Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
918 lines
26 KiB
918 lines
26 KiB
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] */ |
|
|
|
#include <openssl/rsa.h> |
|
|
|
#include <limits.h> |
|
#include <string.h> |
|
|
|
#include <openssl/bn.h> |
|
#include <openssl/digest.h> |
|
#include <openssl/engine.h> |
|
#include <openssl/err.h> |
|
#include <openssl/ex_data.h> |
|
#include <openssl/md5.h> |
|
#include <openssl/mem.h> |
|
#include <openssl/nid.h> |
|
#include <openssl/sha.h> |
|
#include <openssl/thread.h> |
|
|
|
#include "../bn/internal.h" |
|
#include "../delocate.h" |
|
#include "../../internal.h" |
|
#include "internal.h" |
|
|
|
|
|
// RSA_R_BLOCK_TYPE_IS_NOT_02 is part of the legacy SSLv23 padding scheme. |
|
// Cryptography.io depends on this error code. |
|
OPENSSL_DECLARE_ERROR_REASON(RSA, BLOCK_TYPE_IS_NOT_02) |
|
|
|
DEFINE_STATIC_EX_DATA_CLASS(g_rsa_ex_data_class) |
|
|
|
RSA *RSA_new(void) { return RSA_new_method(NULL); } |
|
|
|
RSA *RSA_new_method(const ENGINE *engine) { |
|
RSA *rsa = OPENSSL_malloc(sizeof(RSA)); |
|
if (rsa == NULL) { |
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
|
return NULL; |
|
} |
|
|
|
OPENSSL_memset(rsa, 0, sizeof(RSA)); |
|
|
|
if (engine) { |
|
rsa->meth = ENGINE_get_RSA_method(engine); |
|
} |
|
|
|
if (rsa->meth == NULL) { |
|
rsa->meth = (RSA_METHOD *) RSA_default_method(); |
|
} |
|
METHOD_ref(rsa->meth); |
|
|
|
rsa->references = 1; |
|
rsa->flags = rsa->meth->flags; |
|
CRYPTO_MUTEX_init(&rsa->lock); |
|
CRYPTO_new_ex_data(&rsa->ex_data); |
|
|
|
if (rsa->meth->init && !rsa->meth->init(rsa)) { |
|
CRYPTO_free_ex_data(g_rsa_ex_data_class_bss_get(), rsa, &rsa->ex_data); |
|
CRYPTO_MUTEX_cleanup(&rsa->lock); |
|
METHOD_unref(rsa->meth); |
|
OPENSSL_free(rsa); |
|
return NULL; |
|
} |
|
|
|
return rsa; |
|
} |
|
|
|
void RSA_free(RSA *rsa) { |
|
unsigned u; |
|
|
|
if (rsa == NULL) { |
|
return; |
|
} |
|
|
|
if (!CRYPTO_refcount_dec_and_test_zero(&rsa->references)) { |
|
return; |
|
} |
|
|
|
if (rsa->meth->finish) { |
|
rsa->meth->finish(rsa); |
|
} |
|
METHOD_unref(rsa->meth); |
|
|
|
CRYPTO_free_ex_data(g_rsa_ex_data_class_bss_get(), rsa, &rsa->ex_data); |
|
|
|
BN_free(rsa->n); |
|
BN_free(rsa->e); |
|
BN_free(rsa->d); |
|
BN_free(rsa->p); |
|
BN_free(rsa->q); |
|
BN_free(rsa->dmp1); |
|
BN_free(rsa->dmq1); |
|
BN_free(rsa->iqmp); |
|
BN_MONT_CTX_free(rsa->mont_n); |
|
BN_MONT_CTX_free(rsa->mont_p); |
|
BN_MONT_CTX_free(rsa->mont_q); |
|
BN_free(rsa->d_fixed); |
|
BN_free(rsa->dmp1_fixed); |
|
BN_free(rsa->dmq1_fixed); |
|
BN_free(rsa->inv_small_mod_large_mont); |
|
for (u = 0; u < rsa->num_blindings; u++) { |
|
BN_BLINDING_free(rsa->blindings[u]); |
|
} |
|
OPENSSL_free(rsa->blindings); |
|
OPENSSL_free(rsa->blindings_inuse); |
|
CRYPTO_MUTEX_cleanup(&rsa->lock); |
|
OPENSSL_free(rsa); |
|
} |
|
|
|
int RSA_up_ref(RSA *rsa) { |
|
CRYPTO_refcount_inc(&rsa->references); |
|
return 1; |
|
} |
|
|
|
unsigned RSA_bits(const RSA *rsa) { return BN_num_bits(rsa->n); } |
|
|
|
const BIGNUM *RSA_get0_n(const RSA *rsa) { return rsa->n; } |
|
|
|
const BIGNUM *RSA_get0_e(const RSA *rsa) { return rsa->e; } |
|
|
|
const BIGNUM *RSA_get0_d(const RSA *rsa) { return rsa->d; } |
|
|
|
const BIGNUM *RSA_get0_p(const RSA *rsa) { return rsa->p; } |
|
|
|
const BIGNUM *RSA_get0_q(const RSA *rsa) { return rsa->q; } |
|
|
|
const BIGNUM *RSA_get0_dmp1(const RSA *rsa) { return rsa->dmp1; } |
|
|
|
const BIGNUM *RSA_get0_dmq1(const RSA *rsa) { return rsa->dmq1; } |
|
|
|
const BIGNUM *RSA_get0_iqmp(const RSA *rsa) { return rsa->iqmp; } |
|
|
|
void RSA_get0_key(const RSA *rsa, const BIGNUM **out_n, const BIGNUM **out_e, |
|
const BIGNUM **out_d) { |
|
if (out_n != NULL) { |
|
*out_n = rsa->n; |
|
} |
|
if (out_e != NULL) { |
|
*out_e = rsa->e; |
|
} |
|
if (out_d != NULL) { |
|
*out_d = rsa->d; |
|
} |
|
} |
|
|
|
void RSA_get0_factors(const RSA *rsa, const BIGNUM **out_p, |
|
const BIGNUM **out_q) { |
|
if (out_p != NULL) { |
|
*out_p = rsa->p; |
|
} |
|
if (out_q != NULL) { |
|
*out_q = rsa->q; |
|
} |
|
} |
|
|
|
void RSA_get0_crt_params(const RSA *rsa, const BIGNUM **out_dmp1, |
|
const BIGNUM **out_dmq1, const BIGNUM **out_iqmp) { |
|
if (out_dmp1 != NULL) { |
|
*out_dmp1 = rsa->dmp1; |
|
} |
|
if (out_dmq1 != NULL) { |
|
*out_dmq1 = rsa->dmq1; |
|
} |
|
if (out_iqmp != NULL) { |
|
*out_iqmp = rsa->iqmp; |
|
} |
|
} |
|
|
|
int RSA_set0_key(RSA *rsa, BIGNUM *n, BIGNUM *e, BIGNUM *d) { |
|
if ((rsa->n == NULL && n == NULL) || |
|
(rsa->e == NULL && e == NULL)) { |
|
return 0; |
|
} |
|
|
|
if (n != NULL) { |
|
BN_free(rsa->n); |
|
rsa->n = n; |
|
} |
|
if (e != NULL) { |
|
BN_free(rsa->e); |
|
rsa->e = e; |
|
} |
|
if (d != NULL) { |
|
BN_free(rsa->d); |
|
rsa->d = d; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
int RSA_set0_factors(RSA *rsa, BIGNUM *p, BIGNUM *q) { |
|
if ((rsa->p == NULL && p == NULL) || |
|
(rsa->q == NULL && q == NULL)) { |
|
return 0; |
|
} |
|
|
|
if (p != NULL) { |
|
BN_free(rsa->p); |
|
rsa->p = p; |
|
} |
|
if (q != NULL) { |
|
BN_free(rsa->q); |
|
rsa->q = q; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
int RSA_set0_crt_params(RSA *rsa, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp) { |
|
if ((rsa->dmp1 == NULL && dmp1 == NULL) || |
|
(rsa->dmq1 == NULL && dmq1 == NULL) || |
|
(rsa->iqmp == NULL && iqmp == NULL)) { |
|
return 0; |
|
} |
|
|
|
if (dmp1 != NULL) { |
|
BN_free(rsa->dmp1); |
|
rsa->dmp1 = dmp1; |
|
} |
|
if (dmq1 != NULL) { |
|
BN_free(rsa->dmq1); |
|
rsa->dmq1 = dmq1; |
|
} |
|
if (iqmp != NULL) { |
|
BN_free(rsa->iqmp); |
|
rsa->iqmp = iqmp; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
int RSA_public_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
|
int padding) { |
|
size_t out_len; |
|
|
|
if (!RSA_encrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
|
return -1; |
|
} |
|
|
|
if (out_len > INT_MAX) { |
|
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
|
return -1; |
|
} |
|
return out_len; |
|
} |
|
|
|
int RSA_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
|
const uint8_t *in, size_t in_len, int padding) { |
|
if (rsa->meth->sign_raw) { |
|
return rsa->meth->sign_raw(rsa, out_len, out, max_out, in, in_len, padding); |
|
} |
|
|
|
return rsa_default_sign_raw(rsa, out_len, out, max_out, in, in_len, padding); |
|
} |
|
|
|
int RSA_private_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
|
int padding) { |
|
size_t out_len; |
|
|
|
if (!RSA_sign_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
|
return -1; |
|
} |
|
|
|
if (out_len > INT_MAX) { |
|
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
|
return -1; |
|
} |
|
return out_len; |
|
} |
|
|
|
int RSA_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
|
const uint8_t *in, size_t in_len, int padding) { |
|
if (rsa->meth->decrypt) { |
|
return rsa->meth->decrypt(rsa, out_len, out, max_out, in, in_len, padding); |
|
} |
|
|
|
return rsa_default_decrypt(rsa, out_len, out, max_out, in, in_len, padding); |
|
} |
|
|
|
int RSA_private_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
|
int padding) { |
|
size_t out_len; |
|
|
|
if (!RSA_decrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
|
return -1; |
|
} |
|
|
|
if (out_len > INT_MAX) { |
|
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
|
return -1; |
|
} |
|
return out_len; |
|
} |
|
|
|
int RSA_public_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
|
int padding) { |
|
size_t out_len; |
|
|
|
if (!RSA_verify_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
|
return -1; |
|
} |
|
|
|
if (out_len > INT_MAX) { |
|
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
|
return -1; |
|
} |
|
return out_len; |
|
} |
|
|
|
unsigned RSA_size(const RSA *rsa) { |
|
if (rsa->meth->size) { |
|
return rsa->meth->size(rsa); |
|
} |
|
|
|
return rsa_default_size(rsa); |
|
} |
|
|
|
int RSA_is_opaque(const RSA *rsa) { |
|
return rsa->meth && (rsa->meth->flags & RSA_FLAG_OPAQUE); |
|
} |
|
|
|
int RSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, |
|
CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) { |
|
int index; |
|
if (!CRYPTO_get_ex_new_index(g_rsa_ex_data_class_bss_get(), &index, argl, |
|
argp, free_func)) { |
|
return -1; |
|
} |
|
return index; |
|
} |
|
|
|
int RSA_set_ex_data(RSA *rsa, int idx, void *arg) { |
|
return CRYPTO_set_ex_data(&rsa->ex_data, idx, arg); |
|
} |
|
|
|
void *RSA_get_ex_data(const RSA *rsa, int idx) { |
|
return CRYPTO_get_ex_data(&rsa->ex_data, idx); |
|
} |
|
|
|
// SSL_SIG_LENGTH is the size of an SSL/TLS (prior to TLS 1.2) signature: it's |
|
// the length of an MD5 and SHA1 hash. |
|
static const unsigned SSL_SIG_LENGTH = 36; |
|
|
|
// pkcs1_sig_prefix contains the ASN.1, DER encoded prefix for a hash that is |
|
// to be signed with PKCS#1. |
|
struct pkcs1_sig_prefix { |
|
// nid identifies the hash function. |
|
int nid; |
|
// hash_len is the expected length of the hash function. |
|
uint8_t hash_len; |
|
// len is the number of bytes of |bytes| which are valid. |
|
uint8_t len; |
|
// bytes contains the DER bytes. |
|
uint8_t bytes[19]; |
|
}; |
|
|
|
// kPKCS1SigPrefixes contains the ASN.1 prefixes for PKCS#1 signatures with |
|
// different hash functions. |
|
static const struct pkcs1_sig_prefix kPKCS1SigPrefixes[] = { |
|
{ |
|
NID_md5, |
|
MD5_DIGEST_LENGTH, |
|
18, |
|
{0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, |
|
0x02, 0x05, 0x05, 0x00, 0x04, 0x10}, |
|
}, |
|
{ |
|
NID_sha1, |
|
SHA_DIGEST_LENGTH, |
|
15, |
|
{0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, |
|
0x00, 0x04, 0x14}, |
|
}, |
|
{ |
|
NID_sha224, |
|
SHA224_DIGEST_LENGTH, |
|
19, |
|
{0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
|
0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c}, |
|
}, |
|
{ |
|
NID_sha256, |
|
SHA256_DIGEST_LENGTH, |
|
19, |
|
{0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
|
0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20}, |
|
}, |
|
{ |
|
NID_sha384, |
|
SHA384_DIGEST_LENGTH, |
|
19, |
|
{0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
|
0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30}, |
|
}, |
|
{ |
|
NID_sha512, |
|
SHA512_DIGEST_LENGTH, |
|
19, |
|
{0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
|
0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40}, |
|
}, |
|
{ |
|
NID_undef, 0, 0, {0}, |
|
}, |
|
}; |
|
|
|
int RSA_add_pkcs1_prefix(uint8_t **out_msg, size_t *out_msg_len, |
|
int *is_alloced, int hash_nid, const uint8_t *msg, |
|
size_t msg_len) { |
|
unsigned i; |
|
|
|
if (hash_nid == NID_md5_sha1) { |
|
// Special case: SSL signature, just check the length. |
|
if (msg_len != SSL_SIG_LENGTH) { |
|
OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
|
return 0; |
|
} |
|
|
|
*out_msg = (uint8_t*) msg; |
|
*out_msg_len = SSL_SIG_LENGTH; |
|
*is_alloced = 0; |
|
return 1; |
|
} |
|
|
|
for (i = 0; kPKCS1SigPrefixes[i].nid != NID_undef; i++) { |
|
const struct pkcs1_sig_prefix *sig_prefix = &kPKCS1SigPrefixes[i]; |
|
if (sig_prefix->nid != hash_nid) { |
|
continue; |
|
} |
|
|
|
if (msg_len != sig_prefix->hash_len) { |
|
OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
|
return 0; |
|
} |
|
|
|
const uint8_t* prefix = sig_prefix->bytes; |
|
unsigned prefix_len = sig_prefix->len; |
|
unsigned signed_msg_len; |
|
uint8_t *signed_msg; |
|
|
|
signed_msg_len = prefix_len + msg_len; |
|
if (signed_msg_len < prefix_len) { |
|
OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_LONG); |
|
return 0; |
|
} |
|
|
|
signed_msg = OPENSSL_malloc(signed_msg_len); |
|
if (!signed_msg) { |
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
|
return 0; |
|
} |
|
|
|
OPENSSL_memcpy(signed_msg, prefix, prefix_len); |
|
OPENSSL_memcpy(signed_msg + prefix_len, msg, msg_len); |
|
|
|
*out_msg = signed_msg; |
|
*out_msg_len = signed_msg_len; |
|
*is_alloced = 1; |
|
|
|
return 1; |
|
} |
|
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_ALGORITHM_TYPE); |
|
return 0; |
|
} |
|
|
|
int RSA_sign(int hash_nid, const uint8_t *in, unsigned in_len, uint8_t *out, |
|
unsigned *out_len, RSA *rsa) { |
|
const unsigned rsa_size = RSA_size(rsa); |
|
int ret = 0; |
|
uint8_t *signed_msg = NULL; |
|
size_t signed_msg_len = 0; |
|
int signed_msg_is_alloced = 0; |
|
size_t size_t_out_len; |
|
|
|
if (rsa->meth->sign) { |
|
return rsa->meth->sign(hash_nid, in, in_len, out, out_len, rsa); |
|
} |
|
|
|
if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len, |
|
&signed_msg_is_alloced, hash_nid, in, in_len) || |
|
!RSA_sign_raw(rsa, &size_t_out_len, out, rsa_size, signed_msg, |
|
signed_msg_len, RSA_PKCS1_PADDING)) { |
|
goto err; |
|
} |
|
|
|
*out_len = size_t_out_len; |
|
ret = 1; |
|
|
|
err: |
|
if (signed_msg_is_alloced) { |
|
OPENSSL_free(signed_msg); |
|
} |
|
return ret; |
|
} |
|
|
|
int RSA_sign_pss_mgf1(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
|
const uint8_t *in, size_t in_len, const EVP_MD *md, |
|
const EVP_MD *mgf1_md, int salt_len) { |
|
if (in_len != EVP_MD_size(md)) { |
|
OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
|
return 0; |
|
} |
|
|
|
size_t padded_len = RSA_size(rsa); |
|
uint8_t *padded = OPENSSL_malloc(padded_len); |
|
if (padded == NULL) { |
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
|
return 0; |
|
} |
|
|
|
int ret = |
|
RSA_padding_add_PKCS1_PSS_mgf1(rsa, padded, in, md, mgf1_md, salt_len) && |
|
RSA_sign_raw(rsa, out_len, out, max_out, padded, padded_len, |
|
RSA_NO_PADDING); |
|
OPENSSL_free(padded); |
|
return ret; |
|
} |
|
|
|
int RSA_verify(int hash_nid, const uint8_t *msg, size_t msg_len, |
|
const uint8_t *sig, size_t sig_len, RSA *rsa) { |
|
if (rsa->n == NULL || rsa->e == NULL) { |
|
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
|
return 0; |
|
} |
|
|
|
const size_t rsa_size = RSA_size(rsa); |
|
uint8_t *buf = NULL; |
|
int ret = 0; |
|
uint8_t *signed_msg = NULL; |
|
size_t signed_msg_len = 0, len; |
|
int signed_msg_is_alloced = 0; |
|
|
|
if (hash_nid == NID_md5_sha1 && msg_len != SSL_SIG_LENGTH) { |
|
OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
|
return 0; |
|
} |
|
|
|
buf = OPENSSL_malloc(rsa_size); |
|
if (!buf) { |
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
|
return 0; |
|
} |
|
|
|
if (!RSA_verify_raw(rsa, &len, buf, rsa_size, sig, sig_len, |
|
RSA_PKCS1_PADDING)) { |
|
goto out; |
|
} |
|
|
|
if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len, |
|
&signed_msg_is_alloced, hash_nid, msg, msg_len)) { |
|
goto out; |
|
} |
|
|
|
// Check that no other information follows the hash value (FIPS 186-4 Section |
|
// 5.5) and it matches the expected hash. |
|
if (len != signed_msg_len || OPENSSL_memcmp(buf, signed_msg, len) != 0) { |
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE); |
|
goto out; |
|
} |
|
|
|
ret = 1; |
|
|
|
out: |
|
OPENSSL_free(buf); |
|
if (signed_msg_is_alloced) { |
|
OPENSSL_free(signed_msg); |
|
} |
|
return ret; |
|
} |
|
|
|
int RSA_verify_pss_mgf1(RSA *rsa, const uint8_t *msg, size_t msg_len, |
|
const EVP_MD *md, const EVP_MD *mgf1_md, int salt_len, |
|
const uint8_t *sig, size_t sig_len) { |
|
if (msg_len != EVP_MD_size(md)) { |
|
OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
|
return 0; |
|
} |
|
|
|
size_t em_len = RSA_size(rsa); |
|
uint8_t *em = OPENSSL_malloc(em_len); |
|
if (em == NULL) { |
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
|
return 0; |
|
} |
|
|
|
int ret = 0; |
|
if (!RSA_verify_raw(rsa, &em_len, em, em_len, sig, sig_len, RSA_NO_PADDING)) { |
|
goto err; |
|
} |
|
|
|
if (em_len != RSA_size(rsa)) { |
|
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
|
goto err; |
|
} |
|
|
|
ret = RSA_verify_PKCS1_PSS_mgf1(rsa, msg, md, mgf1_md, em, salt_len); |
|
|
|
err: |
|
OPENSSL_free(em); |
|
return ret; |
|
} |
|
|
|
static int check_mod_inverse(int *out_ok, const BIGNUM *a, const BIGNUM *ainv, |
|
const BIGNUM *m, BN_CTX *ctx) { |
|
if (BN_is_negative(ainv) || BN_cmp(ainv, m) >= 0) { |
|
*out_ok = 0; |
|
return 1; |
|
} |
|
|
|
// Note |bn_mul_consttime| and |bn_div_consttime| do not scale linearly, but |
|
// checking |ainv| is in range bounds the running time, assuming |m|'s bounds |
|
// were checked by the caller. |
|
BN_CTX_start(ctx); |
|
BIGNUM *tmp = BN_CTX_get(ctx); |
|
int ret = tmp != NULL && |
|
bn_mul_consttime(tmp, a, ainv, ctx) && |
|
bn_div_consttime(NULL, tmp, tmp, m, ctx); |
|
if (ret) { |
|
*out_ok = BN_is_one(tmp); |
|
} |
|
BN_CTX_end(ctx); |
|
return ret; |
|
} |
|
|
|
int RSA_check_key(const RSA *key) { |
|
// TODO(davidben): RSA key initialization is spread across |
|
// |rsa_check_public_key|, |RSA_check_key|, |freeze_private_key|, and |
|
// |BN_MONT_CTX_set_locked| as a result of API issues. See |
|
// https://crbug.com/boringssl/316. As a result, we inconsistently check RSA |
|
// invariants. We should fix this and integrate that logic. |
|
|
|
if (RSA_is_opaque(key)) { |
|
// Opaque keys can't be checked. |
|
return 1; |
|
} |
|
|
|
if (!rsa_check_public_key(key)) { |
|
return 0; |
|
} |
|
|
|
if ((key->p != NULL) != (key->q != NULL)) { |
|
OPENSSL_PUT_ERROR(RSA, RSA_R_ONLY_ONE_OF_P_Q_GIVEN); |
|
return 0; |
|
} |
|
|
|
// |key->d| must be bounded by |key->n|. This ensures bounds on |RSA_bits| |
|
// translate to bounds on the running time of private key operations. |
|
if (key->d != NULL && |
|
(BN_is_negative(key->d) || BN_cmp(key->d, key->n) >= 0)) { |
|
OPENSSL_PUT_ERROR(RSA, RSA_R_D_OUT_OF_RANGE); |
|
return 0; |
|
} |
|
|
|
if (key->d == NULL || key->p == NULL) { |
|
// For a public key, or without p and q, there's nothing that can be |
|
// checked. |
|
return 1; |
|
} |
|
|
|
BN_CTX *ctx = BN_CTX_new(); |
|
if (ctx == NULL) { |
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
|
return 0; |
|
} |
|
|
|
BIGNUM tmp, de, pm1, qm1, dmp1, dmq1; |
|
int ok = 0; |
|
BN_init(&tmp); |
|
BN_init(&de); |
|
BN_init(&pm1); |
|
BN_init(&qm1); |
|
BN_init(&dmp1); |
|
BN_init(&dmq1); |
|
|
|
// Check that p * q == n. Before we multiply, we check that p and q are in |
|
// bounds, to avoid a DoS vector in |bn_mul_consttime| below. Note that |
|
// n was bound by |rsa_check_public_key|. |
|
if (BN_is_negative(key->p) || BN_cmp(key->p, key->n) >= 0 || |
|
BN_is_negative(key->q) || BN_cmp(key->q, key->n) >= 0) { |
|
OPENSSL_PUT_ERROR(RSA, RSA_R_N_NOT_EQUAL_P_Q); |
|
goto out; |
|
} |
|
if (!bn_mul_consttime(&tmp, key->p, key->q, ctx)) { |
|
OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); |
|
goto out; |
|
} |
|
if (BN_cmp(&tmp, key->n) != 0) { |
|
OPENSSL_PUT_ERROR(RSA, RSA_R_N_NOT_EQUAL_P_Q); |
|
goto out; |
|
} |
|
|
|
// d must be an inverse of e mod the Carmichael totient, lcm(p-1, q-1), but it |
|
// may be unreduced because other implementations use the Euler totient. We |
|
// simply check that d * e is one mod p-1 and mod q-1. Note d and e were bound |
|
// by earlier checks in this function. |
|
if (!bn_usub_consttime(&pm1, key->p, BN_value_one()) || |
|
!bn_usub_consttime(&qm1, key->q, BN_value_one()) || |
|
!bn_mul_consttime(&de, key->d, key->e, ctx) || |
|
!bn_div_consttime(NULL, &tmp, &de, &pm1, ctx) || |
|
!bn_div_consttime(NULL, &de, &de, &qm1, ctx)) { |
|
OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); |
|
goto out; |
|
} |
|
|
|
if (!BN_is_one(&tmp) || !BN_is_one(&de)) { |
|
OPENSSL_PUT_ERROR(RSA, RSA_R_D_E_NOT_CONGRUENT_TO_1); |
|
goto out; |
|
} |
|
|
|
int has_crt_values = key->dmp1 != NULL; |
|
if (has_crt_values != (key->dmq1 != NULL) || |
|
has_crt_values != (key->iqmp != NULL)) { |
|
OPENSSL_PUT_ERROR(RSA, RSA_R_INCONSISTENT_SET_OF_CRT_VALUES); |
|
goto out; |
|
} |
|
|
|
if (has_crt_values) { |
|
int dmp1_ok, dmq1_ok, iqmp_ok; |
|
if (!check_mod_inverse(&dmp1_ok, key->e, key->dmp1, &pm1, ctx) || |
|
!check_mod_inverse(&dmq1_ok, key->e, key->dmq1, &qm1, ctx) || |
|
!check_mod_inverse(&iqmp_ok, key->q, key->iqmp, key->p, ctx)) { |
|
OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); |
|
goto out; |
|
} |
|
|
|
if (!dmp1_ok || !dmq1_ok || !iqmp_ok) { |
|
OPENSSL_PUT_ERROR(RSA, RSA_R_CRT_VALUES_INCORRECT); |
|
goto out; |
|
} |
|
} |
|
|
|
ok = 1; |
|
|
|
out: |
|
BN_free(&tmp); |
|
BN_free(&de); |
|
BN_free(&pm1); |
|
BN_free(&qm1); |
|
BN_free(&dmp1); |
|
BN_free(&dmq1); |
|
BN_CTX_free(ctx); |
|
|
|
return ok; |
|
} |
|
|
|
|
|
// This is the product of the 132 smallest odd primes, from 3 to 751. |
|
static const BN_ULONG kSmallFactorsLimbs[] = { |
|
TOBN(0xc4309333, 0x3ef4e3e1), TOBN(0x71161eb6, 0xcd2d655f), |
|
TOBN(0x95e2238c, 0x0bf94862), TOBN(0x3eb233d3, 0x24f7912b), |
|
TOBN(0x6b55514b, 0xbf26c483), TOBN(0x0a84d817, 0x5a144871), |
|
TOBN(0x77d12fee, 0x9b82210a), TOBN(0xdb5b93c2, 0x97f050b3), |
|
TOBN(0x4acad6b9, 0x4d6c026b), TOBN(0xeb7751f3, 0x54aec893), |
|
TOBN(0xdba53368, 0x36bc85c4), TOBN(0xd85a1b28, 0x7f5ec78e), |
|
TOBN(0x2eb072d8, 0x6b322244), TOBN(0xbba51112, 0x5e2b3aea), |
|
TOBN(0x36ed1a6c, 0x0e2486bf), TOBN(0x5f270460, 0xec0c5727), |
|
0x000017b1 |
|
}; |
|
|
|
DEFINE_LOCAL_DATA(BIGNUM, g_small_factors) { |
|
out->d = (BN_ULONG *) kSmallFactorsLimbs; |
|
out->width = OPENSSL_ARRAY_SIZE(kSmallFactorsLimbs); |
|
out->dmax = out->width; |
|
out->neg = 0; |
|
out->flags = BN_FLG_STATIC_DATA; |
|
} |
|
|
|
int RSA_check_fips(RSA *key) { |
|
if (RSA_is_opaque(key)) { |
|
// Opaque keys can't be checked. |
|
OPENSSL_PUT_ERROR(RSA, RSA_R_PUBLIC_KEY_VALIDATION_FAILED); |
|
return 0; |
|
} |
|
|
|
if (!RSA_check_key(key)) { |
|
return 0; |
|
} |
|
|
|
BN_CTX *ctx = BN_CTX_new(); |
|
if (ctx == NULL) { |
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
|
return 0; |
|
} |
|
|
|
BIGNUM small_gcd; |
|
BN_init(&small_gcd); |
|
|
|
int ret = 1; |
|
|
|
// Perform partial public key validation of RSA keys (SP 800-89 5.3.3). |
|
// Although this is not for primality testing, SP 800-89 cites an RSA |
|
// primality testing algorithm, so we use |BN_prime_checks_for_generation| to |
|
// match. This is only a plausibility test and we expect the value to be |
|
// composite, so too few iterations will cause us to reject the key, not use |
|
// an implausible one. |
|
enum bn_primality_result_t primality_result; |
|
if (BN_num_bits(key->e) <= 16 || |
|
BN_num_bits(key->e) > 256 || |
|
!BN_is_odd(key->n) || |
|
!BN_is_odd(key->e) || |
|
!BN_gcd(&small_gcd, key->n, g_small_factors(), ctx) || |
|
!BN_is_one(&small_gcd) || |
|
!BN_enhanced_miller_rabin_primality_test(&primality_result, key->n, |
|
BN_prime_checks_for_generation, |
|
ctx, NULL) || |
|
primality_result != bn_non_prime_power_composite) { |
|
OPENSSL_PUT_ERROR(RSA, RSA_R_PUBLIC_KEY_VALIDATION_FAILED); |
|
ret = 0; |
|
} |
|
|
|
BN_free(&small_gcd); |
|
BN_CTX_free(ctx); |
|
|
|
if (!ret || key->d == NULL || key->p == NULL) { |
|
// On a failure or on only a public key, there's nothing else can be |
|
// checked. |
|
return ret; |
|
} |
|
|
|
// FIPS pairwise consistency test (FIPS 140-2 4.9.2). Per FIPS 140-2 IG, |
|
// section 9.9, it is not known whether |rsa| will be used for signing or |
|
// encryption, so either pair-wise consistency self-test is acceptable. We |
|
// perform a signing test. |
|
uint8_t data[32] = {0}; |
|
unsigned sig_len = RSA_size(key); |
|
uint8_t *sig = OPENSSL_malloc(sig_len); |
|
if (sig == NULL) { |
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
|
return 0; |
|
} |
|
|
|
if (!RSA_sign(NID_sha256, data, sizeof(data), sig, &sig_len, key)) { |
|
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
|
ret = 0; |
|
goto cleanup; |
|
} |
|
#if defined(BORINGSSL_FIPS_BREAK_RSA_PWCT) |
|
data[0] = ~data[0]; |
|
#endif |
|
if (!RSA_verify(NID_sha256, data, sizeof(data), sig, sig_len, key)) { |
|
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
|
ret = 0; |
|
} |
|
|
|
cleanup: |
|
OPENSSL_free(sig); |
|
|
|
return ret; |
|
} |
|
|
|
int RSA_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in, |
|
size_t len) { |
|
if (rsa->meth->private_transform) { |
|
return rsa->meth->private_transform(rsa, out, in, len); |
|
} |
|
|
|
return rsa_default_private_transform(rsa, out, in, len); |
|
} |
|
|
|
int RSA_flags(const RSA *rsa) { return rsa->flags; } |
|
|
|
int RSA_blinding_on(RSA *rsa, BN_CTX *ctx) { |
|
return 1; |
|
}
|
|
|