Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
492 lines
18 KiB
492 lines
18 KiB
/* ==================================================================== |
|
* Copyright (c) 2012 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* openssl-core@openssl.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). */ |
|
|
|
#include <assert.h> |
|
#include <string.h> |
|
|
|
#include <openssl/digest.h> |
|
#include <openssl/nid.h> |
|
#include <openssl/sha.h> |
|
|
|
#include "../internal.h" |
|
#include "internal.h" |
|
#include "../fipsmodule/cipher/internal.h" |
|
|
|
|
|
// MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length |
|
// field. (SHA-384/512 have 128-bit length.) |
|
#define MAX_HASH_BIT_COUNT_BYTES 16 |
|
|
|
// MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support. |
|
// Currently SHA-384/512 has a 128-byte block size and that's the largest |
|
// supported by TLS.) |
|
#define MAX_HASH_BLOCK_SIZE 128 |
|
|
|
int EVP_tls_cbc_remove_padding(crypto_word_t *out_padding_ok, size_t *out_len, |
|
const uint8_t *in, size_t in_len, |
|
size_t block_size, size_t mac_size) { |
|
const size_t overhead = 1 /* padding length byte */ + mac_size; |
|
|
|
// These lengths are all public so we can test them in non-constant time. |
|
if (overhead > in_len) { |
|
return 0; |
|
} |
|
|
|
size_t padding_length = in[in_len - 1]; |
|
|
|
crypto_word_t good = constant_time_ge_w(in_len, overhead + padding_length); |
|
// The padding consists of a length byte at the end of the record and |
|
// then that many bytes of padding, all with the same value as the |
|
// length byte. Thus, with the length byte included, there are i+1 |
|
// bytes of padding. |
|
// |
|
// We can't check just |padding_length+1| bytes because that leaks |
|
// decrypted information. Therefore we always have to check the maximum |
|
// amount of padding possible. (Again, the length of the record is |
|
// public information so we can use it.) |
|
size_t to_check = 256; // maximum amount of padding, inc length byte. |
|
if (to_check > in_len) { |
|
to_check = in_len; |
|
} |
|
|
|
for (size_t i = 0; i < to_check; i++) { |
|
uint8_t mask = constant_time_ge_8(padding_length, i); |
|
uint8_t b = in[in_len - 1 - i]; |
|
// The final |padding_length+1| bytes should all have the value |
|
// |padding_length|. Therefore the XOR should be zero. |
|
good &= ~(mask & (padding_length ^ b)); |
|
} |
|
|
|
// If any of the final |padding_length+1| bytes had the wrong value, |
|
// one or more of the lower eight bits of |good| will be cleared. |
|
good = constant_time_eq_w(0xff, good & 0xff); |
|
|
|
// Always treat |padding_length| as zero on error. If, assuming block size of |
|
// 16, a padding of [<15 arbitrary bytes> 15] treated |padding_length| as 16 |
|
// and returned -1, distinguishing good MAC and bad padding from bad MAC and |
|
// bad padding would give POODLE's padding oracle. |
|
padding_length = good & (padding_length + 1); |
|
*out_len = in_len - padding_length; |
|
*out_padding_ok = good; |
|
return 1; |
|
} |
|
|
|
void EVP_tls_cbc_copy_mac(uint8_t *out, size_t md_size, const uint8_t *in, |
|
size_t in_len, size_t orig_len) { |
|
uint8_t rotated_mac1[EVP_MAX_MD_SIZE], rotated_mac2[EVP_MAX_MD_SIZE]; |
|
uint8_t *rotated_mac = rotated_mac1; |
|
uint8_t *rotated_mac_tmp = rotated_mac2; |
|
|
|
// mac_end is the index of |in| just after the end of the MAC. |
|
size_t mac_end = in_len; |
|
size_t mac_start = mac_end - md_size; |
|
|
|
assert(orig_len >= in_len); |
|
assert(in_len >= md_size); |
|
assert(md_size <= EVP_MAX_MD_SIZE); |
|
assert(md_size > 0); |
|
|
|
// scan_start contains the number of bytes that we can ignore because |
|
// the MAC's position can only vary by 255 bytes. |
|
size_t scan_start = 0; |
|
// This information is public so it's safe to branch based on it. |
|
if (orig_len > md_size + 255 + 1) { |
|
scan_start = orig_len - (md_size + 255 + 1); |
|
} |
|
|
|
size_t rotate_offset = 0; |
|
uint8_t mac_started = 0; |
|
OPENSSL_memset(rotated_mac, 0, md_size); |
|
for (size_t i = scan_start, j = 0; i < orig_len; i++, j++) { |
|
if (j >= md_size) { |
|
j -= md_size; |
|
} |
|
crypto_word_t is_mac_start = constant_time_eq_w(i, mac_start); |
|
mac_started |= is_mac_start; |
|
uint8_t mac_ended = constant_time_ge_8(i, mac_end); |
|
rotated_mac[j] |= in[i] & mac_started & ~mac_ended; |
|
// Save the offset that |mac_start| is mapped to. |
|
rotate_offset |= j & is_mac_start; |
|
} |
|
|
|
// Now rotate the MAC. We rotate in log(md_size) steps, one for each bit |
|
// position. |
|
for (size_t offset = 1; offset < md_size; offset <<= 1, rotate_offset >>= 1) { |
|
// Rotate by |offset| iff the corresponding bit is set in |
|
// |rotate_offset|, placing the result in |rotated_mac_tmp|. |
|
const uint8_t skip_rotate = (rotate_offset & 1) - 1; |
|
for (size_t i = 0, j = offset; i < md_size; i++, j++) { |
|
if (j >= md_size) { |
|
j -= md_size; |
|
} |
|
rotated_mac_tmp[i] = |
|
constant_time_select_8(skip_rotate, rotated_mac[i], rotated_mac[j]); |
|
} |
|
|
|
// Swap pointers so |rotated_mac| contains the (possibly) rotated value. |
|
// Note the number of iterations and thus the identity of these pointers is |
|
// public information. |
|
uint8_t *tmp = rotated_mac; |
|
rotated_mac = rotated_mac_tmp; |
|
rotated_mac_tmp = tmp; |
|
} |
|
|
|
OPENSSL_memcpy(out, rotated_mac, md_size); |
|
} |
|
|
|
// u32toBE serialises an unsigned, 32-bit number (n) as four bytes at (p) in |
|
// big-endian order. The value of p is advanced by four. |
|
#define u32toBE(n, p) \ |
|
do { \ |
|
*((p)++) = (uint8_t)((n) >> 24); \ |
|
*((p)++) = (uint8_t)((n) >> 16); \ |
|
*((p)++) = (uint8_t)((n) >> 8); \ |
|
*((p)++) = (uint8_t)((n)); \ |
|
} while (0) |
|
|
|
// u64toBE serialises an unsigned, 64-bit number (n) as eight bytes at (p) in |
|
// big-endian order. The value of p is advanced by eight. |
|
#define u64toBE(n, p) \ |
|
do { \ |
|
*((p)++) = (uint8_t)((n) >> 56); \ |
|
*((p)++) = (uint8_t)((n) >> 48); \ |
|
*((p)++) = (uint8_t)((n) >> 40); \ |
|
*((p)++) = (uint8_t)((n) >> 32); \ |
|
*((p)++) = (uint8_t)((n) >> 24); \ |
|
*((p)++) = (uint8_t)((n) >> 16); \ |
|
*((p)++) = (uint8_t)((n) >> 8); \ |
|
*((p)++) = (uint8_t)((n)); \ |
|
} while (0) |
|
|
|
typedef union { |
|
SHA_CTX sha1; |
|
SHA256_CTX sha256; |
|
SHA512_CTX sha512; |
|
} HASH_CTX; |
|
|
|
static void tls1_sha1_transform(HASH_CTX *ctx, const uint8_t *block) { |
|
SHA1_Transform(&ctx->sha1, block); |
|
} |
|
|
|
static void tls1_sha256_transform(HASH_CTX *ctx, const uint8_t *block) { |
|
SHA256_Transform(&ctx->sha256, block); |
|
} |
|
|
|
static void tls1_sha512_transform(HASH_CTX *ctx, const uint8_t *block) { |
|
SHA512_Transform(&ctx->sha512, block); |
|
} |
|
|
|
// These functions serialize the state of a hash and thus perform the standard |
|
// "final" operation without adding the padding and length that such a function |
|
// typically does. |
|
static void tls1_sha1_final_raw(HASH_CTX *ctx, uint8_t *md_out) { |
|
SHA_CTX *sha1 = &ctx->sha1; |
|
u32toBE(sha1->h[0], md_out); |
|
u32toBE(sha1->h[1], md_out); |
|
u32toBE(sha1->h[2], md_out); |
|
u32toBE(sha1->h[3], md_out); |
|
u32toBE(sha1->h[4], md_out); |
|
} |
|
|
|
static void tls1_sha256_final_raw(HASH_CTX *ctx, uint8_t *md_out) { |
|
SHA256_CTX *sha256 = &ctx->sha256; |
|
for (unsigned i = 0; i < 8; i++) { |
|
u32toBE(sha256->h[i], md_out); |
|
} |
|
} |
|
|
|
static void tls1_sha512_final_raw(HASH_CTX *ctx, uint8_t *md_out) { |
|
SHA512_CTX *sha512 = &ctx->sha512; |
|
for (unsigned i = 0; i < 8; i++) { |
|
u64toBE(sha512->h[i], md_out); |
|
} |
|
} |
|
|
|
int EVP_tls_cbc_record_digest_supported(const EVP_MD *md) { |
|
switch (EVP_MD_type(md)) { |
|
case NID_sha1: |
|
case NID_sha256: |
|
case NID_sha384: |
|
return 1; |
|
|
|
default: |
|
return 0; |
|
} |
|
} |
|
|
|
int EVP_tls_cbc_digest_record(const EVP_MD *md, uint8_t *md_out, |
|
size_t *md_out_size, const uint8_t header[13], |
|
const uint8_t *data, size_t data_plus_mac_size, |
|
size_t data_plus_mac_plus_padding_size, |
|
const uint8_t *mac_secret, |
|
unsigned mac_secret_length) { |
|
HASH_CTX md_state; |
|
void (*md_final_raw)(HASH_CTX *ctx, uint8_t *md_out); |
|
void (*md_transform)(HASH_CTX *ctx, const uint8_t *block); |
|
unsigned md_size, md_block_size = 64, md_block_shift = 6; |
|
// md_length_size is the number of bytes in the length field that terminates |
|
// the hash. |
|
unsigned md_length_size = 8; |
|
|
|
// Bound the acceptable input so we can forget about many possible overflows |
|
// later in this function. This is redundant with the record size limits in |
|
// TLS. |
|
if (data_plus_mac_plus_padding_size >= 1024 * 1024) { |
|
assert(0); |
|
return 0; |
|
} |
|
|
|
switch (EVP_MD_type(md)) { |
|
case NID_sha1: |
|
SHA1_Init(&md_state.sha1); |
|
md_final_raw = tls1_sha1_final_raw; |
|
md_transform = tls1_sha1_transform; |
|
md_size = SHA_DIGEST_LENGTH; |
|
break; |
|
|
|
case NID_sha256: |
|
SHA256_Init(&md_state.sha256); |
|
md_final_raw = tls1_sha256_final_raw; |
|
md_transform = tls1_sha256_transform; |
|
md_size = SHA256_DIGEST_LENGTH; |
|
break; |
|
|
|
case NID_sha384: |
|
SHA384_Init(&md_state.sha512); |
|
md_final_raw = tls1_sha512_final_raw; |
|
md_transform = tls1_sha512_transform; |
|
md_size = SHA384_DIGEST_LENGTH; |
|
md_block_size = 128; |
|
md_block_shift = 7; |
|
md_length_size = 16; |
|
break; |
|
|
|
default: |
|
// EVP_tls_cbc_record_digest_supported should have been called first to |
|
// check that the hash function is supported. |
|
assert(0); |
|
*md_out_size = 0; |
|
return 0; |
|
} |
|
|
|
assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES); |
|
assert(md_block_size <= MAX_HASH_BLOCK_SIZE); |
|
assert(md_block_size == (1u << md_block_shift)); |
|
assert(md_size <= EVP_MAX_MD_SIZE); |
|
|
|
static const size_t kHeaderLength = 13; |
|
|
|
// kVarianceBlocks is the number of blocks of the hash that we have to |
|
// calculate in constant time because they could be altered by the |
|
// padding value. |
|
// |
|
// TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not |
|
// required to be minimal. Therefore we say that the final |kVarianceBlocks| |
|
// blocks can vary based on the padding and on the hash used. This value |
|
// must be derived from public information. |
|
const size_t kVarianceBlocks = |
|
( 255 + 1 + // maximum padding bytes + padding length |
|
md_size + // length of hash's output |
|
md_block_size - 1 // ceiling |
|
) / md_block_size |
|
+ 1; // the 0x80 marker and the encoded message length could or not |
|
// require an extra block; since the exact value depends on the |
|
// message length; thus, one extra block is always added to run |
|
// in constant time. |
|
|
|
// From now on we're dealing with the MAC, which conceptually has 13 |
|
// bytes of `header' before the start of the data. |
|
size_t len = data_plus_mac_plus_padding_size + kHeaderLength; |
|
// max_mac_bytes contains the maximum bytes of bytes in the MAC, including |
|
// |header|, assuming that there's no padding. |
|
size_t max_mac_bytes = len - md_size - 1; |
|
// num_blocks is the maximum number of hash blocks. |
|
size_t num_blocks = |
|
(max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size; |
|
// In order to calculate the MAC in constant time we have to handle |
|
// the final blocks specially because the padding value could cause the |
|
// end to appear somewhere in the final |kVarianceBlocks| blocks and we |
|
// can't leak where. However, |num_starting_blocks| worth of data can |
|
// be hashed right away because no padding value can affect whether |
|
// they are plaintext. |
|
size_t num_starting_blocks = 0; |
|
// k is the starting byte offset into the conceptual header||data where |
|
// we start processing. |
|
size_t k = 0; |
|
// mac_end_offset is the index just past the end of the data to be MACed. |
|
size_t mac_end_offset = data_plus_mac_size + kHeaderLength - md_size; |
|
// c is the index of the 0x80 byte in the final hash block that contains |
|
// application data. |
|
size_t c = mac_end_offset & (md_block_size - 1); |
|
// index_a is the hash block number that contains the 0x80 terminating value. |
|
size_t index_a = mac_end_offset >> md_block_shift; |
|
// index_b is the hash block number that contains the 64-bit hash length, in |
|
// bits. |
|
size_t index_b = (mac_end_offset + md_length_size) >> md_block_shift; |
|
|
|
if (num_blocks > kVarianceBlocks) { |
|
num_starting_blocks = num_blocks - kVarianceBlocks; |
|
k = md_block_size * num_starting_blocks; |
|
} |
|
|
|
// bits is the hash-length in bits. It includes the additional hash |
|
// block for the masked HMAC key. |
|
size_t bits = 8 * mac_end_offset; // at most 18 bits to represent |
|
|
|
// Compute the initial HMAC block. |
|
bits += 8 * md_block_size; |
|
// hmac_pad is the masked HMAC key. |
|
uint8_t hmac_pad[MAX_HASH_BLOCK_SIZE]; |
|
OPENSSL_memset(hmac_pad, 0, md_block_size); |
|
assert(mac_secret_length <= sizeof(hmac_pad)); |
|
OPENSSL_memcpy(hmac_pad, mac_secret, mac_secret_length); |
|
for (size_t i = 0; i < md_block_size; i++) { |
|
hmac_pad[i] ^= 0x36; |
|
} |
|
|
|
md_transform(&md_state, hmac_pad); |
|
|
|
// The length check means |bits| fits in four bytes. |
|
uint8_t length_bytes[MAX_HASH_BIT_COUNT_BYTES]; |
|
OPENSSL_memset(length_bytes, 0, md_length_size - 4); |
|
length_bytes[md_length_size - 4] = (uint8_t)(bits >> 24); |
|
length_bytes[md_length_size - 3] = (uint8_t)(bits >> 16); |
|
length_bytes[md_length_size - 2] = (uint8_t)(bits >> 8); |
|
length_bytes[md_length_size - 1] = (uint8_t)bits; |
|
|
|
if (k > 0) { |
|
// k is a multiple of md_block_size. |
|
uint8_t first_block[MAX_HASH_BLOCK_SIZE]; |
|
OPENSSL_memcpy(first_block, header, 13); |
|
OPENSSL_memcpy(first_block + 13, data, md_block_size - 13); |
|
md_transform(&md_state, first_block); |
|
for (size_t i = 1; i < k / md_block_size; i++) { |
|
md_transform(&md_state, data + md_block_size * i - 13); |
|
} |
|
} |
|
|
|
uint8_t mac_out[EVP_MAX_MD_SIZE]; |
|
OPENSSL_memset(mac_out, 0, sizeof(mac_out)); |
|
|
|
// We now process the final hash blocks. For each block, we construct |
|
// it in constant time. If the |i==index_a| then we'll include the 0x80 |
|
// bytes and zero pad etc. For each block we selectively copy it, in |
|
// constant time, to |mac_out|. |
|
for (size_t i = num_starting_blocks; |
|
i <= num_starting_blocks + kVarianceBlocks; i++) { |
|
uint8_t block[MAX_HASH_BLOCK_SIZE]; |
|
uint8_t is_block_a = constant_time_eq_8(i, index_a); |
|
uint8_t is_block_b = constant_time_eq_8(i, index_b); |
|
for (size_t j = 0; j < md_block_size; j++) { |
|
uint8_t b = 0; |
|
if (k < kHeaderLength) { |
|
b = header[k]; |
|
} else if (k < data_plus_mac_plus_padding_size + kHeaderLength) { |
|
b = data[k - kHeaderLength]; |
|
} |
|
k++; |
|
|
|
uint8_t is_past_c = is_block_a & constant_time_ge_8(j, c); |
|
uint8_t is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1); |
|
// If this is the block containing the end of the |
|
// application data, and we are at the offset for the |
|
// 0x80 value, then overwrite b with 0x80. |
|
b = constant_time_select_8(is_past_c, 0x80, b); |
|
// If this the the block containing the end of the |
|
// application data and we're past the 0x80 value then |
|
// just write zero. |
|
b = b & ~is_past_cp1; |
|
// If this is index_b (the final block), but not |
|
// index_a (the end of the data), then the 64-bit |
|
// length didn't fit into index_a and we're having to |
|
// add an extra block of zeros. |
|
b &= ~is_block_b | is_block_a; |
|
|
|
// The final bytes of one of the blocks contains the |
|
// length. |
|
if (j >= md_block_size - md_length_size) { |
|
// If this is index_b, write a length byte. |
|
b = constant_time_select_8( |
|
is_block_b, length_bytes[j - (md_block_size - md_length_size)], b); |
|
} |
|
block[j] = b; |
|
} |
|
|
|
md_transform(&md_state, block); |
|
md_final_raw(&md_state, block); |
|
// If this is index_b, copy the hash value to |mac_out|. |
|
for (size_t j = 0; j < md_size; j++) { |
|
mac_out[j] |= block[j] & is_block_b; |
|
} |
|
} |
|
|
|
EVP_MD_CTX md_ctx; |
|
EVP_MD_CTX_init(&md_ctx); |
|
if (!EVP_DigestInit_ex(&md_ctx, md, NULL /* engine */)) { |
|
EVP_MD_CTX_cleanup(&md_ctx); |
|
return 0; |
|
} |
|
|
|
// Complete the HMAC in the standard manner. |
|
for (size_t i = 0; i < md_block_size; i++) { |
|
hmac_pad[i] ^= 0x6a; |
|
} |
|
|
|
EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size); |
|
EVP_DigestUpdate(&md_ctx, mac_out, md_size); |
|
unsigned md_out_size_u; |
|
EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u); |
|
*md_out_size = md_out_size_u; |
|
EVP_MD_CTX_cleanup(&md_ctx); |
|
|
|
return 1; |
|
}
|
|
|