Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1422 lines
54 KiB
1422 lines
54 KiB
// Copyright 2005, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
// |
|
// The Google C++ Testing and Mocking Framework (Google Test) |
|
// |
|
// This header file declares functions and macros used internally by |
|
// Google Test. They are subject to change without notice. |
|
|
|
// GOOGLETEST_CM0001 DO NOT DELETE |
|
|
|
#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ |
|
#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ |
|
|
|
#include "gtest/internal/gtest-port.h" |
|
|
|
#if GTEST_OS_LINUX |
|
# include <stdlib.h> |
|
# include <sys/types.h> |
|
# include <sys/wait.h> |
|
# include <unistd.h> |
|
#endif // GTEST_OS_LINUX |
|
|
|
#if GTEST_HAS_EXCEPTIONS |
|
# include <stdexcept> |
|
#endif |
|
|
|
#include <ctype.h> |
|
#include <float.h> |
|
#include <string.h> |
|
#include <iomanip> |
|
#include <limits> |
|
#include <map> |
|
#include <set> |
|
#include <string> |
|
#include <type_traits> |
|
#include <vector> |
|
|
|
#include "gtest/gtest-message.h" |
|
#include "gtest/internal/gtest-filepath.h" |
|
#include "gtest/internal/gtest-string.h" |
|
#include "gtest/internal/gtest-type-util.h" |
|
|
|
// Due to C++ preprocessor weirdness, we need double indirection to |
|
// concatenate two tokens when one of them is __LINE__. Writing |
|
// |
|
// foo ## __LINE__ |
|
// |
|
// will result in the token foo__LINE__, instead of foo followed by |
|
// the current line number. For more details, see |
|
// http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6 |
|
#define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar) |
|
#define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar |
|
|
|
// Stringifies its argument. |
|
#define GTEST_STRINGIFY_(name) #name |
|
|
|
namespace proto2 { class Message; } |
|
|
|
namespace testing { |
|
|
|
// Forward declarations. |
|
|
|
class AssertionResult; // Result of an assertion. |
|
class Message; // Represents a failure message. |
|
class Test; // Represents a test. |
|
class TestInfo; // Information about a test. |
|
class TestPartResult; // Result of a test part. |
|
class UnitTest; // A collection of test suites. |
|
|
|
template <typename T> |
|
::std::string PrintToString(const T& value); |
|
|
|
namespace internal { |
|
|
|
struct TraceInfo; // Information about a trace point. |
|
class TestInfoImpl; // Opaque implementation of TestInfo |
|
class UnitTestImpl; // Opaque implementation of UnitTest |
|
|
|
// The text used in failure messages to indicate the start of the |
|
// stack trace. |
|
GTEST_API_ extern const char kStackTraceMarker[]; |
|
|
|
// An IgnoredValue object can be implicitly constructed from ANY value. |
|
class IgnoredValue { |
|
struct Sink {}; |
|
public: |
|
// This constructor template allows any value to be implicitly |
|
// converted to IgnoredValue. The object has no data member and |
|
// doesn't try to remember anything about the argument. We |
|
// deliberately omit the 'explicit' keyword in order to allow the |
|
// conversion to be implicit. |
|
// Disable the conversion if T already has a magical conversion operator. |
|
// Otherwise we get ambiguity. |
|
template <typename T, |
|
typename std::enable_if<!std::is_convertible<T, Sink>::value, |
|
int>::type = 0> |
|
IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit) |
|
}; |
|
|
|
// Appends the user-supplied message to the Google-Test-generated message. |
|
GTEST_API_ std::string AppendUserMessage( |
|
const std::string& gtest_msg, const Message& user_msg); |
|
|
|
#if GTEST_HAS_EXCEPTIONS |
|
|
|
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4275 \ |
|
/* an exported class was derived from a class that was not exported */) |
|
|
|
// This exception is thrown by (and only by) a failed Google Test |
|
// assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions |
|
// are enabled). We derive it from std::runtime_error, which is for |
|
// errors presumably detectable only at run time. Since |
|
// std::runtime_error inherits from std::exception, many testing |
|
// frameworks know how to extract and print the message inside it. |
|
class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error { |
|
public: |
|
explicit GoogleTestFailureException(const TestPartResult& failure); |
|
}; |
|
|
|
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4275 |
|
|
|
#endif // GTEST_HAS_EXCEPTIONS |
|
|
|
namespace edit_distance { |
|
// Returns the optimal edits to go from 'left' to 'right'. |
|
// All edits cost the same, with replace having lower priority than |
|
// add/remove. |
|
// Simple implementation of the Wagner-Fischer algorithm. |
|
// See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm |
|
enum EditType { kMatch, kAdd, kRemove, kReplace }; |
|
GTEST_API_ std::vector<EditType> CalculateOptimalEdits( |
|
const std::vector<size_t>& left, const std::vector<size_t>& right); |
|
|
|
// Same as above, but the input is represented as strings. |
|
GTEST_API_ std::vector<EditType> CalculateOptimalEdits( |
|
const std::vector<std::string>& left, |
|
const std::vector<std::string>& right); |
|
|
|
// Create a diff of the input strings in Unified diff format. |
|
GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left, |
|
const std::vector<std::string>& right, |
|
size_t context = 2); |
|
|
|
} // namespace edit_distance |
|
|
|
// Calculate the diff between 'left' and 'right' and return it in unified diff |
|
// format. |
|
// If not null, stores in 'total_line_count' the total number of lines found |
|
// in left + right. |
|
GTEST_API_ std::string DiffStrings(const std::string& left, |
|
const std::string& right, |
|
size_t* total_line_count); |
|
|
|
// Constructs and returns the message for an equality assertion |
|
// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. |
|
// |
|
// The first four parameters are the expressions used in the assertion |
|
// and their values, as strings. For example, for ASSERT_EQ(foo, bar) |
|
// where foo is 5 and bar is 6, we have: |
|
// |
|
// expected_expression: "foo" |
|
// actual_expression: "bar" |
|
// expected_value: "5" |
|
// actual_value: "6" |
|
// |
|
// The ignoring_case parameter is true iff the assertion is a |
|
// *_STRCASEEQ*. When it's true, the string " (ignoring case)" will |
|
// be inserted into the message. |
|
GTEST_API_ AssertionResult EqFailure(const char* expected_expression, |
|
const char* actual_expression, |
|
const std::string& expected_value, |
|
const std::string& actual_value, |
|
bool ignoring_case); |
|
|
|
// Constructs a failure message for Boolean assertions such as EXPECT_TRUE. |
|
GTEST_API_ std::string GetBoolAssertionFailureMessage( |
|
const AssertionResult& assertion_result, |
|
const char* expression_text, |
|
const char* actual_predicate_value, |
|
const char* expected_predicate_value); |
|
|
|
// This template class represents an IEEE floating-point number |
|
// (either single-precision or double-precision, depending on the |
|
// template parameters). |
|
// |
|
// The purpose of this class is to do more sophisticated number |
|
// comparison. (Due to round-off error, etc, it's very unlikely that |
|
// two floating-points will be equal exactly. Hence a naive |
|
// comparison by the == operation often doesn't work.) |
|
// |
|
// Format of IEEE floating-point: |
|
// |
|
// The most-significant bit being the leftmost, an IEEE |
|
// floating-point looks like |
|
// |
|
// sign_bit exponent_bits fraction_bits |
|
// |
|
// Here, sign_bit is a single bit that designates the sign of the |
|
// number. |
|
// |
|
// For float, there are 8 exponent bits and 23 fraction bits. |
|
// |
|
// For double, there are 11 exponent bits and 52 fraction bits. |
|
// |
|
// More details can be found at |
|
// http://en.wikipedia.org/wiki/IEEE_floating-point_standard. |
|
// |
|
// Template parameter: |
|
// |
|
// RawType: the raw floating-point type (either float or double) |
|
template <typename RawType> |
|
class FloatingPoint { |
|
public: |
|
// Defines the unsigned integer type that has the same size as the |
|
// floating point number. |
|
typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits; |
|
|
|
// Constants. |
|
|
|
// # of bits in a number. |
|
static const size_t kBitCount = 8*sizeof(RawType); |
|
|
|
// # of fraction bits in a number. |
|
static const size_t kFractionBitCount = |
|
std::numeric_limits<RawType>::digits - 1; |
|
|
|
// # of exponent bits in a number. |
|
static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount; |
|
|
|
// The mask for the sign bit. |
|
static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1); |
|
|
|
// The mask for the fraction bits. |
|
static const Bits kFractionBitMask = |
|
~static_cast<Bits>(0) >> (kExponentBitCount + 1); |
|
|
|
// The mask for the exponent bits. |
|
static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask); |
|
|
|
// How many ULP's (Units in the Last Place) we want to tolerate when |
|
// comparing two numbers. The larger the value, the more error we |
|
// allow. A 0 value means that two numbers must be exactly the same |
|
// to be considered equal. |
|
// |
|
// The maximum error of a single floating-point operation is 0.5 |
|
// units in the last place. On Intel CPU's, all floating-point |
|
// calculations are done with 80-bit precision, while double has 64 |
|
// bits. Therefore, 4 should be enough for ordinary use. |
|
// |
|
// See the following article for more details on ULP: |
|
// http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ |
|
static const size_t kMaxUlps = 4; |
|
|
|
// Constructs a FloatingPoint from a raw floating-point number. |
|
// |
|
// On an Intel CPU, passing a non-normalized NAN (Not a Number) |
|
// around may change its bits, although the new value is guaranteed |
|
// to be also a NAN. Therefore, don't expect this constructor to |
|
// preserve the bits in x when x is a NAN. |
|
explicit FloatingPoint(const RawType& x) { u_.value_ = x; } |
|
|
|
// Static methods |
|
|
|
// Reinterprets a bit pattern as a floating-point number. |
|
// |
|
// This function is needed to test the AlmostEquals() method. |
|
static RawType ReinterpretBits(const Bits bits) { |
|
FloatingPoint fp(0); |
|
fp.u_.bits_ = bits; |
|
return fp.u_.value_; |
|
} |
|
|
|
// Returns the floating-point number that represent positive infinity. |
|
static RawType Infinity() { |
|
return ReinterpretBits(kExponentBitMask); |
|
} |
|
|
|
// Returns the maximum representable finite floating-point number. |
|
static RawType Max(); |
|
|
|
// Non-static methods |
|
|
|
// Returns the bits that represents this number. |
|
const Bits &bits() const { return u_.bits_; } |
|
|
|
// Returns the exponent bits of this number. |
|
Bits exponent_bits() const { return kExponentBitMask & u_.bits_; } |
|
|
|
// Returns the fraction bits of this number. |
|
Bits fraction_bits() const { return kFractionBitMask & u_.bits_; } |
|
|
|
// Returns the sign bit of this number. |
|
Bits sign_bit() const { return kSignBitMask & u_.bits_; } |
|
|
|
// Returns true iff this is NAN (not a number). |
|
bool is_nan() const { |
|
// It's a NAN if the exponent bits are all ones and the fraction |
|
// bits are not entirely zeros. |
|
return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0); |
|
} |
|
|
|
// Returns true iff this number is at most kMaxUlps ULP's away from |
|
// rhs. In particular, this function: |
|
// |
|
// - returns false if either number is (or both are) NAN. |
|
// - treats really large numbers as almost equal to infinity. |
|
// - thinks +0.0 and -0.0 are 0 DLP's apart. |
|
bool AlmostEquals(const FloatingPoint& rhs) const { |
|
// The IEEE standard says that any comparison operation involving |
|
// a NAN must return false. |
|
if (is_nan() || rhs.is_nan()) return false; |
|
|
|
return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) |
|
<= kMaxUlps; |
|
} |
|
|
|
private: |
|
// The data type used to store the actual floating-point number. |
|
union FloatingPointUnion { |
|
RawType value_; // The raw floating-point number. |
|
Bits bits_; // The bits that represent the number. |
|
}; |
|
|
|
// Converts an integer from the sign-and-magnitude representation to |
|
// the biased representation. More precisely, let N be 2 to the |
|
// power of (kBitCount - 1), an integer x is represented by the |
|
// unsigned number x + N. |
|
// |
|
// For instance, |
|
// |
|
// -N + 1 (the most negative number representable using |
|
// sign-and-magnitude) is represented by 1; |
|
// 0 is represented by N; and |
|
// N - 1 (the biggest number representable using |
|
// sign-and-magnitude) is represented by 2N - 1. |
|
// |
|
// Read http://en.wikipedia.org/wiki/Signed_number_representations |
|
// for more details on signed number representations. |
|
static Bits SignAndMagnitudeToBiased(const Bits &sam) { |
|
if (kSignBitMask & sam) { |
|
// sam represents a negative number. |
|
return ~sam + 1; |
|
} else { |
|
// sam represents a positive number. |
|
return kSignBitMask | sam; |
|
} |
|
} |
|
|
|
// Given two numbers in the sign-and-magnitude representation, |
|
// returns the distance between them as an unsigned number. |
|
static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1, |
|
const Bits &sam2) { |
|
const Bits biased1 = SignAndMagnitudeToBiased(sam1); |
|
const Bits biased2 = SignAndMagnitudeToBiased(sam2); |
|
return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); |
|
} |
|
|
|
FloatingPointUnion u_; |
|
}; |
|
|
|
// We cannot use std::numeric_limits<T>::max() as it clashes with the max() |
|
// macro defined by <windows.h>. |
|
template <> |
|
inline float FloatingPoint<float>::Max() { return FLT_MAX; } |
|
template <> |
|
inline double FloatingPoint<double>::Max() { return DBL_MAX; } |
|
|
|
// Typedefs the instances of the FloatingPoint template class that we |
|
// care to use. |
|
typedef FloatingPoint<float> Float; |
|
typedef FloatingPoint<double> Double; |
|
|
|
// In order to catch the mistake of putting tests that use different |
|
// test fixture classes in the same test suite, we need to assign |
|
// unique IDs to fixture classes and compare them. The TypeId type is |
|
// used to hold such IDs. The user should treat TypeId as an opaque |
|
// type: the only operation allowed on TypeId values is to compare |
|
// them for equality using the == operator. |
|
typedef const void* TypeId; |
|
|
|
template <typename T> |
|
class TypeIdHelper { |
|
public: |
|
// dummy_ must not have a const type. Otherwise an overly eager |
|
// compiler (e.g. MSVC 7.1 & 8.0) may try to merge |
|
// TypeIdHelper<T>::dummy_ for different Ts as an "optimization". |
|
static bool dummy_; |
|
}; |
|
|
|
template <typename T> |
|
bool TypeIdHelper<T>::dummy_ = false; |
|
|
|
// GetTypeId<T>() returns the ID of type T. Different values will be |
|
// returned for different types. Calling the function twice with the |
|
// same type argument is guaranteed to return the same ID. |
|
template <typename T> |
|
TypeId GetTypeId() { |
|
// The compiler is required to allocate a different |
|
// TypeIdHelper<T>::dummy_ variable for each T used to instantiate |
|
// the template. Therefore, the address of dummy_ is guaranteed to |
|
// be unique. |
|
return &(TypeIdHelper<T>::dummy_); |
|
} |
|
|
|
// Returns the type ID of ::testing::Test. Always call this instead |
|
// of GetTypeId< ::testing::Test>() to get the type ID of |
|
// ::testing::Test, as the latter may give the wrong result due to a |
|
// suspected linker bug when compiling Google Test as a Mac OS X |
|
// framework. |
|
GTEST_API_ TypeId GetTestTypeId(); |
|
|
|
// Defines the abstract factory interface that creates instances |
|
// of a Test object. |
|
class TestFactoryBase { |
|
public: |
|
virtual ~TestFactoryBase() {} |
|
|
|
// Creates a test instance to run. The instance is both created and destroyed |
|
// within TestInfoImpl::Run() |
|
virtual Test* CreateTest() = 0; |
|
|
|
protected: |
|
TestFactoryBase() {} |
|
|
|
private: |
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase); |
|
}; |
|
|
|
// This class provides implementation of TeastFactoryBase interface. |
|
// It is used in TEST and TEST_F macros. |
|
template <class TestClass> |
|
class TestFactoryImpl : public TestFactoryBase { |
|
public: |
|
Test* CreateTest() override { return new TestClass; } |
|
}; |
|
|
|
#if GTEST_OS_WINDOWS |
|
|
|
// Predicate-formatters for implementing the HRESULT checking macros |
|
// {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED} |
|
// We pass a long instead of HRESULT to avoid causing an |
|
// include dependency for the HRESULT type. |
|
GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr, |
|
long hr); // NOLINT |
|
GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr, |
|
long hr); // NOLINT |
|
|
|
#endif // GTEST_OS_WINDOWS |
|
|
|
// Types of SetUpTestSuite() and TearDownTestSuite() functions. |
|
using SetUpTestSuiteFunc = void (*)(); |
|
using TearDownTestSuiteFunc = void (*)(); |
|
|
|
struct CodeLocation { |
|
CodeLocation(const std::string& a_file, int a_line) |
|
: file(a_file), line(a_line) {} |
|
|
|
std::string file; |
|
int line; |
|
}; |
|
|
|
// Helper to identify which setup function for TestCase / TestSuite to call. |
|
// Only one function is allowed, either TestCase or TestSute but not both. |
|
|
|
// Utility functions to help SuiteApiResolver |
|
using SetUpTearDownSuiteFuncType = void (*)(); |
|
|
|
inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull( |
|
SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) { |
|
return a == def ? nullptr : a; |
|
} |
|
|
|
template <typename T> |
|
// Note that SuiteApiResolver inherits from T because |
|
// SetUpTestSuite()/TearDownTestSuite() could be protected. Ths way |
|
// SuiteApiResolver can access them. |
|
struct SuiteApiResolver : T { |
|
// testing::Test is only forward declared at this point. So we make it a |
|
// dependend class for the compiler to be OK with it. |
|
using Test = |
|
typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type; |
|
|
|
static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite() { |
|
SetUpTearDownSuiteFuncType test_case_fp = |
|
GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase); |
|
SetUpTearDownSuiteFuncType test_suite_fp = |
|
GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite); |
|
|
|
GTEST_CHECK_(!test_case_fp || !test_suite_fp) |
|
<< "Test can not provide both SetUpTestSuite and SetUpTestCase, please " |
|
"make sure there is only one present "; |
|
|
|
return test_case_fp != nullptr ? test_case_fp : test_suite_fp; |
|
} |
|
|
|
static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite() { |
|
SetUpTearDownSuiteFuncType test_case_fp = |
|
GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase); |
|
SetUpTearDownSuiteFuncType test_suite_fp = |
|
GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite); |
|
|
|
GTEST_CHECK_(!test_case_fp || !test_suite_fp) |
|
<< "Test can not provide both TearDownTestSuite and TearDownTestCase," |
|
" please make sure there is only one present "; |
|
|
|
return test_case_fp != nullptr ? test_case_fp : test_suite_fp; |
|
} |
|
}; |
|
|
|
// Creates a new TestInfo object and registers it with Google Test; |
|
// returns the created object. |
|
// |
|
// Arguments: |
|
// |
|
// test_suite_name: name of the test suite |
|
// name: name of the test |
|
// type_param the name of the test's type parameter, or NULL if |
|
// this is not a typed or a type-parameterized test. |
|
// value_param text representation of the test's value parameter, |
|
// or NULL if this is not a type-parameterized test. |
|
// code_location: code location where the test is defined |
|
// fixture_class_id: ID of the test fixture class |
|
// set_up_tc: pointer to the function that sets up the test suite |
|
// tear_down_tc: pointer to the function that tears down the test suite |
|
// factory: pointer to the factory that creates a test object. |
|
// The newly created TestInfo instance will assume |
|
// ownership of the factory object. |
|
GTEST_API_ TestInfo* MakeAndRegisterTestInfo( |
|
const char* test_suite_name, const char* name, const char* type_param, |
|
const char* value_param, CodeLocation code_location, |
|
TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc, |
|
TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory); |
|
|
|
// If *pstr starts with the given prefix, modifies *pstr to be right |
|
// past the prefix and returns true; otherwise leaves *pstr unchanged |
|
// and returns false. None of pstr, *pstr, and prefix can be NULL. |
|
GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr); |
|
|
|
#if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P |
|
|
|
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ |
|
/* class A needs to have dll-interface to be used by clients of class B */) |
|
|
|
// State of the definition of a type-parameterized test suite. |
|
class GTEST_API_ TypedTestSuitePState { |
|
public: |
|
TypedTestSuitePState() : registered_(false) {} |
|
|
|
// Adds the given test name to defined_test_names_ and return true |
|
// if the test suite hasn't been registered; otherwise aborts the |
|
// program. |
|
bool AddTestName(const char* file, int line, const char* case_name, |
|
const char* test_name) { |
|
if (registered_) { |
|
fprintf(stderr, |
|
"%s Test %s must be defined before " |
|
"REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n", |
|
FormatFileLocation(file, line).c_str(), test_name, case_name); |
|
fflush(stderr); |
|
posix::Abort(); |
|
} |
|
registered_tests_.insert( |
|
::std::make_pair(test_name, CodeLocation(file, line))); |
|
return true; |
|
} |
|
|
|
bool TestExists(const std::string& test_name) const { |
|
return registered_tests_.count(test_name) > 0; |
|
} |
|
|
|
const CodeLocation& GetCodeLocation(const std::string& test_name) const { |
|
RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name); |
|
GTEST_CHECK_(it != registered_tests_.end()); |
|
return it->second; |
|
} |
|
|
|
// Verifies that registered_tests match the test names in |
|
// defined_test_names_; returns registered_tests if successful, or |
|
// aborts the program otherwise. |
|
const char* VerifyRegisteredTestNames( |
|
const char* file, int line, const char* registered_tests); |
|
|
|
private: |
|
typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap; |
|
|
|
bool registered_; |
|
RegisteredTestsMap registered_tests_; |
|
}; |
|
|
|
// Legacy API is deprecated but still available |
|
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ |
|
using TypedTestCasePState = TypedTestSuitePState; |
|
#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ |
|
|
|
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 |
|
|
|
// Skips to the first non-space char after the first comma in 'str'; |
|
// returns NULL if no comma is found in 'str'. |
|
inline const char* SkipComma(const char* str) { |
|
const char* comma = strchr(str, ','); |
|
if (comma == nullptr) { |
|
return nullptr; |
|
} |
|
while (IsSpace(*(++comma))) {} |
|
return comma; |
|
} |
|
|
|
// Returns the prefix of 'str' before the first comma in it; returns |
|
// the entire string if it contains no comma. |
|
inline std::string GetPrefixUntilComma(const char* str) { |
|
const char* comma = strchr(str, ','); |
|
return comma == nullptr ? str : std::string(str, comma); |
|
} |
|
|
|
// Splits a given string on a given delimiter, populating a given |
|
// vector with the fields. |
|
void SplitString(const ::std::string& str, char delimiter, |
|
::std::vector< ::std::string>* dest); |
|
|
|
// The default argument to the template below for the case when the user does |
|
// not provide a name generator. |
|
struct DefaultNameGenerator { |
|
template <typename T> |
|
static std::string GetName(int i) { |
|
return StreamableToString(i); |
|
} |
|
}; |
|
|
|
template <typename Provided = DefaultNameGenerator> |
|
struct NameGeneratorSelector { |
|
typedef Provided type; |
|
}; |
|
|
|
template <typename NameGenerator> |
|
void GenerateNamesRecursively(Types0, std::vector<std::string>*, int) {} |
|
|
|
template <typename NameGenerator, typename Types> |
|
void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) { |
|
result->push_back(NameGenerator::template GetName<typename Types::Head>(i)); |
|
GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result, |
|
i + 1); |
|
} |
|
|
|
template <typename NameGenerator, typename Types> |
|
std::vector<std::string> GenerateNames() { |
|
std::vector<std::string> result; |
|
GenerateNamesRecursively<NameGenerator>(Types(), &result, 0); |
|
return result; |
|
} |
|
|
|
// TypeParameterizedTest<Fixture, TestSel, Types>::Register() |
|
// registers a list of type-parameterized tests with Google Test. The |
|
// return value is insignificant - we just need to return something |
|
// such that we can call this function in a namespace scope. |
|
// |
|
// Implementation note: The GTEST_TEMPLATE_ macro declares a template |
|
// template parameter. It's defined in gtest-type-util.h. |
|
template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types> |
|
class TypeParameterizedTest { |
|
public: |
|
// 'index' is the index of the test in the type list 'Types' |
|
// specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite, |
|
// Types). Valid values for 'index' are [0, N - 1] where N is the |
|
// length of Types. |
|
static bool Register(const char* prefix, const CodeLocation& code_location, |
|
const char* case_name, const char* test_names, int index, |
|
const std::vector<std::string>& type_names = |
|
GenerateNames<DefaultNameGenerator, Types>()) { |
|
typedef typename Types::Head Type; |
|
typedef Fixture<Type> FixtureClass; |
|
typedef typename GTEST_BIND_(TestSel, Type) TestClass; |
|
|
|
// First, registers the first type-parameterized test in the type |
|
// list. |
|
MakeAndRegisterTestInfo( |
|
(std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + |
|
"/" + type_names[index]) |
|
.c_str(), |
|
StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(), |
|
GetTypeName<Type>().c_str(), |
|
nullptr, // No value parameter. |
|
code_location, GetTypeId<FixtureClass>(), |
|
SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(), |
|
SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(), |
|
new TestFactoryImpl<TestClass>); |
|
|
|
// Next, recurses (at compile time) with the tail of the type list. |
|
return TypeParameterizedTest<Fixture, TestSel, |
|
typename Types::Tail>::Register(prefix, |
|
code_location, |
|
case_name, |
|
test_names, |
|
index + 1, |
|
type_names); |
|
} |
|
}; |
|
|
|
// The base case for the compile time recursion. |
|
template <GTEST_TEMPLATE_ Fixture, class TestSel> |
|
class TypeParameterizedTest<Fixture, TestSel, Types0> { |
|
public: |
|
static bool Register(const char* /*prefix*/, const CodeLocation&, |
|
const char* /*case_name*/, const char* /*test_names*/, |
|
int /*index*/, |
|
const std::vector<std::string>& = |
|
std::vector<std::string>() /*type_names*/) { |
|
return true; |
|
} |
|
}; |
|
|
|
// TypeParameterizedTestSuite<Fixture, Tests, Types>::Register() |
|
// registers *all combinations* of 'Tests' and 'Types' with Google |
|
// Test. The return value is insignificant - we just need to return |
|
// something such that we can call this function in a namespace scope. |
|
template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types> |
|
class TypeParameterizedTestSuite { |
|
public: |
|
static bool Register(const char* prefix, CodeLocation code_location, |
|
const TypedTestSuitePState* state, const char* case_name, |
|
const char* test_names, |
|
const std::vector<std::string>& type_names = |
|
GenerateNames<DefaultNameGenerator, Types>()) { |
|
std::string test_name = StripTrailingSpaces( |
|
GetPrefixUntilComma(test_names)); |
|
if (!state->TestExists(test_name)) { |
|
fprintf(stderr, "Failed to get code location for test %s.%s at %s.", |
|
case_name, test_name.c_str(), |
|
FormatFileLocation(code_location.file.c_str(), |
|
code_location.line).c_str()); |
|
fflush(stderr); |
|
posix::Abort(); |
|
} |
|
const CodeLocation& test_location = state->GetCodeLocation(test_name); |
|
|
|
typedef typename Tests::Head Head; |
|
|
|
// First, register the first test in 'Test' for each type in 'Types'. |
|
TypeParameterizedTest<Fixture, Head, Types>::Register( |
|
prefix, test_location, case_name, test_names, 0, type_names); |
|
|
|
// Next, recurses (at compile time) with the tail of the test list. |
|
return TypeParameterizedTestSuite<Fixture, typename Tests::Tail, |
|
Types>::Register(prefix, code_location, |
|
state, case_name, |
|
SkipComma(test_names), |
|
type_names); |
|
} |
|
}; |
|
|
|
// The base case for the compile time recursion. |
|
template <GTEST_TEMPLATE_ Fixture, typename Types> |
|
class TypeParameterizedTestSuite<Fixture, Templates0, Types> { |
|
public: |
|
static bool Register(const char* /*prefix*/, const CodeLocation&, |
|
const TypedTestSuitePState* /*state*/, |
|
const char* /*case_name*/, const char* /*test_names*/, |
|
const std::vector<std::string>& = |
|
std::vector<std::string>() /*type_names*/) { |
|
return true; |
|
} |
|
}; |
|
|
|
#endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P |
|
|
|
// Returns the current OS stack trace as an std::string. |
|
// |
|
// The maximum number of stack frames to be included is specified by |
|
// the gtest_stack_trace_depth flag. The skip_count parameter |
|
// specifies the number of top frames to be skipped, which doesn't |
|
// count against the number of frames to be included. |
|
// |
|
// For example, if Foo() calls Bar(), which in turn calls |
|
// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in |
|
// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. |
|
GTEST_API_ std::string GetCurrentOsStackTraceExceptTop( |
|
UnitTest* unit_test, int skip_count); |
|
|
|
// Helpers for suppressing warnings on unreachable code or constant |
|
// condition. |
|
|
|
// Always returns true. |
|
GTEST_API_ bool AlwaysTrue(); |
|
|
|
// Always returns false. |
|
inline bool AlwaysFalse() { return !AlwaysTrue(); } |
|
|
|
// Helper for suppressing false warning from Clang on a const char* |
|
// variable declared in a conditional expression always being NULL in |
|
// the else branch. |
|
struct GTEST_API_ ConstCharPtr { |
|
ConstCharPtr(const char* str) : value(str) {} |
|
operator bool() const { return true; } |
|
const char* value; |
|
}; |
|
|
|
// A simple Linear Congruential Generator for generating random |
|
// numbers with a uniform distribution. Unlike rand() and srand(), it |
|
// doesn't use global state (and therefore can't interfere with user |
|
// code). Unlike rand_r(), it's portable. An LCG isn't very random, |
|
// but it's good enough for our purposes. |
|
class GTEST_API_ Random { |
|
public: |
|
static const UInt32 kMaxRange = 1u << 31; |
|
|
|
explicit Random(UInt32 seed) : state_(seed) {} |
|
|
|
void Reseed(UInt32 seed) { state_ = seed; } |
|
|
|
// Generates a random number from [0, range). Crashes if 'range' is |
|
// 0 or greater than kMaxRange. |
|
UInt32 Generate(UInt32 range); |
|
|
|
private: |
|
UInt32 state_; |
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(Random); |
|
}; |
|
|
|
// Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a |
|
// compiler error iff T1 and T2 are different types. |
|
template <typename T1, typename T2> |
|
struct CompileAssertTypesEqual; |
|
|
|
template <typename T> |
|
struct CompileAssertTypesEqual<T, T> { |
|
}; |
|
|
|
// Removes the reference from a type if it is a reference type, |
|
// otherwise leaves it unchanged. This is the same as |
|
// tr1::remove_reference, which is not widely available yet. |
|
template <typename T> |
|
struct RemoveReference { typedef T type; }; // NOLINT |
|
template <typename T> |
|
struct RemoveReference<T&> { typedef T type; }; // NOLINT |
|
|
|
// A handy wrapper around RemoveReference that works when the argument |
|
// T depends on template parameters. |
|
#define GTEST_REMOVE_REFERENCE_(T) \ |
|
typename ::testing::internal::RemoveReference<T>::type |
|
|
|
// Removes const from a type if it is a const type, otherwise leaves |
|
// it unchanged. This is the same as tr1::remove_const, which is not |
|
// widely available yet. |
|
template <typename T> |
|
struct RemoveConst { typedef T type; }; // NOLINT |
|
template <typename T> |
|
struct RemoveConst<const T> { typedef T type; }; // NOLINT |
|
|
|
// MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above |
|
// definition to fail to remove the const in 'const int[3]' and 'const |
|
// char[3][4]'. The following specialization works around the bug. |
|
template <typename T, size_t N> |
|
struct RemoveConst<const T[N]> { |
|
typedef typename RemoveConst<T>::type type[N]; |
|
}; |
|
|
|
// A handy wrapper around RemoveConst that works when the argument |
|
// T depends on template parameters. |
|
#define GTEST_REMOVE_CONST_(T) \ |
|
typename ::testing::internal::RemoveConst<T>::type |
|
|
|
// Turns const U&, U&, const U, and U all into U. |
|
#define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \ |
|
GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T)) |
|
|
|
// IsAProtocolMessage<T>::value is a compile-time bool constant that's |
|
// true iff T is type proto2::Message or a subclass of it. |
|
template <typename T> |
|
struct IsAProtocolMessage |
|
: public bool_constant< |
|
std::is_convertible<const T*, const ::proto2::Message*>::value> { |
|
}; |
|
|
|
// When the compiler sees expression IsContainerTest<C>(0), if C is an |
|
// STL-style container class, the first overload of IsContainerTest |
|
// will be viable (since both C::iterator* and C::const_iterator* are |
|
// valid types and NULL can be implicitly converted to them). It will |
|
// be picked over the second overload as 'int' is a perfect match for |
|
// the type of argument 0. If C::iterator or C::const_iterator is not |
|
// a valid type, the first overload is not viable, and the second |
|
// overload will be picked. Therefore, we can determine whether C is |
|
// a container class by checking the type of IsContainerTest<C>(0). |
|
// The value of the expression is insignificant. |
|
// |
|
// In C++11 mode we check the existence of a const_iterator and that an |
|
// iterator is properly implemented for the container. |
|
// |
|
// For pre-C++11 that we look for both C::iterator and C::const_iterator. |
|
// The reason is that C++ injects the name of a class as a member of the |
|
// class itself (e.g. you can refer to class iterator as either |
|
// 'iterator' or 'iterator::iterator'). If we look for C::iterator |
|
// only, for example, we would mistakenly think that a class named |
|
// iterator is an STL container. |
|
// |
|
// Also note that the simpler approach of overloading |
|
// IsContainerTest(typename C::const_iterator*) and |
|
// IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++. |
|
typedef int IsContainer; |
|
template <class C, |
|
class Iterator = decltype(::std::declval<const C&>().begin()), |
|
class = decltype(::std::declval<const C&>().end()), |
|
class = decltype(++::std::declval<Iterator&>()), |
|
class = decltype(*::std::declval<Iterator>()), |
|
class = typename C::const_iterator> |
|
IsContainer IsContainerTest(int /* dummy */) { |
|
return 0; |
|
} |
|
|
|
typedef char IsNotContainer; |
|
template <class C> |
|
IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; } |
|
|
|
// Trait to detect whether a type T is a hash table. |
|
// The heuristic used is that the type contains an inner type `hasher` and does |
|
// not contain an inner type `reverse_iterator`. |
|
// If the container is iterable in reverse, then order might actually matter. |
|
template <typename T> |
|
struct IsHashTable { |
|
private: |
|
template <typename U> |
|
static char test(typename U::hasher*, typename U::reverse_iterator*); |
|
template <typename U> |
|
static int test(typename U::hasher*, ...); |
|
template <typename U> |
|
static char test(...); |
|
|
|
public: |
|
static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int); |
|
}; |
|
|
|
template <typename T> |
|
const bool IsHashTable<T>::value; |
|
|
|
template <typename C, |
|
bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)> |
|
struct IsRecursiveContainerImpl; |
|
|
|
template <typename C> |
|
struct IsRecursiveContainerImpl<C, false> : public false_type {}; |
|
|
|
// Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to |
|
// obey the same inconsistencies as the IsContainerTest, namely check if |
|
// something is a container is relying on only const_iterator in C++11 and |
|
// is relying on both const_iterator and iterator otherwise |
|
template <typename C> |
|
struct IsRecursiveContainerImpl<C, true> { |
|
using value_type = decltype(*std::declval<typename C::const_iterator>()); |
|
using type = |
|
is_same<typename std::remove_const< |
|
typename std::remove_reference<value_type>::type>::type, |
|
C>; |
|
}; |
|
|
|
// IsRecursiveContainer<Type> is a unary compile-time predicate that |
|
// evaluates whether C is a recursive container type. A recursive container |
|
// type is a container type whose value_type is equal to the container type |
|
// itself. An example for a recursive container type is |
|
// boost::filesystem::path, whose iterator has a value_type that is equal to |
|
// boost::filesystem::path. |
|
template <typename C> |
|
struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {}; |
|
|
|
// EnableIf<condition>::type is void when 'Cond' is true, and |
|
// undefined when 'Cond' is false. To use SFINAE to make a function |
|
// overload only apply when a particular expression is true, add |
|
// "typename EnableIf<expression>::type* = 0" as the last parameter. |
|
template<bool> struct EnableIf; |
|
template<> struct EnableIf<true> { typedef void type; }; // NOLINT |
|
|
|
// Utilities for native arrays. |
|
|
|
// ArrayEq() compares two k-dimensional native arrays using the |
|
// elements' operator==, where k can be any integer >= 0. When k is |
|
// 0, ArrayEq() degenerates into comparing a single pair of values. |
|
|
|
template <typename T, typename U> |
|
bool ArrayEq(const T* lhs, size_t size, const U* rhs); |
|
|
|
// This generic version is used when k is 0. |
|
template <typename T, typename U> |
|
inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; } |
|
|
|
// This overload is used when k >= 1. |
|
template <typename T, typename U, size_t N> |
|
inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) { |
|
return internal::ArrayEq(lhs, N, rhs); |
|
} |
|
|
|
// This helper reduces code bloat. If we instead put its logic inside |
|
// the previous ArrayEq() function, arrays with different sizes would |
|
// lead to different copies of the template code. |
|
template <typename T, typename U> |
|
bool ArrayEq(const T* lhs, size_t size, const U* rhs) { |
|
for (size_t i = 0; i != size; i++) { |
|
if (!internal::ArrayEq(lhs[i], rhs[i])) |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
// Finds the first element in the iterator range [begin, end) that |
|
// equals elem. Element may be a native array type itself. |
|
template <typename Iter, typename Element> |
|
Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) { |
|
for (Iter it = begin; it != end; ++it) { |
|
if (internal::ArrayEq(*it, elem)) |
|
return it; |
|
} |
|
return end; |
|
} |
|
|
|
// CopyArray() copies a k-dimensional native array using the elements' |
|
// operator=, where k can be any integer >= 0. When k is 0, |
|
// CopyArray() degenerates into copying a single value. |
|
|
|
template <typename T, typename U> |
|
void CopyArray(const T* from, size_t size, U* to); |
|
|
|
// This generic version is used when k is 0. |
|
template <typename T, typename U> |
|
inline void CopyArray(const T& from, U* to) { *to = from; } |
|
|
|
// This overload is used when k >= 1. |
|
template <typename T, typename U, size_t N> |
|
inline void CopyArray(const T(&from)[N], U(*to)[N]) { |
|
internal::CopyArray(from, N, *to); |
|
} |
|
|
|
// This helper reduces code bloat. If we instead put its logic inside |
|
// the previous CopyArray() function, arrays with different sizes |
|
// would lead to different copies of the template code. |
|
template <typename T, typename U> |
|
void CopyArray(const T* from, size_t size, U* to) { |
|
for (size_t i = 0; i != size; i++) { |
|
internal::CopyArray(from[i], to + i); |
|
} |
|
} |
|
|
|
// The relation between an NativeArray object (see below) and the |
|
// native array it represents. |
|
// We use 2 different structs to allow non-copyable types to be used, as long |
|
// as RelationToSourceReference() is passed. |
|
struct RelationToSourceReference {}; |
|
struct RelationToSourceCopy {}; |
|
|
|
// Adapts a native array to a read-only STL-style container. Instead |
|
// of the complete STL container concept, this adaptor only implements |
|
// members useful for Google Mock's container matchers. New members |
|
// should be added as needed. To simplify the implementation, we only |
|
// support Element being a raw type (i.e. having no top-level const or |
|
// reference modifier). It's the client's responsibility to satisfy |
|
// this requirement. Element can be an array type itself (hence |
|
// multi-dimensional arrays are supported). |
|
template <typename Element> |
|
class NativeArray { |
|
public: |
|
// STL-style container typedefs. |
|
typedef Element value_type; |
|
typedef Element* iterator; |
|
typedef const Element* const_iterator; |
|
|
|
// Constructs from a native array. References the source. |
|
NativeArray(const Element* array, size_t count, RelationToSourceReference) { |
|
InitRef(array, count); |
|
} |
|
|
|
// Constructs from a native array. Copies the source. |
|
NativeArray(const Element* array, size_t count, RelationToSourceCopy) { |
|
InitCopy(array, count); |
|
} |
|
|
|
// Copy constructor. |
|
NativeArray(const NativeArray& rhs) { |
|
(this->*rhs.clone_)(rhs.array_, rhs.size_); |
|
} |
|
|
|
~NativeArray() { |
|
if (clone_ != &NativeArray::InitRef) |
|
delete[] array_; |
|
} |
|
|
|
// STL-style container methods. |
|
size_t size() const { return size_; } |
|
const_iterator begin() const { return array_; } |
|
const_iterator end() const { return array_ + size_; } |
|
bool operator==(const NativeArray& rhs) const { |
|
return size() == rhs.size() && |
|
ArrayEq(begin(), size(), rhs.begin()); |
|
} |
|
|
|
private: |
|
enum { |
|
kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper< |
|
Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value |
|
}; |
|
|
|
// Initializes this object with a copy of the input. |
|
void InitCopy(const Element* array, size_t a_size) { |
|
Element* const copy = new Element[a_size]; |
|
CopyArray(array, a_size, copy); |
|
array_ = copy; |
|
size_ = a_size; |
|
clone_ = &NativeArray::InitCopy; |
|
} |
|
|
|
// Initializes this object with a reference of the input. |
|
void InitRef(const Element* array, size_t a_size) { |
|
array_ = array; |
|
size_ = a_size; |
|
clone_ = &NativeArray::InitRef; |
|
} |
|
|
|
const Element* array_; |
|
size_t size_; |
|
void (NativeArray::*clone_)(const Element*, size_t); |
|
|
|
GTEST_DISALLOW_ASSIGN_(NativeArray); |
|
}; |
|
|
|
// Backport of std::index_sequence. |
|
template <size_t... Is> |
|
struct IndexSequence { |
|
using type = IndexSequence; |
|
}; |
|
|
|
// Double the IndexSequence, and one if plus_one is true. |
|
template <bool plus_one, typename T, size_t sizeofT> |
|
struct DoubleSequence; |
|
template <size_t... I, size_t sizeofT> |
|
struct DoubleSequence<true, IndexSequence<I...>, sizeofT> { |
|
using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>; |
|
}; |
|
template <size_t... I, size_t sizeofT> |
|
struct DoubleSequence<false, IndexSequence<I...>, sizeofT> { |
|
using type = IndexSequence<I..., (sizeofT + I)...>; |
|
}; |
|
|
|
// Backport of std::make_index_sequence. |
|
// It uses O(ln(N)) instantiation depth. |
|
template <size_t N> |
|
struct MakeIndexSequence |
|
: DoubleSequence<N % 2 == 1, typename MakeIndexSequence<N / 2>::type, |
|
N / 2>::type {}; |
|
|
|
template <> |
|
struct MakeIndexSequence<0> : IndexSequence<> {}; |
|
|
|
// FIXME: This implementation of ElemFromList is O(1) in instantiation depth, |
|
// but it is O(N^2) in total instantiations. Not sure if this is the best |
|
// tradeoff, as it will make it somewhat slow to compile. |
|
template <typename T, size_t, size_t> |
|
struct ElemFromListImpl {}; |
|
|
|
template <typename T, size_t I> |
|
struct ElemFromListImpl<T, I, I> { |
|
using type = T; |
|
}; |
|
|
|
// Get the Nth element from T... |
|
// It uses O(1) instantiation depth. |
|
template <size_t N, typename I, typename... T> |
|
struct ElemFromList; |
|
|
|
template <size_t N, size_t... I, typename... T> |
|
struct ElemFromList<N, IndexSequence<I...>, T...> |
|
: ElemFromListImpl<T, N, I>... {}; |
|
|
|
template <typename... T> |
|
class FlatTuple; |
|
|
|
template <typename Derived, size_t I> |
|
struct FlatTupleElemBase; |
|
|
|
template <typename... T, size_t I> |
|
struct FlatTupleElemBase<FlatTuple<T...>, I> { |
|
using value_type = |
|
typename ElemFromList<I, typename MakeIndexSequence<sizeof...(T)>::type, |
|
T...>::type; |
|
FlatTupleElemBase() = default; |
|
explicit FlatTupleElemBase(value_type t) : value(std::move(t)) {} |
|
value_type value; |
|
}; |
|
|
|
template <typename Derived, typename Idx> |
|
struct FlatTupleBase; |
|
|
|
template <size_t... Idx, typename... T> |
|
struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>> |
|
: FlatTupleElemBase<FlatTuple<T...>, Idx>... { |
|
using Indices = IndexSequence<Idx...>; |
|
FlatTupleBase() = default; |
|
explicit FlatTupleBase(T... t) |
|
: FlatTupleElemBase<FlatTuple<T...>, Idx>(std::move(t))... {} |
|
}; |
|
|
|
// Analog to std::tuple but with different tradeoffs. |
|
// This class minimizes the template instantiation depth, thus allowing more |
|
// elements that std::tuple would. std::tuple has been seen to require an |
|
// instantiation depth of more than 10x the number of elements in some |
|
// implementations. |
|
// FlatTuple and ElemFromList are not recursive and have a fixed depth |
|
// regardless of T... |
|
// MakeIndexSequence, on the other hand, it is recursive but with an |
|
// instantiation depth of O(ln(N)). |
|
template <typename... T> |
|
class FlatTuple |
|
: private FlatTupleBase<FlatTuple<T...>, |
|
typename MakeIndexSequence<sizeof...(T)>::type> { |
|
using Indices = typename FlatTuple::FlatTupleBase::Indices; |
|
|
|
public: |
|
FlatTuple() = default; |
|
explicit FlatTuple(T... t) : FlatTuple::FlatTupleBase(std::move(t)...) {} |
|
|
|
template <size_t I> |
|
const typename ElemFromList<I, Indices, T...>::type& Get() const { |
|
return static_cast<const FlatTupleElemBase<FlatTuple, I>*>(this)->value; |
|
} |
|
|
|
template <size_t I> |
|
typename ElemFromList<I, Indices, T...>::type& Get() { |
|
return static_cast<FlatTupleElemBase<FlatTuple, I>*>(this)->value; |
|
} |
|
}; |
|
|
|
// Utility functions to be called with static_assert to induce deprecation |
|
// warnings. |
|
GTEST_INTERNAL_DEPRECATED( |
|
"INSTANTIATE_TEST_CASE_P is deprecated, please use " |
|
"INSTANTIATE_TEST_SUITE_P") |
|
constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; } |
|
|
|
GTEST_INTERNAL_DEPRECATED( |
|
"TYPED_TEST_CASE_P is deprecated, please use " |
|
"TYPED_TEST_SUITE_P") |
|
constexpr bool TypedTestCase_P_IsDeprecated() { return true; } |
|
|
|
GTEST_INTERNAL_DEPRECATED( |
|
"TYPED_TEST_CASE is deprecated, please use " |
|
"TYPED_TEST_SUITE") |
|
constexpr bool TypedTestCaseIsDeprecated() { return true; } |
|
|
|
GTEST_INTERNAL_DEPRECATED( |
|
"REGISTER_TYPED_TEST_CASE_P is deprecated, please use " |
|
"REGISTER_TYPED_TEST_SUITE_P") |
|
constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; } |
|
|
|
GTEST_INTERNAL_DEPRECATED( |
|
"INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use " |
|
"INSTANTIATE_TYPED_TEST_SUITE_P") |
|
constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; } |
|
|
|
} // namespace internal |
|
} // namespace testing |
|
|
|
#define GTEST_MESSAGE_AT_(file, line, message, result_type) \ |
|
::testing::internal::AssertHelper(result_type, file, line, message) \ |
|
= ::testing::Message() |
|
|
|
#define GTEST_MESSAGE_(message, result_type) \ |
|
GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type) |
|
|
|
#define GTEST_FATAL_FAILURE_(message) \ |
|
return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure) |
|
|
|
#define GTEST_NONFATAL_FAILURE_(message) \ |
|
GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure) |
|
|
|
#define GTEST_SUCCESS_(message) \ |
|
GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess) |
|
|
|
#define GTEST_SKIP_(message) \ |
|
return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip) |
|
|
|
// Suppress MSVC warning 4072 (unreachable code) for the code following |
|
// statement if it returns or throws (or doesn't return or throw in some |
|
// situations). |
|
#define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \ |
|
if (::testing::internal::AlwaysTrue()) { statement; } |
|
|
|
#define GTEST_TEST_THROW_(statement, expected_exception, fail) \ |
|
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
|
if (::testing::internal::ConstCharPtr gtest_msg = "") { \ |
|
bool gtest_caught_expected = false; \ |
|
try { \ |
|
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
|
} \ |
|
catch (expected_exception const&) { \ |
|
gtest_caught_expected = true; \ |
|
} \ |
|
catch (...) { \ |
|
gtest_msg.value = \ |
|
"Expected: " #statement " throws an exception of type " \ |
|
#expected_exception ".\n Actual: it throws a different type."; \ |
|
goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ |
|
} \ |
|
if (!gtest_caught_expected) { \ |
|
gtest_msg.value = \ |
|
"Expected: " #statement " throws an exception of type " \ |
|
#expected_exception ".\n Actual: it throws nothing."; \ |
|
goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ |
|
} \ |
|
} else \ |
|
GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \ |
|
fail(gtest_msg.value) |
|
|
|
#define GTEST_TEST_NO_THROW_(statement, fail) \ |
|
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
|
if (::testing::internal::AlwaysTrue()) { \ |
|
try { \ |
|
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
|
} \ |
|
catch (...) { \ |
|
goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \ |
|
} \ |
|
} else \ |
|
GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \ |
|
fail("Expected: " #statement " doesn't throw an exception.\n" \ |
|
" Actual: it throws.") |
|
|
|
#define GTEST_TEST_ANY_THROW_(statement, fail) \ |
|
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
|
if (::testing::internal::AlwaysTrue()) { \ |
|
bool gtest_caught_any = false; \ |
|
try { \ |
|
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
|
} \ |
|
catch (...) { \ |
|
gtest_caught_any = true; \ |
|
} \ |
|
if (!gtest_caught_any) { \ |
|
goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \ |
|
} \ |
|
} else \ |
|
GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \ |
|
fail("Expected: " #statement " throws an exception.\n" \ |
|
" Actual: it doesn't.") |
|
|
|
|
|
// Implements Boolean test assertions such as EXPECT_TRUE. expression can be |
|
// either a boolean expression or an AssertionResult. text is a textual |
|
// represenation of expression as it was passed into the EXPECT_TRUE. |
|
#define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \ |
|
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
|
if (const ::testing::AssertionResult gtest_ar_ = \ |
|
::testing::AssertionResult(expression)) \ |
|
; \ |
|
else \ |
|
fail(::testing::internal::GetBoolAssertionFailureMessage(\ |
|
gtest_ar_, text, #actual, #expected).c_str()) |
|
|
|
#define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \ |
|
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
|
if (::testing::internal::AlwaysTrue()) { \ |
|
::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \ |
|
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
|
if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \ |
|
goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \ |
|
} \ |
|
} else \ |
|
GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \ |
|
fail("Expected: " #statement " doesn't generate new fatal " \ |
|
"failures in the current thread.\n" \ |
|
" Actual: it does.") |
|
|
|
// Expands to the name of the class that implements the given test. |
|
#define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ |
|
test_suite_name##_##test_name##_Test |
|
|
|
// Helper macro for defining tests. |
|
#define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id) \ |
|
class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ |
|
: public parent_class { \ |
|
public: \ |
|
GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() {} \ |
|
\ |
|
private: \ |
|
virtual void TestBody(); \ |
|
static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_; \ |
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name, \ |
|
test_name)); \ |
|
}; \ |
|
\ |
|
::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name, \ |
|
test_name)::test_info_ = \ |
|
::testing::internal::MakeAndRegisterTestInfo( \ |
|
#test_suite_name, #test_name, nullptr, nullptr, \ |
|
::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \ |
|
::testing::internal::SuiteApiResolver< \ |
|
parent_class>::GetSetUpCaseOrSuite(), \ |
|
::testing::internal::SuiteApiResolver< \ |
|
parent_class>::GetTearDownCaseOrSuite(), \ |
|
new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_( \ |
|
test_suite_name, test_name)>); \ |
|
void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody() |
|
|
|
#endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
|
|
|