Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
338 lines
13 KiB
338 lines
13 KiB
/* ==================================================================== |
|
* Copyright (c) 2012 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* openssl-core@openssl.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). */ |
|
|
|
#include <assert.h> |
|
#include <string.h> |
|
|
|
#include <openssl/digest.h> |
|
#include <openssl/nid.h> |
|
#include <openssl/sha.h> |
|
|
|
#include "../internal.h" |
|
#include "internal.h" |
|
#include "../fipsmodule/cipher/internal.h" |
|
|
|
|
|
int EVP_tls_cbc_remove_padding(crypto_word_t *out_padding_ok, size_t *out_len, |
|
const uint8_t *in, size_t in_len, |
|
size_t block_size, size_t mac_size) { |
|
const size_t overhead = 1 /* padding length byte */ + mac_size; |
|
|
|
// These lengths are all public so we can test them in non-constant time. |
|
if (overhead > in_len) { |
|
return 0; |
|
} |
|
|
|
size_t padding_length = in[in_len - 1]; |
|
|
|
crypto_word_t good = constant_time_ge_w(in_len, overhead + padding_length); |
|
// The padding consists of a length byte at the end of the record and |
|
// then that many bytes of padding, all with the same value as the |
|
// length byte. Thus, with the length byte included, there are i+1 |
|
// bytes of padding. |
|
// |
|
// We can't check just |padding_length+1| bytes because that leaks |
|
// decrypted information. Therefore we always have to check the maximum |
|
// amount of padding possible. (Again, the length of the record is |
|
// public information so we can use it.) |
|
size_t to_check = 256; // maximum amount of padding, inc length byte. |
|
if (to_check > in_len) { |
|
to_check = in_len; |
|
} |
|
|
|
for (size_t i = 0; i < to_check; i++) { |
|
uint8_t mask = constant_time_ge_8(padding_length, i); |
|
uint8_t b = in[in_len - 1 - i]; |
|
// The final |padding_length+1| bytes should all have the value |
|
// |padding_length|. Therefore the XOR should be zero. |
|
good &= ~(mask & (padding_length ^ b)); |
|
} |
|
|
|
// If any of the final |padding_length+1| bytes had the wrong value, |
|
// one or more of the lower eight bits of |good| will be cleared. |
|
good = constant_time_eq_w(0xff, good & 0xff); |
|
|
|
// Always treat |padding_length| as zero on error. If, assuming block size of |
|
// 16, a padding of [<15 arbitrary bytes> 15] treated |padding_length| as 16 |
|
// and returned -1, distinguishing good MAC and bad padding from bad MAC and |
|
// bad padding would give POODLE's padding oracle. |
|
padding_length = good & (padding_length + 1); |
|
*out_len = in_len - padding_length; |
|
*out_padding_ok = good; |
|
return 1; |
|
} |
|
|
|
void EVP_tls_cbc_copy_mac(uint8_t *out, size_t md_size, const uint8_t *in, |
|
size_t in_len, size_t orig_len) { |
|
uint8_t rotated_mac1[EVP_MAX_MD_SIZE], rotated_mac2[EVP_MAX_MD_SIZE]; |
|
uint8_t *rotated_mac = rotated_mac1; |
|
uint8_t *rotated_mac_tmp = rotated_mac2; |
|
|
|
// mac_end is the index of |in| just after the end of the MAC. |
|
size_t mac_end = in_len; |
|
size_t mac_start = mac_end - md_size; |
|
|
|
assert(orig_len >= in_len); |
|
assert(in_len >= md_size); |
|
assert(md_size <= EVP_MAX_MD_SIZE); |
|
assert(md_size > 0); |
|
|
|
// scan_start contains the number of bytes that we can ignore because |
|
// the MAC's position can only vary by 255 bytes. |
|
size_t scan_start = 0; |
|
// This information is public so it's safe to branch based on it. |
|
if (orig_len > md_size + 255 + 1) { |
|
scan_start = orig_len - (md_size + 255 + 1); |
|
} |
|
|
|
size_t rotate_offset = 0; |
|
uint8_t mac_started = 0; |
|
OPENSSL_memset(rotated_mac, 0, md_size); |
|
for (size_t i = scan_start, j = 0; i < orig_len; i++, j++) { |
|
if (j >= md_size) { |
|
j -= md_size; |
|
} |
|
crypto_word_t is_mac_start = constant_time_eq_w(i, mac_start); |
|
mac_started |= is_mac_start; |
|
uint8_t mac_ended = constant_time_ge_8(i, mac_end); |
|
rotated_mac[j] |= in[i] & mac_started & ~mac_ended; |
|
// Save the offset that |mac_start| is mapped to. |
|
rotate_offset |= j & is_mac_start; |
|
} |
|
|
|
// Now rotate the MAC. We rotate in log(md_size) steps, one for each bit |
|
// position. |
|
for (size_t offset = 1; offset < md_size; offset <<= 1, rotate_offset >>= 1) { |
|
// Rotate by |offset| iff the corresponding bit is set in |
|
// |rotate_offset|, placing the result in |rotated_mac_tmp|. |
|
const uint8_t skip_rotate = (rotate_offset & 1) - 1; |
|
for (size_t i = 0, j = offset; i < md_size; i++, j++) { |
|
if (j >= md_size) { |
|
j -= md_size; |
|
} |
|
rotated_mac_tmp[i] = |
|
constant_time_select_8(skip_rotate, rotated_mac[i], rotated_mac[j]); |
|
} |
|
|
|
// Swap pointers so |rotated_mac| contains the (possibly) rotated value. |
|
// Note the number of iterations and thus the identity of these pointers is |
|
// public information. |
|
uint8_t *tmp = rotated_mac; |
|
rotated_mac = rotated_mac_tmp; |
|
rotated_mac_tmp = tmp; |
|
} |
|
|
|
OPENSSL_memcpy(out, rotated_mac, md_size); |
|
} |
|
|
|
int EVP_sha1_final_with_secret_suffix(SHA_CTX *ctx, |
|
uint8_t out[SHA_DIGEST_LENGTH], |
|
const uint8_t *in, size_t len, |
|
size_t max_len) { |
|
// Bound the input length so |total_bits| below fits in four bytes. This is |
|
// redundant with TLS record size limits. This also ensures |input_idx| below |
|
// does not overflow. |
|
size_t max_len_bits = max_len << 3; |
|
if (ctx->Nh != 0 || |
|
(max_len_bits >> 3) != max_len || // Overflow |
|
ctx->Nl + max_len_bits < max_len_bits || |
|
ctx->Nl + max_len_bits > UINT32_MAX) { |
|
return 0; |
|
} |
|
|
|
// We need to hash the following into |ctx|: |
|
// |
|
// - ctx->data[:ctx->num] |
|
// - in[:len] |
|
// - A 0x80 byte |
|
// - However many zero bytes are needed to pad up to a block. |
|
// - Eight bytes of length. |
|
size_t num_blocks = (ctx->num + len + 1 + 8 + SHA_CBLOCK - 1) >> 6; |
|
size_t last_block = num_blocks - 1; |
|
size_t max_blocks = (ctx->num + max_len + 1 + 8 + SHA_CBLOCK - 1) >> 6; |
|
|
|
// The bounds above imply |total_bits| fits in four bytes. |
|
size_t total_bits = ctx->Nl + (len << 3); |
|
uint8_t length_bytes[4]; |
|
length_bytes[0] = (uint8_t)(total_bits >> 24); |
|
length_bytes[1] = (uint8_t)(total_bits >> 16); |
|
length_bytes[2] = (uint8_t)(total_bits >> 8); |
|
length_bytes[3] = (uint8_t)total_bits; |
|
|
|
// We now construct and process each expected block in constant-time. |
|
uint8_t block[SHA_CBLOCK] = {0}; |
|
uint32_t result[5] = {0}; |
|
// input_idx is the index into |in| corresponding to the current block. |
|
// However, we allow this index to overflow beyond |max_len|, to simplify the |
|
// 0x80 byte. |
|
size_t input_idx = 0; |
|
for (size_t i = 0; i < max_blocks; i++) { |
|
// Fill |block| with data from the partial block in |ctx| and |in|. We copy |
|
// as if we were hashing up to |max_len| and then zero the excess later. |
|
size_t block_start = 0; |
|
if (i == 0) { |
|
OPENSSL_memcpy(block, ctx->data, ctx->num); |
|
block_start = ctx->num; |
|
} |
|
if (input_idx < max_len) { |
|
size_t to_copy = SHA_CBLOCK - block_start; |
|
if (to_copy > max_len - input_idx) { |
|
to_copy = max_len - input_idx; |
|
} |
|
OPENSSL_memcpy(block + block_start, in + input_idx, to_copy); |
|
} |
|
|
|
// Zero any bytes beyond |len| and add the 0x80 byte. |
|
for (size_t j = block_start; j < SHA_CBLOCK; j++) { |
|
// input[idx] corresponds to block[j]. |
|
size_t idx = input_idx + j - block_start; |
|
// The barriers on |len| are not strictly necessary. However, without |
|
// them, GCC compiles this code by incorporating |len| into the loop |
|
// counter and subtracting it out later. This is still constant-time, but |
|
// it frustrates attempts to validate this. |
|
uint8_t is_in_bounds = constant_time_lt_8(idx, value_barrier_w(len)); |
|
uint8_t is_padding_byte = constant_time_eq_8(idx, value_barrier_w(len)); |
|
block[j] &= is_in_bounds; |
|
block[j] |= 0x80 & is_padding_byte; |
|
} |
|
|
|
input_idx += SHA_CBLOCK - block_start; |
|
|
|
// Fill in the length if this is the last block. |
|
crypto_word_t is_last_block = constant_time_eq_w(i, last_block); |
|
for (size_t j = 0; j < 4; j++) { |
|
block[SHA_CBLOCK - 4 + j] |= is_last_block & length_bytes[j]; |
|
} |
|
|
|
// Process the block and save the hash state if it is the final value. |
|
SHA1_Transform(ctx, block); |
|
for (size_t j = 0; j < 5; j++) { |
|
result[j] |= is_last_block & ctx->h[j]; |
|
} |
|
} |
|
|
|
// Write the output. |
|
for (size_t i = 0; i < 5; i++) { |
|
CRYPTO_store_u32_be(out + 4 * i, result[i]); |
|
} |
|
return 1; |
|
} |
|
|
|
int EVP_tls_cbc_record_digest_supported(const EVP_MD *md) { |
|
return EVP_MD_type(md) == NID_sha1; |
|
} |
|
|
|
int EVP_tls_cbc_digest_record(const EVP_MD *md, uint8_t *md_out, |
|
size_t *md_out_size, const uint8_t header[13], |
|
const uint8_t *data, size_t data_size, |
|
size_t data_plus_mac_plus_padding_size, |
|
const uint8_t *mac_secret, |
|
unsigned mac_secret_length) { |
|
if (EVP_MD_type(md) != NID_sha1) { |
|
// EVP_tls_cbc_record_digest_supported should have been called first to |
|
// check that the hash function is supported. |
|
assert(0); |
|
*md_out_size = 0; |
|
return 0; |
|
} |
|
|
|
if (mac_secret_length > SHA_CBLOCK) { |
|
// HMAC pads small keys with zeros and hashes large keys down. This function |
|
// should never reach the large key case. |
|
assert(0); |
|
return 0; |
|
} |
|
|
|
// Compute the initial HMAC block. |
|
uint8_t hmac_pad[SHA_CBLOCK]; |
|
OPENSSL_memset(hmac_pad, 0, sizeof(hmac_pad)); |
|
OPENSSL_memcpy(hmac_pad, mac_secret, mac_secret_length); |
|
for (size_t i = 0; i < SHA_CBLOCK; i++) { |
|
hmac_pad[i] ^= 0x36; |
|
} |
|
|
|
SHA_CTX ctx; |
|
SHA1_Init(&ctx); |
|
SHA1_Update(&ctx, hmac_pad, SHA_CBLOCK); |
|
SHA1_Update(&ctx, header, 13); |
|
|
|
// There are at most 256 bytes of padding, so we can compute the public |
|
// minimum length for |data_size|. |
|
size_t min_data_size = 0; |
|
if (data_plus_mac_plus_padding_size > SHA_DIGEST_LENGTH + 256) { |
|
min_data_size = data_plus_mac_plus_padding_size - SHA_DIGEST_LENGTH - 256; |
|
} |
|
|
|
// Hash the public minimum length directly. This reduces the number of blocks |
|
// that must be computed in constant-time. |
|
SHA1_Update(&ctx, data, min_data_size); |
|
|
|
// Hash the remaining data without leaking |data_size|. |
|
uint8_t mac_out[SHA_DIGEST_LENGTH]; |
|
if (!EVP_sha1_final_with_secret_suffix( |
|
&ctx, mac_out, data + min_data_size, data_size - min_data_size, |
|
data_plus_mac_plus_padding_size - min_data_size)) { |
|
return 0; |
|
} |
|
|
|
// Complete the HMAC in the standard manner. |
|
SHA1_Init(&ctx); |
|
for (size_t i = 0; i < SHA_CBLOCK; i++) { |
|
hmac_pad[i] ^= 0x6a; |
|
} |
|
|
|
SHA1_Update(&ctx, hmac_pad, SHA_CBLOCK); |
|
SHA1_Update(&ctx, mac_out, SHA_DIGEST_LENGTH); |
|
SHA1_Final(md_out, &ctx); |
|
*md_out_size = SHA_DIGEST_LENGTH; |
|
return 1; |
|
}
|
|
|