Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
478 lines
15 KiB
478 lines
15 KiB
// Copyright 2009 The Go Authors. All rights reserved. |
|
// Use of this source code is governed by a BSD-style |
|
// license that can be found in the LICENSE file. |
|
|
|
package runner |
|
|
|
import ( |
|
"crypto" |
|
"crypto/hmac" |
|
"crypto/md5" |
|
"crypto/sha1" |
|
"crypto/sha256" |
|
"encoding" |
|
"hash" |
|
|
|
"golang.org/x/crypto/hkdf" |
|
) |
|
|
|
// copyHash returns a copy of |h|, which must be an instance of |hashType|. |
|
func copyHash(h hash.Hash, hash crypto.Hash) hash.Hash { |
|
// While hash.Hash is not copyable, the documentation says all standard |
|
// library hash.Hash implementations implement BinaryMarshaler and |
|
// BinaryUnmarshaler interfaces. |
|
m, ok := h.(encoding.BinaryMarshaler) |
|
if !ok { |
|
panic("hash did not implement encoding.BinaryMarshaler") |
|
} |
|
data, err := m.MarshalBinary() |
|
if err != nil { |
|
panic(err) |
|
} |
|
ret := hash.New() |
|
u, ok := ret.(encoding.BinaryUnmarshaler) |
|
if !ok { |
|
panic("hash did not implement BinaryUnmarshaler") |
|
} |
|
if err := u.UnmarshalBinary(data); err != nil { |
|
panic(err) |
|
} |
|
return ret |
|
} |
|
|
|
// Split a premaster secret in two as specified in RFC 4346, section 5. |
|
func splitPreMasterSecret(secret []byte) (s1, s2 []byte) { |
|
s1 = secret[0 : (len(secret)+1)/2] |
|
s2 = secret[len(secret)/2:] |
|
return |
|
} |
|
|
|
// pHash implements the P_hash function, as defined in RFC 4346, section 5. |
|
func pHash(result, secret, seed []byte, hash func() hash.Hash) { |
|
h := hmac.New(hash, secret) |
|
h.Write(seed) |
|
a := h.Sum(nil) |
|
|
|
j := 0 |
|
for j < len(result) { |
|
h.Reset() |
|
h.Write(a) |
|
h.Write(seed) |
|
b := h.Sum(nil) |
|
todo := len(b) |
|
if j+todo > len(result) { |
|
todo = len(result) - j |
|
} |
|
copy(result[j:j+todo], b) |
|
j += todo |
|
|
|
h.Reset() |
|
h.Write(a) |
|
a = h.Sum(nil) |
|
} |
|
} |
|
|
|
// prf10 implements the TLS 1.0 pseudo-random function, as defined in RFC 2246, section 5. |
|
func prf10(result, secret, label, seed []byte) { |
|
hashSHA1 := sha1.New |
|
hashMD5 := md5.New |
|
|
|
labelAndSeed := make([]byte, len(label)+len(seed)) |
|
copy(labelAndSeed, label) |
|
copy(labelAndSeed[len(label):], seed) |
|
|
|
s1, s2 := splitPreMasterSecret(secret) |
|
pHash(result, s1, labelAndSeed, hashMD5) |
|
result2 := make([]byte, len(result)) |
|
pHash(result2, s2, labelAndSeed, hashSHA1) |
|
|
|
for i, b := range result2 { |
|
result[i] ^= b |
|
} |
|
} |
|
|
|
// prf12 implements the TLS 1.2 pseudo-random function, as defined in RFC 5246, section 5. |
|
func prf12(hashFunc func() hash.Hash) func(result, secret, label, seed []byte) { |
|
return func(result, secret, label, seed []byte) { |
|
labelAndSeed := make([]byte, len(label)+len(seed)) |
|
copy(labelAndSeed, label) |
|
copy(labelAndSeed[len(label):], seed) |
|
|
|
pHash(result, secret, labelAndSeed, hashFunc) |
|
} |
|
} |
|
|
|
const ( |
|
tlsRandomLength = 32 // Length of a random nonce in TLS 1.1. |
|
masterSecretLength = 48 // Length of a master secret in TLS 1.1. |
|
finishedVerifyLength = 12 // Length of verify_data in a Finished message. |
|
) |
|
|
|
var masterSecretLabel = []byte("master secret") |
|
var extendedMasterSecretLabel = []byte("extended master secret") |
|
var keyExpansionLabel = []byte("key expansion") |
|
var clientFinishedLabel = []byte("client finished") |
|
var serverFinishedLabel = []byte("server finished") |
|
var finishedLabel = []byte("finished") |
|
var channelIDLabel = []byte("TLS Channel ID signature\x00") |
|
var channelIDResumeLabel = []byte("Resumption\x00") |
|
|
|
func prfForVersion(version uint16, suite *cipherSuite) func(result, secret, label, seed []byte) { |
|
switch version { |
|
case VersionTLS10, VersionTLS11: |
|
return prf10 |
|
case VersionTLS12: |
|
return prf12(suite.hash().New) |
|
} |
|
panic("unknown version") |
|
} |
|
|
|
// masterFromPreMasterSecret generates the master secret from the pre-master |
|
// secret. See http://tools.ietf.org/html/rfc5246#section-8.1 |
|
func masterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret, clientRandom, serverRandom []byte) []byte { |
|
var seed [tlsRandomLength * 2]byte |
|
copy(seed[0:len(clientRandom)], clientRandom) |
|
copy(seed[len(clientRandom):], serverRandom) |
|
masterSecret := make([]byte, masterSecretLength) |
|
prfForVersion(version, suite)(masterSecret, preMasterSecret, masterSecretLabel, seed[0:]) |
|
return masterSecret |
|
} |
|
|
|
// extendedMasterFromPreMasterSecret generates the master secret from the |
|
// pre-master secret when the Triple Handshake fix is in effect. See |
|
// https://tools.ietf.org/html/rfc7627 |
|
func extendedMasterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret []byte, h finishedHash) []byte { |
|
masterSecret := make([]byte, masterSecretLength) |
|
prfForVersion(version, suite)(masterSecret, preMasterSecret, extendedMasterSecretLabel, h.Sum()) |
|
return masterSecret |
|
} |
|
|
|
// keysFromMasterSecret generates the connection keys from the master |
|
// secret, given the lengths of the MAC key, cipher key and IV, as defined in |
|
// RFC 2246, section 6.3. |
|
func keysFromMasterSecret(version uint16, suite *cipherSuite, masterSecret, clientRandom, serverRandom []byte, macLen, keyLen, ivLen int) (clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV []byte) { |
|
var seed [tlsRandomLength * 2]byte |
|
copy(seed[0:len(clientRandom)], serverRandom) |
|
copy(seed[len(serverRandom):], clientRandom) |
|
|
|
n := 2*macLen + 2*keyLen + 2*ivLen |
|
keyMaterial := make([]byte, n) |
|
prfForVersion(version, suite)(keyMaterial, masterSecret, keyExpansionLabel, seed[0:]) |
|
clientMAC = keyMaterial[:macLen] |
|
keyMaterial = keyMaterial[macLen:] |
|
serverMAC = keyMaterial[:macLen] |
|
keyMaterial = keyMaterial[macLen:] |
|
clientKey = keyMaterial[:keyLen] |
|
keyMaterial = keyMaterial[keyLen:] |
|
serverKey = keyMaterial[:keyLen] |
|
keyMaterial = keyMaterial[keyLen:] |
|
clientIV = keyMaterial[:ivLen] |
|
keyMaterial = keyMaterial[ivLen:] |
|
serverIV = keyMaterial[:ivLen] |
|
return |
|
} |
|
|
|
func newFinishedHash(wireVersion uint16, isDTLS bool, cipherSuite *cipherSuite) finishedHash { |
|
version, ok := wireToVersion(wireVersion, isDTLS) |
|
if !ok { |
|
panic("unknown version") |
|
} |
|
|
|
var ret finishedHash |
|
if version >= VersionTLS12 { |
|
ret.hash = cipherSuite.hash().New() |
|
|
|
if version == VersionTLS12 { |
|
ret.prf = prf12(cipherSuite.hash().New) |
|
} else { |
|
ret.secret = make([]byte, ret.hash.Size()) |
|
} |
|
} else { |
|
ret.hash = sha1.New() |
|
ret.md5 = md5.New() |
|
|
|
ret.prf = prf10 |
|
} |
|
|
|
ret.suite = cipherSuite |
|
ret.buffer = []byte{} |
|
ret.version = version |
|
ret.wireVersion = wireVersion |
|
ret.isDTLS = isDTLS |
|
return ret |
|
} |
|
|
|
// A finishedHash calculates the hash of a set of handshake messages suitable |
|
// for including in a Finished message. |
|
type finishedHash struct { |
|
suite *cipherSuite |
|
|
|
// hash maintains a running hash of handshake messages. In TLS 1.2 and up, |
|
// the hash is determined from suite.hash(). In TLS 1.0 and 1.1, this is the |
|
// SHA-1 half of the MD5/SHA-1 concatenation. |
|
hash hash.Hash |
|
|
|
// md5 is the MD5 half of the TLS 1.0 and 1.1 MD5/SHA1 concatenation. |
|
md5 hash.Hash |
|
|
|
// In TLS 1.2, a full buffer is required. |
|
buffer []byte |
|
|
|
version uint16 |
|
wireVersion uint16 |
|
isDTLS bool |
|
prf func(result, secret, label, seed []byte) |
|
|
|
// secret, in TLS 1.3, is the running input secret. |
|
secret []byte |
|
} |
|
|
|
func (h *finishedHash) UpdateForHelloRetryRequest() { |
|
data := newByteBuilder() |
|
data.addU8(typeMessageHash) |
|
data.addU24(h.hash.Size()) |
|
data.addBytes(h.Sum()) |
|
h.hash = h.suite.hash().New() |
|
if h.buffer != nil { |
|
h.buffer = []byte{} |
|
} |
|
h.Write(data.finish()) |
|
} |
|
|
|
func (h *finishedHash) Write(msg []byte) (n int, err error) { |
|
h.hash.Write(msg) |
|
|
|
if h.version < VersionTLS12 { |
|
h.md5.Write(msg) |
|
} |
|
|
|
if h.buffer != nil { |
|
h.buffer = append(h.buffer, msg...) |
|
} |
|
|
|
return len(msg), nil |
|
} |
|
|
|
// WriteHandshake appends |msg| to the hash, which must be a serialized |
|
// handshake message with a TLS header. In DTLS, the header is rewritten to a |
|
// DTLS header with |seqno| as the sequence number. |
|
func (h *finishedHash) WriteHandshake(msg []byte, seqno uint16) { |
|
if h.isDTLS { |
|
// This is somewhat hacky. DTLS hashes a slightly different format. |
|
// First, the TLS header. |
|
h.Write(msg[:4]) |
|
// Then the sequence number and reassembled fragment offset (always 0). |
|
h.Write([]byte{byte(seqno >> 8), byte(seqno), 0, 0, 0}) |
|
// Then the reassembled fragment (always equal to the message length). |
|
h.Write(msg[1:4]) |
|
// And then the message body. |
|
h.Write(msg[4:]) |
|
} else { |
|
h.Write(msg) |
|
} |
|
} |
|
|
|
func (h finishedHash) Sum() []byte { |
|
if h.version >= VersionTLS12 { |
|
return h.hash.Sum(nil) |
|
} |
|
|
|
out := make([]byte, 0, md5.Size+sha1.Size) |
|
out = h.md5.Sum(out) |
|
return h.hash.Sum(out) |
|
} |
|
|
|
// clientSum returns the contents of the verify_data member of a client's |
|
// Finished message. |
|
func (h finishedHash) clientSum(baseKey []byte) []byte { |
|
if h.version < VersionTLS13 { |
|
out := make([]byte, finishedVerifyLength) |
|
h.prf(out, baseKey, clientFinishedLabel, h.Sum()) |
|
return out |
|
} |
|
|
|
clientFinishedKey := hkdfExpandLabel(h.suite.hash(), baseKey, finishedLabel, nil, h.hash.Size()) |
|
finishedHMAC := hmac.New(h.suite.hash().New, clientFinishedKey) |
|
finishedHMAC.Write(h.appendContextHashes(nil)) |
|
return finishedHMAC.Sum(nil) |
|
} |
|
|
|
// serverSum returns the contents of the verify_data member of a server's |
|
// Finished message. |
|
func (h finishedHash) serverSum(baseKey []byte) []byte { |
|
if h.version < VersionTLS13 { |
|
out := make([]byte, finishedVerifyLength) |
|
h.prf(out, baseKey, serverFinishedLabel, h.Sum()) |
|
return out |
|
} |
|
|
|
serverFinishedKey := hkdfExpandLabel(h.suite.hash(), baseKey, finishedLabel, nil, h.hash.Size()) |
|
finishedHMAC := hmac.New(h.suite.hash().New, serverFinishedKey) |
|
finishedHMAC.Write(h.appendContextHashes(nil)) |
|
return finishedHMAC.Sum(nil) |
|
} |
|
|
|
// hashForChannelID returns the hash to be signed for TLS Channel |
|
// ID. If a resumption, resumeHash has the previous handshake |
|
// hash. Otherwise, it is nil. |
|
func (h finishedHash) hashForChannelID(resumeHash []byte) []byte { |
|
hash := sha256.New() |
|
hash.Write(channelIDLabel) |
|
if resumeHash != nil { |
|
hash.Write(channelIDResumeLabel) |
|
hash.Write(resumeHash) |
|
} |
|
hash.Write(h.Sum()) |
|
return hash.Sum(nil) |
|
} |
|
|
|
// discardHandshakeBuffer is called when there is no more need to |
|
// buffer the entirety of the handshake messages. |
|
func (h *finishedHash) discardHandshakeBuffer() { |
|
h.buffer = nil |
|
} |
|
|
|
// zeroSecretTLS13 returns the default all zeros secret for TLS 1.3, used when a |
|
// given secret is not available in the handshake. See RFC 8446, section 7.1. |
|
func (h *finishedHash) zeroSecret() []byte { |
|
return make([]byte, h.hash.Size()) |
|
} |
|
|
|
// addEntropy incorporates ikm into the running TLS 1.3 secret with HKDF-Expand. |
|
func (h *finishedHash) addEntropy(ikm []byte) { |
|
h.secret = hkdf.Extract(h.suite.hash().New, ikm, h.secret) |
|
} |
|
|
|
func (h *finishedHash) nextSecret() { |
|
h.secret = hkdfExpandLabel(h.suite.hash(), h.secret, []byte("derived"), h.suite.hash().New().Sum(nil), h.hash.Size()) |
|
} |
|
|
|
// hkdfExpandLabel implements TLS 1.3's HKDF-Expand-Label function, as defined |
|
// in section 7.1 of RFC 8446. |
|
func hkdfExpandLabel(hash crypto.Hash, secret, label, hashValue []byte, length int) []byte { |
|
if len(label) > 255 || len(hashValue) > 255 { |
|
panic("hkdfExpandLabel: label or hashValue too long") |
|
} |
|
|
|
versionLabel := []byte("tls13 ") |
|
hkdfLabel := make([]byte, 3+len(versionLabel)+len(label)+1+len(hashValue)) |
|
x := hkdfLabel |
|
x[0] = byte(length >> 8) |
|
x[1] = byte(length) |
|
x[2] = byte(len(versionLabel) + len(label)) |
|
x = x[3:] |
|
copy(x, versionLabel) |
|
x = x[len(versionLabel):] |
|
copy(x, label) |
|
x = x[len(label):] |
|
x[0] = byte(len(hashValue)) |
|
copy(x[1:], hashValue) |
|
ret := make([]byte, length) |
|
if n, err := hkdf.Expand(hash.New, secret, hkdfLabel).Read(ret); err != nil || n != length { |
|
panic("hkdfExpandLabel: hkdf.Expand unexpectedly failed") |
|
} |
|
return ret |
|
} |
|
|
|
// appendContextHashes returns the concatenation of the handshake hash and the |
|
// resumption context hash, as used in TLS 1.3. |
|
func (h *finishedHash) appendContextHashes(b []byte) []byte { |
|
b = h.hash.Sum(b) |
|
return b |
|
} |
|
|
|
// The following are labels for traffic secret derivation in TLS 1.3. |
|
var ( |
|
externalPSKBinderLabel = []byte("ext binder") |
|
resumptionPSKBinderLabel = []byte("res binder") |
|
earlyTrafficLabel = []byte("c e traffic") |
|
clientHandshakeTrafficLabel = []byte("c hs traffic") |
|
serverHandshakeTrafficLabel = []byte("s hs traffic") |
|
clientApplicationTrafficLabel = []byte("c ap traffic") |
|
serverApplicationTrafficLabel = []byte("s ap traffic") |
|
applicationTrafficLabel = []byte("traffic upd") |
|
earlyExporterLabel = []byte("e exp master") |
|
exporterLabel = []byte("exp master") |
|
resumptionLabel = []byte("res master") |
|
|
|
resumptionPSKLabel = []byte("resumption") |
|
) |
|
|
|
// deriveSecret implements TLS 1.3's Derive-Secret function, as defined in |
|
// section 7.1 of draft ietf-tls-tls13-16. |
|
func (h *finishedHash) deriveSecret(label []byte) []byte { |
|
return hkdfExpandLabel(h.suite.hash(), h.secret, label, h.appendContextHashes(nil), h.hash.Size()) |
|
} |
|
|
|
// deriveSecretPeek is the same as deriveSecret, but it enables the caller to |
|
// tentatively append messages to the transcript. The |extraMessages| parameter |
|
// contains the bytes of these tentative messages. |
|
func (h *finishedHash) deriveSecretPeek(label []byte, extraMessages []byte) []byte { |
|
hashPeek := copyHash(h.hash, h.suite.hash()) |
|
hashPeek.Write(extraMessages) |
|
return hkdfExpandLabel(h.suite.hash(), h.secret, label, hashPeek.Sum(nil), h.hash.Size()) |
|
} |
|
|
|
// The following are context strings for CertificateVerify in TLS 1.3. |
|
var ( |
|
clientCertificateVerifyContextTLS13 = []byte("TLS 1.3, client CertificateVerify") |
|
serverCertificateVerifyContextTLS13 = []byte("TLS 1.3, server CertificateVerify") |
|
channelIDContextTLS13 = []byte("TLS 1.3, Channel ID") |
|
) |
|
|
|
// certificateVerifyMessage returns the input to be signed for CertificateVerify |
|
// in TLS 1.3. |
|
func (h *finishedHash) certificateVerifyInput(context []byte) []byte { |
|
const paddingLen = 64 |
|
b := make([]byte, paddingLen, paddingLen+len(context)+1+2*h.hash.Size()) |
|
for i := 0; i < paddingLen; i++ { |
|
b[i] = 32 |
|
} |
|
b = append(b, context...) |
|
b = append(b, 0) |
|
b = h.appendContextHashes(b) |
|
return b |
|
} |
|
|
|
type trafficDirection int |
|
|
|
const ( |
|
clientWrite trafficDirection = iota |
|
serverWrite |
|
) |
|
|
|
var ( |
|
keyTLS13 = []byte("key") |
|
ivTLS13 = []byte("iv") |
|
) |
|
|
|
// deriveTrafficAEAD derives traffic keys and constructs an AEAD given a traffic |
|
// secret. |
|
func deriveTrafficAEAD(version uint16, suite *cipherSuite, secret []byte, side trafficDirection) interface{} { |
|
key := hkdfExpandLabel(suite.hash(), secret, keyTLS13, nil, suite.keyLen) |
|
iv := hkdfExpandLabel(suite.hash(), secret, ivTLS13, nil, suite.ivLen(version)) |
|
|
|
return suite.aead(version, key, iv) |
|
} |
|
|
|
func updateTrafficSecret(hash crypto.Hash, version uint16, secret []byte) []byte { |
|
return hkdfExpandLabel(hash, secret, applicationTrafficLabel, nil, hash.Size()) |
|
} |
|
|
|
func computePSKBinder(psk []byte, version uint16, label []byte, cipherSuite *cipherSuite, clientHello, helloRetryRequest, truncatedHello []byte) []byte { |
|
finishedHash := newFinishedHash(version, false, cipherSuite) |
|
finishedHash.addEntropy(psk) |
|
binderKey := finishedHash.deriveSecret(label) |
|
finishedHash.Write(clientHello) |
|
if len(helloRetryRequest) != 0 { |
|
finishedHash.UpdateForHelloRetryRequest() |
|
} |
|
finishedHash.Write(helloRetryRequest) |
|
finishedHash.Write(truncatedHello) |
|
return finishedHash.clientSum(binderKey) |
|
} |
|
|
|
func deriveSessionPSK(suite *cipherSuite, version uint16, masterSecret []byte, nonce []byte) []byte { |
|
hash := suite.hash() |
|
return hkdfExpandLabel(hash, masterSecret, resumptionPSKLabel, nonce, hash.Size()) |
|
}
|
|
|