(), nullptr, |
|
nullptr, nullptr)); |
|
ASSERT_TRUE(EC_POINT_mul(group(), point.get(), nullptr, generator.get(), |
|
zero.get(), nullptr)); |
|
|
|
EXPECT_TRUE(EC_POINT_is_at_infinity(group(), point.get())) |
|
<< "p * 0 did not return point at infinity."; |
|
} |
|
|
|
// Test that multiplying by the order produces ∞ and, moreover, that callers may |
|
// do so. |EC_POINT_mul| is almost exclusively used with reduced scalars, with |
|
// this exception. This comes from consumers following NIST SP 800-56A section |
|
// 5.6.2.3.2. (Though all our curves have cofactor one, so this check isn't |
|
// useful.) |
|
TEST_P(ECCurveTest, MulOrder) { |
|
// Test that g × order = ∞. |
|
bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group())); |
|
ASSERT_TRUE(point); |
|
ASSERT_TRUE(EC_POINT_mul(group(), point.get(), EC_GROUP_get0_order(group()), |
|
nullptr, nullptr, nullptr)); |
|
|
|
EXPECT_TRUE(EC_POINT_is_at_infinity(group(), point.get())) |
|
<< "g * order did not return point at infinity."; |
|
|
|
// Test that p × order = ∞, for some arbitrary p. |
|
bssl::UniquePtr<BIGNUM> forty_two(BN_new()); |
|
ASSERT_TRUE(forty_two); |
|
ASSERT_TRUE(BN_set_word(forty_two.get(), 42)); |
|
ASSERT_TRUE(EC_POINT_mul(group(), point.get(), forty_two.get(), nullptr, |
|
nullptr, nullptr)); |
|
ASSERT_TRUE(EC_POINT_mul(group(), point.get(), nullptr, point.get(), |
|
EC_GROUP_get0_order(group()), nullptr)); |
|
|
|
EXPECT_TRUE(EC_POINT_is_at_infinity(group(), point.get())) |
|
<< "p * order did not return point at infinity."; |
|
} |
|
|
|
// Test that |EC_POINT_mul| works with out-of-range scalars. The operation will |
|
// not be constant-time, but we'll compute the right answer. |
|
TEST_P(ECCurveTest, MulOutOfRange) { |
|
bssl::UniquePtr<BIGNUM> n_minus_one(BN_dup(EC_GROUP_get0_order(group()))); |
|
ASSERT_TRUE(n_minus_one); |
|
ASSERT_TRUE(BN_sub_word(n_minus_one.get(), 1)); |
|
|
|
bssl::UniquePtr<BIGNUM> minus_one(BN_new()); |
|
ASSERT_TRUE(minus_one); |
|
ASSERT_TRUE(BN_one(minus_one.get())); |
|
BN_set_negative(minus_one.get(), 1); |
|
|
|
bssl::UniquePtr<BIGNUM> seven(BN_new()); |
|
ASSERT_TRUE(seven); |
|
ASSERT_TRUE(BN_set_word(seven.get(), 7)); |
|
|
|
bssl::UniquePtr<BIGNUM> ten_n_plus_seven( |
|
BN_dup(EC_GROUP_get0_order(group()))); |
|
ASSERT_TRUE(ten_n_plus_seven); |
|
ASSERT_TRUE(BN_mul_word(ten_n_plus_seven.get(), 10)); |
|
ASSERT_TRUE(BN_add_word(ten_n_plus_seven.get(), 7)); |
|
|
|
bssl::UniquePtr<EC_POINT> point1(EC_POINT_new(group())), |
|
point2(EC_POINT_new(group())); |
|
ASSERT_TRUE(point1); |
|
ASSERT_TRUE(point2); |
|
|
|
ASSERT_TRUE(EC_POINT_mul(group(), point1.get(), n_minus_one.get(), nullptr, |
|
nullptr, nullptr)); |
|
ASSERT_TRUE(EC_POINT_mul(group(), point2.get(), minus_one.get(), nullptr, |
|
nullptr, nullptr)); |
|
EXPECT_EQ(0, EC_POINT_cmp(group(), point1.get(), point2.get(), nullptr)) |
|
<< "-1 * G and (n-1) * G did not give the same result"; |
|
|
|
ASSERT_TRUE(EC_POINT_mul(group(), point1.get(), seven.get(), nullptr, nullptr, |
|
nullptr)); |
|
ASSERT_TRUE(EC_POINT_mul(group(), point2.get(), ten_n_plus_seven.get(), |
|
nullptr, nullptr, nullptr)); |
|
EXPECT_EQ(0, EC_POINT_cmp(group(), point1.get(), point2.get(), nullptr)) |
|
<< "7 * G and (10n + 7) * G did not give the same result"; |
|
} |
|
|
|
// Test that 10×∞ + G = G. |
|
TEST_P(ECCurveTest, Mul) { |
|
bssl::UniquePtr<EC_POINT> p(EC_POINT_new(group())); |
|
ASSERT_TRUE(p); |
|
bssl::UniquePtr<EC_POINT> result(EC_POINT_new(group())); |
|
ASSERT_TRUE(result); |
|
bssl::UniquePtr<BIGNUM> n(BN_new()); |
|
ASSERT_TRUE(n); |
|
ASSERT_TRUE(EC_POINT_set_to_infinity(group(), p.get())); |
|
ASSERT_TRUE(BN_set_word(n.get(), 10)); |
|
|
|
// First check that 10×∞ = ∞. |
|
ASSERT_TRUE( |
|
EC_POINT_mul(group(), result.get(), nullptr, p.get(), n.get(), nullptr)); |
|
EXPECT_TRUE(EC_POINT_is_at_infinity(group(), result.get())); |
|
|
|
// Now check that 10×∞ + G = G. |
|
const EC_POINT *generator = EC_GROUP_get0_generator(group()); |
|
ASSERT_TRUE(EC_POINT_mul(group(), result.get(), BN_value_one(), p.get(), |
|
n.get(), nullptr)); |
|
EXPECT_EQ(0, EC_POINT_cmp(group(), result.get(), generator, nullptr)); |
|
} |
|
|
|
TEST_P(ECCurveTest, MulNonMinimal) { |
|
bssl::UniquePtr<BIGNUM> forty_two(BN_new()); |
|
ASSERT_TRUE(forty_two); |
|
ASSERT_TRUE(BN_set_word(forty_two.get(), 42)); |
|
|
|
// Compute g × 42. |
|
bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group())); |
|
ASSERT_TRUE(point); |
|
ASSERT_TRUE(EC_POINT_mul(group(), point.get(), forty_two.get(), nullptr, |
|
nullptr, nullptr)); |
|
|
|
// Compute it again with a non-minimal 42, much larger than the scalar. |
|
ASSERT_TRUE(bn_resize_words(forty_two.get(), 64)); |
|
|
|
bssl::UniquePtr<EC_POINT> point2(EC_POINT_new(group())); |
|
ASSERT_TRUE(point2); |
|
ASSERT_TRUE(EC_POINT_mul(group(), point2.get(), forty_two.get(), nullptr, |
|
nullptr, nullptr)); |
|
EXPECT_EQ(0, EC_POINT_cmp(group(), point.get(), point2.get(), nullptr)); |
|
} |
|
|
|
// Test that EC_KEY_set_private_key rejects invalid values. |
|
TEST_P(ECCurveTest, SetInvalidPrivateKey) { |
|
bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(GetParam().nid)); |
|
ASSERT_TRUE(key); |
|
|
|
bssl::UniquePtr<BIGNUM> bn(BN_new()); |
|
ASSERT_TRUE(BN_one(bn.get())); |
|
BN_set_negative(bn.get(), 1); |
|
EXPECT_FALSE(EC_KEY_set_private_key(key.get(), bn.get())) |
|
<< "Unexpectedly set a key of -1"; |
|
ERR_clear_error(); |
|
|
|
ASSERT_TRUE( |
|
BN_copy(bn.get(), EC_GROUP_get0_order(EC_KEY_get0_group(key.get())))); |
|
EXPECT_FALSE(EC_KEY_set_private_key(key.get(), bn.get())) |
|
<< "Unexpectedly set a key of the group order."; |
|
ERR_clear_error(); |
|
} |
|
|
|
TEST_P(ECCurveTest, IgnoreOct2PointReturnValue) { |
|
bssl::UniquePtr<BIGNUM> forty_two(BN_new()); |
|
ASSERT_TRUE(forty_two); |
|
ASSERT_TRUE(BN_set_word(forty_two.get(), 42)); |
|
|
|
// Compute g × 42. |
|
bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group())); |
|
ASSERT_TRUE(point); |
|
ASSERT_TRUE(EC_POINT_mul(group(), point.get(), forty_two.get(), nullptr, |
|
nullptr, nullptr)); |
|
|
|
// Serialize the point. |
|
std::vector<uint8_t> serialized; |
|
ASSERT_TRUE(EncodeECPoint(&serialized, group(), point.get(), |
|
POINT_CONVERSION_UNCOMPRESSED)); |
|
|
|
// Create a serialized point that is not on the curve. |
|
serialized[serialized.size() - 1]++; |
|
|
|
ASSERT_FALSE(EC_POINT_oct2point(group(), point.get(), serialized.data(), |
|
serialized.size(), nullptr)); |
|
// After a failure, |point| should have been set to the generator to defend |
|
// against code that doesn't check the return value. |
|
ASSERT_EQ(0, EC_POINT_cmp(group(), point.get(), |
|
EC_GROUP_get0_generator(group()), nullptr)); |
|
} |
|
|
|
TEST_P(ECCurveTest, DoubleSpecialCase) { |
|
const EC_POINT *g = EC_GROUP_get0_generator(group()); |
|
|
|
bssl::UniquePtr<EC_POINT> two_g(EC_POINT_new(group())); |
|
ASSERT_TRUE(two_g); |
|
ASSERT_TRUE(EC_POINT_dbl(group(), two_g.get(), g, nullptr)); |
|
|
|
bssl::UniquePtr<EC_POINT> p(EC_POINT_new(group())); |
|
ASSERT_TRUE(p); |
|
ASSERT_TRUE(EC_POINT_mul(group(), p.get(), BN_value_one(), g, BN_value_one(), |
|
nullptr)); |
|
EXPECT_EQ(0, EC_POINT_cmp(group(), p.get(), two_g.get(), nullptr)); |
|
|
|
EC_SCALAR one; |
|
ASSERT_TRUE(ec_bignum_to_scalar(group(), &one, BN_value_one())); |
|
ASSERT_TRUE( |
|
ec_point_mul_scalar_public(group(), &p->raw, &one, &g->raw, &one)); |
|
EXPECT_EQ(0, EC_POINT_cmp(group(), p.get(), two_g.get(), nullptr)); |
|
} |
|
|
|
// This a regression test for a P-224 bug, but we may as well run it for all |
|
// curves. |
|
TEST_P(ECCurveTest, P224Bug) { |
|
// P = -G |
|
const EC_POINT *g = EC_GROUP_get0_generator(group()); |
|
bssl::UniquePtr<EC_POINT> p(EC_POINT_dup(g, group())); |
|
ASSERT_TRUE(p); |
|
ASSERT_TRUE(EC_POINT_invert(group(), p.get(), nullptr)); |
|
|
|
// Compute 31 * P + 32 * G = G |
|
bssl::UniquePtr<EC_POINT> ret(EC_POINT_new(group())); |
|
ASSERT_TRUE(ret); |
|
bssl::UniquePtr<BIGNUM> bn31(BN_new()), bn32(BN_new()); |
|
ASSERT_TRUE(bn31); |
|
ASSERT_TRUE(bn32); |
|
ASSERT_TRUE(BN_set_word(bn31.get(), 31)); |
|
ASSERT_TRUE(BN_set_word(bn32.get(), 32)); |
|
ASSERT_TRUE(EC_POINT_mul(group(), ret.get(), bn32.get(), p.get(), bn31.get(), |
|
nullptr)); |
|
EXPECT_EQ(0, EC_POINT_cmp(group(), ret.get(), g, nullptr)); |
|
|
|
// Repeat the computation with |ec_point_mul_scalar_public|, which ties the |
|
// additions together. |
|
EC_SCALAR sc31, sc32; |
|
ASSERT_TRUE(ec_bignum_to_scalar(group(), &sc31, bn31.get())); |
|
ASSERT_TRUE(ec_bignum_to_scalar(group(), &sc32, bn32.get())); |
|
ASSERT_TRUE( |
|
ec_point_mul_scalar_public(group(), &ret->raw, &sc32, &p->raw, &sc31)); |
|
EXPECT_EQ(0, EC_POINT_cmp(group(), ret.get(), g, nullptr)); |
|
} |
|
|
|
TEST_P(ECCurveTest, GPlusMinusG) { |
|
const EC_POINT *g = EC_GROUP_get0_generator(group()); |
|
bssl::UniquePtr<EC_POINT> p(EC_POINT_dup(g, group())); |
|
ASSERT_TRUE(p); |
|
ASSERT_TRUE(EC_POINT_invert(group(), p.get(), nullptr)); |
|
bssl::UniquePtr<EC_POINT> sum(EC_POINT_new(group())); |
|
|
|
ASSERT_TRUE(EC_POINT_add(group(), sum.get(), g, p.get(), nullptr)); |
|
EXPECT_TRUE(EC_POINT_is_at_infinity(group(), sum.get())); |
|
} |
|
|
|
static std::vector<EC_builtin_curve> AllCurves() { |
|
const size_t num_curves = EC_get_builtin_curves(nullptr, 0); |
|
std::vector<EC_builtin_curve> curves(num_curves); |
|
EC_get_builtin_curves(curves.data(), num_curves); |
|
return curves; |
|
} |
|
|
|
static std::string CurveToString( |
|
const testing::TestParamInfo<EC_builtin_curve> ¶ms) { |
|
// The comment field contains characters GTest rejects, so use the OBJ name. |
|
return OBJ_nid2sn(params.param.nid); |
|
} |
|
|
|
INSTANTIATE_TEST_SUITE_P(All, ECCurveTest, testing::ValuesIn(AllCurves()), |
|
CurveToString); |
|
|
|
static bssl::UniquePtr<EC_GROUP> GetCurve(FileTest *t, const char *key) { |
|
std::string curve_name; |
|
if (!t->GetAttribute(&curve_name, key)) { |
|
return nullptr; |
|
} |
|
|
|
if (curve_name == "P-224") { |
|
return bssl::UniquePtr<EC_GROUP>(EC_GROUP_new_by_curve_name(NID_secp224r1)); |
|
} |
|
if (curve_name == "P-256") { |
|
return bssl::UniquePtr<EC_GROUP>(EC_GROUP_new_by_curve_name( |
|
NID_X9_62_prime256v1)); |
|
} |
|
if (curve_name == "P-384") { |
|
return bssl::UniquePtr<EC_GROUP>(EC_GROUP_new_by_curve_name(NID_secp384r1)); |
|
} |
|
if (curve_name == "P-521") { |
|
return bssl::UniquePtr<EC_GROUP>(EC_GROUP_new_by_curve_name(NID_secp521r1)); |
|
} |
|
|
|
t->PrintLine("Unknown curve '%s'", curve_name.c_str()); |
|
return nullptr; |
|
} |
|
|
|
static bssl::UniquePtr<BIGNUM> GetBIGNUM(FileTest *t, const char *key) { |
|
std::vector<uint8_t> bytes; |
|
if (!t->GetBytes(&bytes, key)) { |
|
return nullptr; |
|
} |
|
|
|
return bssl::UniquePtr<BIGNUM>( |
|
BN_bin2bn(bytes.data(), bytes.size(), nullptr)); |
|
} |
|
|
|
TEST(ECTest, ScalarBaseMultVectors) { |
|
bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
|
ASSERT_TRUE(ctx); |
|
|
|
FileTestGTest("crypto/fipsmodule/ec/ec_scalar_base_mult_tests.txt", |
|
[&](FileTest *t) { |
|
bssl::UniquePtr<EC_GROUP> group = GetCurve(t, "Curve"); |
|
ASSERT_TRUE(group); |
|
bssl::UniquePtr<BIGNUM> n = GetBIGNUM(t, "N"); |
|
ASSERT_TRUE(n); |
|
bssl::UniquePtr<BIGNUM> x = GetBIGNUM(t, "X"); |
|
ASSERT_TRUE(x); |
|
bssl::UniquePtr<BIGNUM> y = GetBIGNUM(t, "Y"); |
|
ASSERT_TRUE(y); |
|
bool is_infinity = BN_is_zero(x.get()) && BN_is_zero(y.get()); |
|
|
|
bssl::UniquePtr<BIGNUM> px(BN_new()); |
|
ASSERT_TRUE(px); |
|
bssl::UniquePtr<BIGNUM> py(BN_new()); |
|
ASSERT_TRUE(py); |
|
auto check_point = [&](const EC_POINT *p) { |
|
if (is_infinity) { |
|
EXPECT_TRUE(EC_POINT_is_at_infinity(group.get(), p)); |
|
} else { |
|
ASSERT_TRUE(EC_POINT_get_affine_coordinates_GFp( |
|
group.get(), p, px.get(), py.get(), ctx.get())); |
|
EXPECT_EQ(0, BN_cmp(x.get(), px.get())); |
|
EXPECT_EQ(0, BN_cmp(y.get(), py.get())); |
|
} |
|
}; |
|
|
|
const EC_POINT *g = EC_GROUP_get0_generator(group.get()); |
|
bssl::UniquePtr<EC_POINT> p(EC_POINT_new(group.get())); |
|
ASSERT_TRUE(p); |
|
// Test single-point multiplication. |
|
ASSERT_TRUE(EC_POINT_mul(group.get(), p.get(), n.get(), nullptr, nullptr, |
|
ctx.get())); |
|
check_point(p.get()); |
|
|
|
ASSERT_TRUE( |
|
EC_POINT_mul(group.get(), p.get(), nullptr, g, n.get(), ctx.get())); |
|
check_point(p.get()); |
|
}); |
|
} |
|
|
|
// These tests take a very long time, but are worth running when we make |
|
// non-trivial changes to the EC code. |
|
TEST(ECTest, DISABLED_ScalarBaseMultVectorsTwoPoint) { |
|
bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
|
ASSERT_TRUE(ctx); |
|
|
|
FileTestGTest("crypto/fipsmodule/ec/ec_scalar_base_mult_tests.txt", |
|
[&](FileTest *t) { |
|
bssl::UniquePtr<EC_GROUP> group = GetCurve(t, "Curve"); |
|
ASSERT_TRUE(group); |
|
bssl::UniquePtr<BIGNUM> n = GetBIGNUM(t, "N"); |
|
ASSERT_TRUE(n); |
|
bssl::UniquePtr<BIGNUM> x = GetBIGNUM(t, "X"); |
|
ASSERT_TRUE(x); |
|
bssl::UniquePtr<BIGNUM> y = GetBIGNUM(t, "Y"); |
|
ASSERT_TRUE(y); |
|
bool is_infinity = BN_is_zero(x.get()) && BN_is_zero(y.get()); |
|
|
|
bssl::UniquePtr<BIGNUM> px(BN_new()); |
|
ASSERT_TRUE(px); |
|
bssl::UniquePtr<BIGNUM> py(BN_new()); |
|
ASSERT_TRUE(py); |
|
auto check_point = [&](const EC_POINT *p) { |
|
if (is_infinity) { |
|
EXPECT_TRUE(EC_POINT_is_at_infinity(group.get(), p)); |
|
} else { |
|
ASSERT_TRUE(EC_POINT_get_affine_coordinates_GFp( |
|
group.get(), p, px.get(), py.get(), ctx.get())); |
|
EXPECT_EQ(0, BN_cmp(x.get(), px.get())); |
|
EXPECT_EQ(0, BN_cmp(y.get(), py.get())); |
|
} |
|
}; |
|
|
|
const EC_POINT *g = EC_GROUP_get0_generator(group.get()); |
|
bssl::UniquePtr<EC_POINT> p(EC_POINT_new(group.get())); |
|
ASSERT_TRUE(p); |
|
bssl::UniquePtr<BIGNUM> a(BN_new()), b(BN_new()); |
|
for (int i = -64; i < 64; i++) { |
|
SCOPED_TRACE(i); |
|
ASSERT_TRUE(BN_set_word(a.get(), abs(i))); |
|
if (i < 0) { |
|
ASSERT_TRUE(BN_sub(a.get(), EC_GROUP_get0_order(group.get()), a.get())); |
|
} |
|
|
|
ASSERT_TRUE(BN_copy(b.get(), n.get())); |
|
ASSERT_TRUE(BN_sub(b.get(), b.get(), a.get())); |
|
if (BN_is_negative(b.get())) { |
|
ASSERT_TRUE(BN_add(b.get(), b.get(), EC_GROUP_get0_order(group.get()))); |
|
} |
|
|
|
ASSERT_TRUE( |
|
EC_POINT_mul(group.get(), p.get(), a.get(), g, b.get(), ctx.get())); |
|
check_point(p.get()); |
|
|
|
EC_SCALAR a_scalar, b_scalar; |
|
ASSERT_TRUE(ec_bignum_to_scalar(group.get(), &a_scalar, a.get())); |
|
ASSERT_TRUE(ec_bignum_to_scalar(group.get(), &b_scalar, b.get())); |
|
ASSERT_TRUE(ec_point_mul_scalar_public(group.get(), &p->raw, &a_scalar, |
|
&g->raw, &b_scalar)); |
|
check_point(p.get()); |
|
} |
|
}); |
|
} |
|
|
|
static std::vector<uint8_t> HexToBytes(const char *str) { |
|
std::vector<uint8_t> ret; |
|
if (!DecodeHex(&ret, str)) { |
|
abort(); |
|
} |
|
return ret; |
|
} |
|
|
|
TEST(ECTest, DeriveFromSecret) { |
|
struct DeriveTest { |
|
int curve; |
|
std::vector<uint8_t> secret; |
|
std::vector<uint8_t> expected_priv; |
|
std::vector<uint8_t> expected_pub; |
|
}; |
|
const DeriveTest kDeriveTests[] = { |
|
{NID_X9_62_prime256v1, HexToBytes(""), |
|
HexToBytes( |
|
"b98a86a71efb51ebdac4759937b977e9b0c05224675bb2b6a58ba306e237f4b8"), |
|
HexToBytes( |
|
"04fbe6cab439918e00231a2ff073cdc25823998864a9eb36f809095a1a919ece875" |
|
"a145803fbe89a6cde53936e3c6d9c253ed3d38f5f58cae455c27e95645ceda9")}, |
|
{NID_X9_62_prime256v1, HexToBytes("123456"), |
|
HexToBytes( |
|
"44a72bc62087b88e5ab7126766177ed0d8f1ed09ad066cd746527fc201105a7e"), |
|
HexToBytes( |
|
"04ec0555cd76e991fef7f5504343937d0f38696db3360a4854052cb0d84a377a5a0" |
|
"ff64c352755c28692b4ae085c2b817db9a1eddbd22e9cf39c12751e0870791b")}, |
|
{NID_X9_62_prime256v1, HexToBytes("00000000000000000000000000000000"), |
|
HexToBytes( |
|
"7ca1e2c83e6a5f2c1b3e7d58180226f269930c4b9fbe2a275096079630b7c57d"), |
|
HexToBytes( |
|
"0442ef70c8fc0fbe383ed0a0da36f39f9a590f3feebc07863cc858c9a8ef0465731" |
|
"0408c249bd4d61929c54b71ffe056e6b4fa1eb537039b43d1c175f0ceab0f89")}, |
|
{NID_X9_62_prime256v1, |
|
HexToBytes( |
|
"de9c9b35543aaa0fba039e34e8ca9695da3225c7161c9e3a8c70356cac28c780"), |
|
HexToBytes( |
|
"659f5abf3b62b9931c29d6ed0722efd2349fa56f54e708cf3272f620f1bc44d0"), |
|
HexToBytes( |
|
"046741f806b593bf3a3d4a9d76bdcb9b0d7874633cbea8f42c05e78561f7e8ec362" |
|
"b9b6f1913ded796fbdafe7f210cea897ac22a4e580c06a60f2659fd09f1830f")}, |
|
{NID_secp384r1, HexToBytes("123456"), |
|
HexToBytes("95cd90d548997de090c7622708eccb7edc1b1bd78d2422235ad97406dada" |
|
"076555309da200096f6e4b36c46002beee89"), |
|
HexToBytes( |
|
"04007b2d026aa7636fa912c3f970d62bb6c10fa81c8f3290ed90b2d701696d1c6b9" |
|
"5af88ce13e962996a7ac37e16527cb5d69bd081b8641d07634cf84b438600ec9434" |
|
"15ac6bd7a0236f7ab0ea31ece67df03fa11646ea2b75e73d1b5e45b75c18")}, |
|
}; |
|
|
|
for (const auto &test : kDeriveTests) { |
|
SCOPED_TRACE(Bytes(test.secret)); |
|
bssl::UniquePtr<EC_GROUP> group(EC_GROUP_new_by_curve_name(test.curve)); |
|
ASSERT_TRUE(group); |
|
bssl::UniquePtr<EC_KEY> key(EC_KEY_derive_from_secret( |
|
group.get(), test.secret.data(), test.secret.size())); |
|
ASSERT_TRUE(key); |
|
|
|
std::vector<uint8_t> priv(BN_num_bytes(EC_GROUP_get0_order(group.get()))); |
|
ASSERT_TRUE(BN_bn2bin_padded(priv.data(), priv.size(), |
|
EC_KEY_get0_private_key(key.get()))); |
|
EXPECT_EQ(Bytes(priv), Bytes(test.expected_priv)); |
|
|
|
uint8_t *pub = nullptr; |
|
size_t pub_len = |
|
EC_KEY_key2buf(key.get(), POINT_CONVERSION_UNCOMPRESSED, &pub, nullptr); |
|
bssl::UniquePtr<uint8_t> free_pub(pub); |
|
EXPECT_NE(pub_len, 0u); |
|
EXPECT_EQ(Bytes(pub, pub_len), Bytes(test.expected_pub)); |
|
} |
|
} |
|
|
|
TEST(ECTest, HashToCurve) { |
|
struct HashToCurveTest { |
|
int (*hash_to_curve)(const EC_GROUP *group, EC_RAW_POINT *out, |
|
const uint8_t *dst, size_t dst_len, const uint8_t *msg, |
|
size_t msg_len); |
|
int curve_nid; |
|
const char *dst; |
|
const char *msg; |
|
const char *x_hex; |
|
const char *y_hex; |
|
}; |
|
static const HashToCurveTest kTests[] = { |
|
// See draft-irtf-cfrg-hash-to-curve-07, appendix G.2.1. |
|
{&ec_hash_to_curve_p384_xmd_sha512_sswu_draft07, NID_secp384r1, |
|
"P384_XMD:SHA-512_SSWU_RO_TESTGEN", "", |
|
"2fc0b9efdd63a8e43b4db88dc12f03c798f6fd91bccac0c9096185" |
|
"4386e58fdc54fc2a01f0f358759054ce1f9b762025", |
|
"949b936fabb72cdb02cd7980b86cb6a3adf286658e81301648851d" |
|
"b8a49d9bec00ccb57698d559fc5960fa5030a8e54b"}, |
|
{&ec_hash_to_curve_p384_xmd_sha512_sswu_draft07, NID_secp384r1, |
|
"P384_XMD:SHA-512_SSWU_RO_TESTGEN", "abc", |
|
"4f3338035391e8ce8ce40c974136f0edc97f392ffd44a643338741" |
|
"8ed1b8c2603487e1688ec151f048fbc6b2c138c92f", |
|
"152b90aef6558be328a3168855fb1906452e7167b0f7c8a56ff9d4" |
|
"fa87d6fb522cdf8e409db54418b2c764fd26260757"}, |
|
{&ec_hash_to_curve_p384_xmd_sha512_sswu_draft07, NID_secp384r1, |
|
"P384_XMD:SHA-512_SSWU_RO_TESTGEN", "abcdef0123456789", |
|
"e9e5d7ac397e123d060ad44301cbc8eb972f6e64ebcff29dcc9b9a" |
|
"10357902aace2240c580fec85e5b427d98b4e80703", |
|
"916cb8963521ad75105be43cc4148e5a5bbb4fcf107f1577e4f7fa" |
|
"3ca58cd786aa76890c8e687d2353393bc16c78ec4d"}, |
|
{&ec_hash_to_curve_p384_xmd_sha512_sswu_draft07, NID_secp384r1, |
|
"P384_XMD:SHA-512_SSWU_RO_TESTGEN", |
|
"a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", |
|
"41941db59a7b8b633bd5bfa462f1e29a9f18e5a341445d90fc6eb9" |
|
"37f2913224287b9dfb64742851f760eb14ca115ff9", |
|
"1510e764f1be968d661b7aaecb26a6d38c98e5205ca150f0ae426d" |
|
"2c3983c68e3a9ffb283c6ae4891d891b5705500475"}, |
|
}; |
|
|
|
for (const auto &test : kTests) { |
|
SCOPED_TRACE(test.dst); |
|
SCOPED_TRACE(test.msg); |
|
|
|
bssl::UniquePtr<EC_GROUP> group(EC_GROUP_new_by_curve_name(test.curve_nid)); |
|
ASSERT_TRUE(group); |
|
bssl::UniquePtr<EC_POINT> p(EC_POINT_new(group.get())); |
|
ASSERT_TRUE(p); |
|
ASSERT_TRUE(test.hash_to_curve( |
|
group.get(), &p->raw, reinterpret_cast<const uint8_t *>(test.dst), |
|
strlen(test.dst), reinterpret_cast<const uint8_t *>(test.msg), |
|
strlen(test.msg))); |
|
|
|
std::vector<uint8_t> buf; |
|
ASSERT_TRUE(EncodeECPoint(&buf, group.get(), p.get(), |
|
POINT_CONVERSION_UNCOMPRESSED)); |
|
size_t field_len = (buf.size() - 1) / 2; |
|
EXPECT_EQ(test.x_hex, |
|
EncodeHex(bssl::MakeConstSpan(buf).subspan(1, field_len))); |
|
EXPECT_EQ(test.y_hex, EncodeHex(bssl::MakeConstSpan(buf).subspan( |
|
1 + field_len, field_len))); |
|
} |
|
|
|
// hash-to-curve functions should check for the wrong group. |
|
bssl::UniquePtr<EC_GROUP> p224(EC_GROUP_new_by_curve_name(NID_secp224r1)); |
|
ASSERT_TRUE(p224); |
|
EC_RAW_POINT p; |
|
static const uint8_t kDST[] = {0, 1, 2, 3}; |
|
static const uint8_t kMessage[] = {4, 5, 6, 7}; |
|
EXPECT_FALSE(ec_hash_to_curve_p384_xmd_sha512_sswu_draft07( |
|
p224.get(), &p, kDST, sizeof(kDST), kMessage, sizeof(kMessage))); |
|
} |
|
|
|
TEST(ECTest, HashToScalar) { |
|
struct HashToScalarTest { |
|
int (*hash_to_scalar)(const EC_GROUP *group, EC_SCALAR *out, |
|
const uint8_t *dst, size_t dst_len, |
|
const uint8_t *msg, size_t msg_len); |
|
int curve_nid; |
|
const char *dst; |
|
const char *msg; |
|
const char *result_hex; |
|
}; |
|
static const HashToScalarTest kTests[] = { |
|
{&ec_hash_to_scalar_p384_xmd_sha512_draft07, NID_secp384r1, |
|
"P384_XMD:SHA-512_SCALAR_TEST", "", |
|
"9687acc2de56c3cf94c0e05b6811a21aa480092254ec0532bdce63" |
|
"140ecd340f09dc2d45d77e21fb0aa76f7707b8a676"}, |
|
{&ec_hash_to_scalar_p384_xmd_sha512_draft07, NID_secp384r1, |
|
"P384_XMD:SHA-512_SCALAR_TEST", "abcdef0123456789", |
|
"8f8076022a68233cbcecaceae68c2068f132724f001caa78619eff" |
|
"1ffc58fa871db73fe9034fc9cf853c384ed34b5666"}, |
|
{&ec_hash_to_scalar_p384_xmd_sha512_draft07, NID_secp384r1, |
|
"P384_XMD:SHA-512_SCALAR_TEST", |
|
"a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" |
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", |
|
"750f2fae7d2b2f41ac737d180c1d4363d85a1504798b4976d40921" |
|
"1ddb3651c13a5b4daba9975cdfce18336791131915"}, |
|
}; |
|
|
|
for (const auto &test : kTests) { |
|
SCOPED_TRACE(test.dst); |
|
SCOPED_TRACE(test.msg); |
|
|
|
bssl::UniquePtr<EC_GROUP> group(EC_GROUP_new_by_curve_name(test.curve_nid)); |
|
ASSERT_TRUE(group); |
|
EC_SCALAR scalar; |
|
ASSERT_TRUE(test.hash_to_scalar( |
|
group.get(), &scalar, reinterpret_cast<const uint8_t *>(test.dst), |
|
strlen(test.dst), reinterpret_cast<const uint8_t *>(test.msg), |
|
strlen(test.msg))); |
|
uint8_t buf[EC_MAX_BYTES]; |
|
size_t len; |
|
ec_scalar_to_bytes(group.get(), buf, &len, &scalar); |
|
EXPECT_EQ(test.result_hex, EncodeHex(bssl::MakeConstSpan(buf, len))); |
|
} |
|
|
|
// hash-to-scalar functions should check for the wrong group. |
|
bssl::UniquePtr<EC_GROUP> p224(EC_GROUP_new_by_curve_name(NID_secp224r1)); |
|
ASSERT_TRUE(p224); |
|
EC_SCALAR scalar; |
|
static const uint8_t kDST[] = {0, 1, 2, 3}; |
|
static const uint8_t kMessage[] = {4, 5, 6, 7}; |
|
EXPECT_FALSE(ec_hash_to_scalar_p384_xmd_sha512_draft07( |
|
p224.get(), &scalar, kDST, sizeof(kDST), kMessage, sizeof(kMessage))); |
|
}
|
|
|