Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
776 lines
35 KiB
776 lines
35 KiB
/* Originally written by Bodo Moeller for the OpenSSL project. |
|
* ==================================================================== |
|
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* openssl-core@openssl.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). |
|
* |
|
*/ |
|
/* ==================================================================== |
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
|
* |
|
* Portions of the attached software ("Contribution") are developed by |
|
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
|
* |
|
* The Contribution is licensed pursuant to the OpenSSL open source |
|
* license provided above. |
|
* |
|
* The elliptic curve binary polynomial software is originally written by |
|
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
|
* Laboratories. */ |
|
|
|
#ifndef OPENSSL_HEADER_EC_INTERNAL_H |
|
#define OPENSSL_HEADER_EC_INTERNAL_H |
|
|
|
#include <openssl/base.h> |
|
|
|
#include <openssl/bn.h> |
|
#include <openssl/ec.h> |
|
#include <openssl/ex_data.h> |
|
#include <openssl/type_check.h> |
|
|
|
#include "../bn/internal.h" |
|
|
|
#if defined(__cplusplus) |
|
extern "C" { |
|
#endif |
|
|
|
|
|
// EC internals. |
|
|
|
|
|
// Cap the size of all field elements and scalars, including custom curves, to |
|
// 66 bytes, large enough to fit secp521r1 and brainpoolP512r1, which appear to |
|
// be the largest fields anyone plausibly uses. |
|
#define EC_MAX_BYTES 66 |
|
#define EC_MAX_WORDS ((EC_MAX_BYTES + BN_BYTES - 1) / BN_BYTES) |
|
|
|
OPENSSL_STATIC_ASSERT(EC_MAX_WORDS <= BN_SMALL_MAX_WORDS, |
|
"bn_*_small functions not usable"); |
|
|
|
|
|
// Scalars. |
|
|
|
// An EC_SCALAR is an integer fully reduced modulo the order. Only the first |
|
// |order->width| words are used. An |EC_SCALAR| is specific to an |EC_GROUP| |
|
// and must not be mixed between groups. |
|
typedef union { |
|
// bytes is the representation of the scalar in little-endian order. |
|
uint8_t bytes[EC_MAX_BYTES]; |
|
BN_ULONG words[EC_MAX_WORDS]; |
|
} EC_SCALAR; |
|
|
|
// ec_bignum_to_scalar converts |in| to an |EC_SCALAR| and writes it to |
|
// |*out|. It returns one on success and zero if |in| is out of range. |
|
OPENSSL_EXPORT int ec_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out, |
|
const BIGNUM *in); |
|
|
|
// ec_scalar_to_bytes serializes |in| as a big-endian bytestring to |out| and |
|
// sets |*out_len| to the number of bytes written. The number of bytes written |
|
// is |BN_num_bytes(&group->order)|, which is at most |EC_MAX_BYTES|. |
|
OPENSSL_EXPORT void ec_scalar_to_bytes(const EC_GROUP *group, uint8_t *out, |
|
size_t *out_len, const EC_SCALAR *in); |
|
|
|
// ec_scalar_from_bytes deserializes |in| and stores the resulting scalar over |
|
// group |group| to |out|. It returns one on success and zero if |in| is |
|
// invalid. |
|
int ec_scalar_from_bytes(const EC_GROUP *group, EC_SCALAR *out, |
|
const uint8_t *in, size_t len); |
|
|
|
// ec_scalar_reduce sets |out| to |words|, reduced modulo the group order. |
|
// |words| must be less than order^2. |num| must be at most twice the width of |
|
// group order. This function treats |words| as secret. |
|
void ec_scalar_reduce(const EC_GROUP *group, EC_SCALAR *out, |
|
const BN_ULONG *words, size_t num); |
|
|
|
// ec_random_nonzero_scalar sets |out| to a uniformly selected random value from |
|
// 1 to |group->order| - 1. It returns one on success and zero on error. |
|
int ec_random_nonzero_scalar(const EC_GROUP *group, EC_SCALAR *out, |
|
const uint8_t additional_data[32]); |
|
|
|
// ec_scalar_equal_vartime returns one if |a| and |b| are equal and zero |
|
// otherwise. Both values are treated as public. |
|
int ec_scalar_equal_vartime(const EC_GROUP *group, const EC_SCALAR *a, |
|
const EC_SCALAR *b); |
|
|
|
// ec_scalar_is_zero returns one if |a| is zero and zero otherwise. |
|
int ec_scalar_is_zero(const EC_GROUP *group, const EC_SCALAR *a); |
|
|
|
// ec_scalar_add sets |r| to |a| + |b|. |
|
void ec_scalar_add(const EC_GROUP *group, EC_SCALAR *r, const EC_SCALAR *a, |
|
const EC_SCALAR *b); |
|
|
|
// ec_scalar_sub sets |r| to |a| - |b|. |
|
void ec_scalar_sub(const EC_GROUP *group, EC_SCALAR *r, const EC_SCALAR *a, |
|
const EC_SCALAR *b); |
|
|
|
// ec_scalar_neg sets |r| to -|a|. |
|
void ec_scalar_neg(const EC_GROUP *group, EC_SCALAR *r, const EC_SCALAR *a); |
|
|
|
// ec_scalar_to_montgomery sets |r| to |a| in Montgomery form. |
|
void ec_scalar_to_montgomery(const EC_GROUP *group, EC_SCALAR *r, |
|
const EC_SCALAR *a); |
|
|
|
// ec_scalar_to_montgomery sets |r| to |a| converted from Montgomery form. |
|
void ec_scalar_from_montgomery(const EC_GROUP *group, EC_SCALAR *r, |
|
const EC_SCALAR *a); |
|
|
|
// ec_scalar_mul_montgomery sets |r| to |a| * |b| where inputs and outputs are |
|
// in Montgomery form. |
|
void ec_scalar_mul_montgomery(const EC_GROUP *group, EC_SCALAR *r, |
|
const EC_SCALAR *a, const EC_SCALAR *b); |
|
|
|
// ec_scalar_inv0_montgomery sets |r| to |a|^-1 where inputs and outputs are in |
|
// Montgomery form. If |a| is zero, |r| is set to zero. |
|
void ec_scalar_inv0_montgomery(const EC_GROUP *group, EC_SCALAR *r, |
|
const EC_SCALAR *a); |
|
|
|
// ec_scalar_to_montgomery_inv_vartime sets |r| to |a|^-1 R. That is, it takes |
|
// in |a| not in Montgomery form and computes the inverse in Montgomery form. It |
|
// returns one on success and zero if |a| has no inverse. This function assumes |
|
// |a| is public and may leak information about it via timing. |
|
// |
|
// Note this is not the same operation as |ec_scalar_inv0_montgomery|. |
|
int ec_scalar_to_montgomery_inv_vartime(const EC_GROUP *group, EC_SCALAR *r, |
|
const EC_SCALAR *a); |
|
|
|
// ec_scalar_select, in constant time, sets |out| to |a| if |mask| is all ones |
|
// and |b| if |mask| is all zeros. |
|
void ec_scalar_select(const EC_GROUP *group, EC_SCALAR *out, BN_ULONG mask, |
|
const EC_SCALAR *a, const EC_SCALAR *b); |
|
|
|
|
|
// Field elements. |
|
|
|
// An EC_FELEM represents a field element. Only the first |field->width| words |
|
// are used. An |EC_FELEM| is specific to an |EC_GROUP| and must not be mixed |
|
// between groups. Additionally, the representation (whether or not elements are |
|
// represented in Montgomery-form) may vary between |EC_METHOD|s. |
|
typedef union { |
|
// bytes is the representation of the field element in little-endian order. |
|
uint8_t bytes[EC_MAX_BYTES]; |
|
BN_ULONG words[EC_MAX_WORDS]; |
|
} EC_FELEM; |
|
|
|
// ec_bignum_to_felem converts |in| to an |EC_FELEM|. It returns one on success |
|
// and zero if |in| is out of range. |
|
int ec_bignum_to_felem(const EC_GROUP *group, EC_FELEM *out, const BIGNUM *in); |
|
|
|
// ec_felem_to_bignum converts |in| to a |BIGNUM|. It returns one on success and |
|
// zero on allocation failure. |
|
int ec_felem_to_bignum(const EC_GROUP *group, BIGNUM *out, const EC_FELEM *in); |
|
|
|
// ec_felem_to_bytes serializes |in| as a big-endian bytestring to |out| and |
|
// sets |*out_len| to the number of bytes written. The number of bytes written |
|
// is |BN_num_bytes(&group->order)|, which is at most |EC_MAX_BYTES|. |
|
void ec_felem_to_bytes(const EC_GROUP *group, uint8_t *out, size_t *out_len, |
|
const EC_FELEM *in); |
|
|
|
// ec_felem_from_bytes deserializes |in| and stores the resulting field element |
|
// to |out|. It returns one on success and zero if |in| is invalid. |
|
int ec_felem_from_bytes(const EC_GROUP *group, EC_FELEM *out, const uint8_t *in, |
|
size_t len); |
|
|
|
// ec_felem_neg sets |out| to -|a|. |
|
void ec_felem_neg(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a); |
|
|
|
// ec_felem_add sets |out| to |a| + |b|. |
|
void ec_felem_add(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a, |
|
const EC_FELEM *b); |
|
|
|
// ec_felem_add sets |out| to |a| - |b|. |
|
void ec_felem_sub(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a, |
|
const EC_FELEM *b); |
|
|
|
// ec_felem_non_zero_mask returns all ones if |a| is non-zero and all zeros |
|
// otherwise. |
|
BN_ULONG ec_felem_non_zero_mask(const EC_GROUP *group, const EC_FELEM *a); |
|
|
|
// ec_felem_select, in constant time, sets |out| to |a| if |mask| is all ones |
|
// and |b| if |mask| is all zeros. |
|
void ec_felem_select(const EC_GROUP *group, EC_FELEM *out, BN_ULONG mask, |
|
const EC_FELEM *a, const EC_FELEM *b); |
|
|
|
// ec_felem_equal returns one if |a| and |b| are equal and zero otherwise. |
|
int ec_felem_equal(const EC_GROUP *group, const EC_FELEM *a, const EC_FELEM *b); |
|
|
|
|
|
// Points. |
|
// |
|
// Points may represented in affine coordinates as |EC_AFFINE| or Jacobian |
|
// coordinates as |EC_RAW_POINT|. Affine coordinates directly represent a |
|
// point on the curve, but point addition over affine coordinates requires |
|
// costly field inversions, so arithmetic is done in Jacobian coordinates. |
|
// Converting from affine to Jacobian is cheap, while converting from Jacobian |
|
// to affine costs a field inversion. (Jacobian coordinates amortize the field |
|
// inversions needed in a sequence of point operations.) |
|
// |
|
// TODO(davidben): Rename |EC_RAW_POINT| to |EC_JACOBIAN|. |
|
|
|
// An EC_RAW_POINT represents an elliptic curve point in Jacobian coordinates. |
|
// Unlike |EC_POINT|, it is a plain struct which can be stack-allocated and |
|
// needs no cleanup. It is specific to an |EC_GROUP| and must not be mixed |
|
// between groups. |
|
typedef struct { |
|
// X, Y, and Z are Jacobian projective coordinates. They represent |
|
// (X/Z^2, Y/Z^3) if Z != 0 and the point at infinity otherwise. |
|
EC_FELEM X, Y, Z; |
|
} EC_RAW_POINT; |
|
|
|
// An EC_AFFINE represents an elliptic curve point in affine coordinates. |
|
// coordinates. Note the point at infinity cannot be represented in affine |
|
// coordinates. |
|
typedef struct { |
|
EC_FELEM X, Y; |
|
} EC_AFFINE; |
|
|
|
// ec_affine_to_jacobian converts |p| to Jacobian form and writes the result to |
|
// |*out|. This operation is very cheap and only costs a few copies. |
|
void ec_affine_to_jacobian(const EC_GROUP *group, EC_RAW_POINT *out, |
|
const EC_AFFINE *p); |
|
|
|
// ec_jacobian_to_affine converts |p| to affine form and writes the result to |
|
// |*out|. It returns one on success and zero if |p| was the point at infinity. |
|
// This operation performs a field inversion and should only be done once per |
|
// point. |
|
// |
|
// If only extracting the x-coordinate, use |ec_get_x_coordinate_*| which is |
|
// slightly faster. |
|
int ec_jacobian_to_affine(const EC_GROUP *group, EC_AFFINE *out, |
|
const EC_RAW_POINT *p); |
|
|
|
// ec_jacobian_to_affine_batch converts |num| points in |in| from Jacobian |
|
// coordinates to affine coordinates and writes the results to |out|. It returns |
|
// one on success and zero if any of the input points were infinity. |
|
// |
|
// This function is not implemented for all curves. Add implementations as |
|
// needed. |
|
int ec_jacobian_to_affine_batch(const EC_GROUP *group, EC_AFFINE *out, |
|
const EC_RAW_POINT *in, size_t num); |
|
|
|
// ec_point_set_affine_coordinates sets |out|'s to a point with affine |
|
// coordinates |x| and |y|. It returns one if the point is on the curve and |
|
// zero otherwise. If the point is not on the curve, the value of |out| is |
|
// undefined. |
|
int ec_point_set_affine_coordinates(const EC_GROUP *group, EC_AFFINE *out, |
|
const EC_FELEM *x, const EC_FELEM *y); |
|
|
|
// ec_point_mul_scalar sets |r| to |p| * |scalar|. Both inputs are considered |
|
// secret. |
|
int ec_point_mul_scalar(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_RAW_POINT *p, const EC_SCALAR *scalar); |
|
|
|
// ec_point_mul_scalar_base sets |r| to generator * |scalar|. |scalar| is |
|
// treated as secret. |
|
int ec_point_mul_scalar_base(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_SCALAR *scalar); |
|
|
|
// ec_point_mul_scalar_batch sets |r| to |p0| * |scalar0| + |p1| * |scalar1| + |
|
// |p2| * |scalar2|. |p2| may be NULL to skip that term. |
|
// |
|
// The inputs are treated as secret, however, this function leaks information |
|
// about whether intermediate computations add a point to itself. Callers must |
|
// ensure that discrete logs between |p0|, |p1|, and |p2| are uniformly |
|
// distributed and independent of the scalars, which should be uniformly |
|
// selected and not under the attackers control. This ensures the doubling case |
|
// will occur with negligible probability. |
|
// |
|
// This function is not implemented for all curves. Add implementations as |
|
// needed. |
|
// |
|
// TODO(davidben): This function does not use base point tables. For now, it is |
|
// only used with the generic |EC_GFp_mont_method| implementation which has |
|
// none. If generalizing to tuned curves, this may be useful. However, we still |
|
// must double up to the least efficient input, so precomputed tables can only |
|
// save table setup and allow a wider window size. |
|
int ec_point_mul_scalar_batch(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_RAW_POINT *p0, const EC_SCALAR *scalar0, |
|
const EC_RAW_POINT *p1, const EC_SCALAR *scalar1, |
|
const EC_RAW_POINT *p2, const EC_SCALAR *scalar2); |
|
|
|
#define EC_MONT_PRECOMP_COMB_SIZE 5 |
|
|
|
// An |EC_PRECOMP| stores precomputed information about a point, to optimize |
|
// repeated multiplications involving it. It is a union so different |
|
// |EC_METHOD|s can store different information in it. |
|
typedef union { |
|
EC_AFFINE comb[(1 << EC_MONT_PRECOMP_COMB_SIZE) - 1]; |
|
} EC_PRECOMP; |
|
|
|
// ec_init_precomp precomputes multiples of |p| and writes the result to |out|. |
|
// It returns one on success and zero on error. The resulting table may be used |
|
// with |ec_point_mul_scalar_precomp|. This function will fail if |p| is the |
|
// point at infinity. |
|
// |
|
// This function is not implemented for all curves. Add implementations as |
|
// needed. |
|
int ec_init_precomp(const EC_GROUP *group, EC_PRECOMP *out, |
|
const EC_RAW_POINT *p); |
|
|
|
// ec_point_mul_scalar_precomp sets |r| to |p0| * |scalar0| + |p1| * |scalar1| + |
|
// |p2| * |scalar2|. |p1| or |p2| may be NULL to skip the corresponding term. |
|
// The points are represented as |EC_PRECOMP| and must be initialized with |
|
// |ec_init_precomp|. This function runs faster than |ec_point_mul_scalar_batch| |
|
// but requires setup work per input point, so it is only appropriate for points |
|
// which are used frequently. |
|
// |
|
// The inputs are treated as secret, however, this function leaks information |
|
// about whether intermediate computations add a point to itself. Callers must |
|
// ensure that discrete logs between |p0|, |p1|, and |p2| are uniformly |
|
// distributed and independent of the scalars, which should be uniformly |
|
// selected and not under the attackers control. This ensures the doubling case |
|
// will occur with negligible probability. |
|
// |
|
// This function is not implemented for all curves. Add implementations as |
|
// needed. |
|
// |
|
// TODO(davidben): This function does not use base point tables. For now, it is |
|
// only used with the generic |EC_GFp_mont_method| implementation which has |
|
// none. If generalizing to tuned curves, we should add a parameter for the base |
|
// point and arrange for the generic implementation to have base point tables |
|
// available. |
|
int ec_point_mul_scalar_precomp(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_PRECOMP *p0, const EC_SCALAR *scalar0, |
|
const EC_PRECOMP *p1, const EC_SCALAR *scalar1, |
|
const EC_PRECOMP *p2, const EC_SCALAR *scalar2); |
|
|
|
// ec_point_mul_scalar_public sets |r| to |
|
// generator * |g_scalar| + |p| * |p_scalar|. It assumes that the inputs are |
|
// public so there is no concern about leaking their values through timing. |
|
OPENSSL_EXPORT int ec_point_mul_scalar_public(const EC_GROUP *group, |
|
EC_RAW_POINT *r, |
|
const EC_SCALAR *g_scalar, |
|
const EC_RAW_POINT *p, |
|
const EC_SCALAR *p_scalar); |
|
|
|
// ec_point_mul_scalar_public_batch sets |r| to the sum of generator * |
|
// |g_scalar| and |points[i]| * |scalars[i]| where |points| and |scalars| have |
|
// |num| elements. It assumes that the inputs are public so there is no concern |
|
// about leaking their values through timing. |g_scalar| may be NULL to skip |
|
// that term. |
|
// |
|
// This function is not implemented for all curves. Add implementations as |
|
// needed. |
|
int ec_point_mul_scalar_public_batch(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_SCALAR *g_scalar, |
|
const EC_RAW_POINT *points, |
|
const EC_SCALAR *scalars, size_t num); |
|
|
|
// ec_point_select, in constant time, sets |out| to |a| if |mask| is all ones |
|
// and |b| if |mask| is all zeros. |
|
void ec_point_select(const EC_GROUP *group, EC_RAW_POINT *out, BN_ULONG mask, |
|
const EC_RAW_POINT *a, const EC_RAW_POINT *b); |
|
|
|
// ec_affine_select behaves like |ec_point_select| but acts on affine points. |
|
void ec_affine_select(const EC_GROUP *group, EC_AFFINE *out, BN_ULONG mask, |
|
const EC_AFFINE *a, const EC_AFFINE *b); |
|
|
|
// ec_precomp_select behaves like |ec_point_select| but acts on |EC_PRECOMP|. |
|
void ec_precomp_select(const EC_GROUP *group, EC_PRECOMP *out, BN_ULONG mask, |
|
const EC_PRECOMP *a, const EC_PRECOMP *b); |
|
|
|
// ec_cmp_x_coordinate compares the x (affine) coordinate of |p|, mod the group |
|
// order, with |r|. It returns one if the values match and zero if |p| is the |
|
// point at infinity of the values do not match. |
|
int ec_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p, |
|
const EC_SCALAR *r); |
|
|
|
// ec_get_x_coordinate_as_scalar sets |*out| to |p|'s x-coordinate, modulo |
|
// |group->order|. It returns one on success and zero if |p| is the point at |
|
// infinity. |
|
int ec_get_x_coordinate_as_scalar(const EC_GROUP *group, EC_SCALAR *out, |
|
const EC_RAW_POINT *p); |
|
|
|
// ec_get_x_coordinate_as_bytes writes |p|'s affine x-coordinate to |out|, which |
|
// must have at must |max_out| bytes. It sets |*out_len| to the number of bytes |
|
// written. The value is written big-endian and zero-padded to the size of the |
|
// field. This function returns one on success and zero on failure. |
|
int ec_get_x_coordinate_as_bytes(const EC_GROUP *group, uint8_t *out, |
|
size_t *out_len, size_t max_out, |
|
const EC_RAW_POINT *p); |
|
|
|
// ec_point_to_bytes behaves like |EC_POINT_point2oct| but takes an |
|
// |EC_AFFINE|. |
|
size_t ec_point_to_bytes(const EC_GROUP *group, const EC_AFFINE *point, |
|
point_conversion_form_t form, uint8_t *buf, |
|
size_t len); |
|
|
|
// ec_point_from_uncompressed parses |in| as a point in uncompressed form and |
|
// sets the result to |out|. It returns one on success and zero if the input was |
|
// invalid. |
|
int ec_point_from_uncompressed(const EC_GROUP *group, EC_AFFINE *out, |
|
const uint8_t *in, size_t len); |
|
|
|
// ec_set_to_safe_point sets |out| to an arbitrary point on |group|, either the |
|
// generator or the point at infinity. This is used to guard against callers of |
|
// external APIs not checking the return value. |
|
void ec_set_to_safe_point(const EC_GROUP *group, EC_RAW_POINT *out); |
|
|
|
// ec_affine_jacobian_equal returns one if |a| and |b| represent the same point |
|
// and zero otherwise. It treats both inputs as secret. |
|
int ec_affine_jacobian_equal(const EC_GROUP *group, const EC_AFFINE *a, |
|
const EC_RAW_POINT *b); |
|
|
|
|
|
// Implementation details. |
|
|
|
struct ec_method_st { |
|
int (*group_init)(EC_GROUP *); |
|
void (*group_finish)(EC_GROUP *); |
|
int (*group_set_curve)(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, |
|
const BIGNUM *b, BN_CTX *); |
|
|
|
// point_get_affine_coordinates sets |*x| and |*y| to the affine coordinates |
|
// of |p|. Either |x| or |y| may be NULL to omit it. It returns one on success |
|
// and zero if |p| is the point at infinity. |
|
int (*point_get_affine_coordinates)(const EC_GROUP *, const EC_RAW_POINT *p, |
|
EC_FELEM *x, EC_FELEM *y); |
|
|
|
// jacobian_to_affine_batch implements |ec_jacobian_to_affine_batch|. |
|
int (*jacobian_to_affine_batch)(const EC_GROUP *group, EC_AFFINE *out, |
|
const EC_RAW_POINT *in, size_t num); |
|
|
|
// add sets |r| to |a| + |b|. |
|
void (*add)(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *a, |
|
const EC_RAW_POINT *b); |
|
// dbl sets |r| to |a| + |a|. |
|
void (*dbl)(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *a); |
|
|
|
// mul sets |r| to |scalar|*|p|. |
|
void (*mul)(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *p, |
|
const EC_SCALAR *scalar); |
|
// mul_base sets |r| to |scalar|*generator. |
|
void (*mul_base)(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_SCALAR *scalar); |
|
// mul_batch implements |ec_mul_scalar_batch|. |
|
void (*mul_batch)(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_RAW_POINT *p0, const EC_SCALAR *scalar0, |
|
const EC_RAW_POINT *p1, const EC_SCALAR *scalar1, |
|
const EC_RAW_POINT *p2, const EC_SCALAR *scalar2); |
|
// mul_public sets |r| to |g_scalar|*generator + |p_scalar|*|p|. It assumes |
|
// that the inputs are public so there is no concern about leaking their |
|
// values through timing. |
|
// |
|
// This function may be omitted if |mul_public_batch| is provided. |
|
void (*mul_public)(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, |
|
const EC_SCALAR *p_scalar); |
|
// mul_public_batch implements |ec_point_mul_scalar_public_batch|. |
|
int (*mul_public_batch)(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_SCALAR *g_scalar, const EC_RAW_POINT *points, |
|
const EC_SCALAR *scalars, size_t num); |
|
|
|
// init_precomp implements |ec_init_precomp|. |
|
int (*init_precomp)(const EC_GROUP *group, EC_PRECOMP *out, |
|
const EC_RAW_POINT *p); |
|
// mul_precomp implements |ec_point_mul_scalar_precomp|. |
|
void (*mul_precomp)(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_PRECOMP *p0, const EC_SCALAR *scalar0, |
|
const EC_PRECOMP *p1, const EC_SCALAR *scalar1, |
|
const EC_PRECOMP *p2, const EC_SCALAR *scalar2); |
|
|
|
// felem_mul and felem_sqr implement multiplication and squaring, |
|
// respectively, so that the generic |EC_POINT_add| and |EC_POINT_dbl| |
|
// implementations can work both with |EC_GFp_mont_method| and the tuned |
|
// operations. |
|
// |
|
// TODO(davidben): This constrains |EC_FELEM|'s internal representation, adds |
|
// many indirect calls in the middle of the generic code, and a bunch of |
|
// conversions. If p224-64.c were easily convertable to Montgomery form, we |
|
// could say |EC_FELEM| is always in Montgomery form. If we routed the rest of |
|
// simple.c to |EC_METHOD|, we could give |EC_POINT| an |EC_METHOD|-specific |
|
// representation and say |EC_FELEM| is purely a |EC_GFp_mont_method| type. |
|
void (*felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, |
|
const EC_FELEM *b); |
|
void (*felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a); |
|
|
|
void (*felem_to_bytes)(const EC_GROUP *group, uint8_t *out, size_t *out_len, |
|
const EC_FELEM *in); |
|
int (*felem_from_bytes)(const EC_GROUP *group, EC_FELEM *out, |
|
const uint8_t *in, size_t len); |
|
|
|
// felem_reduce sets |out| to |words|, reduced modulo the field size, p. |
|
// |words| must be less than p^2. |num| must be at most twice the width of p. |
|
// This function treats |words| as secret. |
|
// |
|
// This function is only used in hash-to-curve and may be omitted in curves |
|
// that do not support it. |
|
void (*felem_reduce)(const EC_GROUP *group, EC_FELEM *out, |
|
const BN_ULONG *words, size_t num); |
|
|
|
// felem_exp sets |out| to |a|^|exp|. It treats |a| is secret but |exp| as |
|
// public. |
|
// |
|
// This function is used in hash-to-curve and may be NULL in curves not used |
|
// with hash-to-curve. |
|
void (*felem_exp)(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a, |
|
const BN_ULONG *exp, size_t num_exp); |
|
|
|
// scalar_inv0_montgomery implements |ec_scalar_inv0_montgomery|. |
|
void (*scalar_inv0_montgomery)(const EC_GROUP *group, EC_SCALAR *out, |
|
const EC_SCALAR *in); |
|
|
|
// scalar_to_montgomery_inv_vartime implements |
|
// |ec_scalar_to_montgomery_inv_vartime|. |
|
int (*scalar_to_montgomery_inv_vartime)(const EC_GROUP *group, EC_SCALAR *out, |
|
const EC_SCALAR *in); |
|
|
|
// cmp_x_coordinate compares the x (affine) coordinate of |p|, mod the group |
|
// order, with |r|. It returns one if the values match and zero if |p| is the |
|
// point at infinity of the values do not match. |
|
int (*cmp_x_coordinate)(const EC_GROUP *group, const EC_RAW_POINT *p, |
|
const EC_SCALAR *r); |
|
} /* EC_METHOD */; |
|
|
|
const EC_METHOD *EC_GFp_mont_method(void); |
|
|
|
struct ec_group_st { |
|
const EC_METHOD *meth; |
|
|
|
// Unlike all other |EC_POINT|s, |generator| does not own |generator->group| |
|
// to avoid a reference cycle. Additionally, Z is guaranteed to be one, so X |
|
// and Y are suitable for use as an |EC_AFFINE|. |
|
EC_POINT *generator; |
|
BIGNUM order; |
|
|
|
int curve_name; // optional NID for named curve |
|
|
|
BN_MONT_CTX *order_mont; // data for ECDSA inverse |
|
|
|
// The following members are handled by the method functions, |
|
// even if they appear generic |
|
|
|
BIGNUM field; // For curves over GF(p), this is the modulus. |
|
|
|
EC_FELEM a, b; // Curve coefficients. |
|
|
|
// a_is_minus3 is one if |a| is -3 mod |field| and zero otherwise. Point |
|
// arithmetic is optimized for -3. |
|
int a_is_minus3; |
|
|
|
// field_greater_than_order is one if |field| is greate than |order| and zero |
|
// otherwise. |
|
int field_greater_than_order; |
|
|
|
// field_minus_order, if |field_greater_than_order| is true, is |field| minus |
|
// |order| represented as an |EC_FELEM|. Otherwise, it is zero. |
|
// |
|
// Note: unlike |EC_FELEM|s used as intermediate values internal to the |
|
// |EC_METHOD|, this value is not encoded in Montgomery form. |
|
EC_FELEM field_minus_order; |
|
|
|
CRYPTO_refcount_t references; |
|
|
|
BN_MONT_CTX *mont; // Montgomery structure. |
|
|
|
EC_FELEM one; // The value one. |
|
} /* EC_GROUP */; |
|
|
|
struct ec_point_st { |
|
// group is an owning reference to |group|, unless this is |
|
// |group->generator|. |
|
EC_GROUP *group; |
|
// raw is the group-specific point data. Functions that take |EC_POINT| |
|
// typically check consistency with |EC_GROUP| while functions that take |
|
// |EC_RAW_POINT| do not. Thus accesses to this field should be externally |
|
// checked for consistency. |
|
EC_RAW_POINT raw; |
|
} /* EC_POINT */; |
|
|
|
EC_GROUP *ec_group_new(const EC_METHOD *meth); |
|
|
|
void ec_GFp_mont_mul(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_RAW_POINT *p, const EC_SCALAR *scalar); |
|
void ec_GFp_mont_mul_base(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_SCALAR *scalar); |
|
void ec_GFp_mont_mul_batch(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_RAW_POINT *p0, const EC_SCALAR *scalar0, |
|
const EC_RAW_POINT *p1, const EC_SCALAR *scalar1, |
|
const EC_RAW_POINT *p2, const EC_SCALAR *scalar2); |
|
int ec_GFp_mont_init_precomp(const EC_GROUP *group, EC_PRECOMP *out, |
|
const EC_RAW_POINT *p); |
|
void ec_GFp_mont_mul_precomp(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_PRECOMP *p0, const EC_SCALAR *scalar0, |
|
const EC_PRECOMP *p1, const EC_SCALAR *scalar1, |
|
const EC_PRECOMP *p2, const EC_SCALAR *scalar2); |
|
|
|
// ec_compute_wNAF writes the modified width-(w+1) Non-Adjacent Form (wNAF) of |
|
// |scalar| to |out|. |out| must have room for |bits| + 1 elements, each of |
|
// which will be either zero or odd with an absolute value less than 2^w |
|
// satisfying |
|
// scalar = \sum_j out[j]*2^j |
|
// where at most one of any w+1 consecutive digits is non-zero |
|
// with the exception that the most significant digit may be only |
|
// w-1 zeros away from that next non-zero digit. |
|
void ec_compute_wNAF(const EC_GROUP *group, int8_t *out, |
|
const EC_SCALAR *scalar, size_t bits, int w); |
|
|
|
int ec_GFp_mont_mul_public_batch(const EC_GROUP *group, EC_RAW_POINT *r, |
|
const EC_SCALAR *g_scalar, |
|
const EC_RAW_POINT *points, |
|
const EC_SCALAR *scalars, size_t num); |
|
|
|
// method functions in simple.c |
|
int ec_GFp_simple_group_init(EC_GROUP *); |
|
void ec_GFp_simple_group_finish(EC_GROUP *); |
|
int ec_GFp_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, |
|
const BIGNUM *b, BN_CTX *); |
|
int ec_GFp_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a, |
|
BIGNUM *b); |
|
void ec_GFp_simple_point_init(EC_RAW_POINT *); |
|
void ec_GFp_simple_point_copy(EC_RAW_POINT *, const EC_RAW_POINT *); |
|
void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *, EC_RAW_POINT *); |
|
void ec_GFp_mont_add(const EC_GROUP *, EC_RAW_POINT *r, const EC_RAW_POINT *a, |
|
const EC_RAW_POINT *b); |
|
void ec_GFp_mont_dbl(const EC_GROUP *, EC_RAW_POINT *r, const EC_RAW_POINT *a); |
|
void ec_GFp_simple_invert(const EC_GROUP *, EC_RAW_POINT *); |
|
int ec_GFp_simple_is_at_infinity(const EC_GROUP *, const EC_RAW_POINT *); |
|
int ec_GFp_simple_is_on_curve(const EC_GROUP *, const EC_RAW_POINT *); |
|
int ec_GFp_simple_points_equal(const EC_GROUP *, const EC_RAW_POINT *a, |
|
const EC_RAW_POINT *b); |
|
void ec_simple_scalar_inv0_montgomery(const EC_GROUP *group, EC_SCALAR *r, |
|
const EC_SCALAR *a); |
|
|
|
int ec_simple_scalar_to_montgomery_inv_vartime(const EC_GROUP *group, |
|
EC_SCALAR *r, |
|
const EC_SCALAR *a); |
|
|
|
int ec_GFp_simple_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p, |
|
const EC_SCALAR *r); |
|
|
|
void ec_GFp_simple_felem_to_bytes(const EC_GROUP *group, uint8_t *out, |
|
size_t *out_len, const EC_FELEM *in); |
|
int ec_GFp_simple_felem_from_bytes(const EC_GROUP *group, EC_FELEM *out, |
|
const uint8_t *in, size_t len); |
|
|
|
// method functions in montgomery.c |
|
int ec_GFp_mont_group_init(EC_GROUP *); |
|
int ec_GFp_mont_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, |
|
const BIGNUM *b, BN_CTX *); |
|
void ec_GFp_mont_group_finish(EC_GROUP *); |
|
void ec_GFp_mont_felem_mul(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, |
|
const EC_FELEM *b); |
|
void ec_GFp_mont_felem_sqr(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a); |
|
|
|
void ec_GFp_mont_felem_to_bytes(const EC_GROUP *group, uint8_t *out, |
|
size_t *out_len, const EC_FELEM *in); |
|
int ec_GFp_mont_felem_from_bytes(const EC_GROUP *group, EC_FELEM *out, |
|
const uint8_t *in, size_t len); |
|
|
|
void ec_GFp_nistp_recode_scalar_bits(crypto_word_t *sign, crypto_word_t *digit, |
|
crypto_word_t in); |
|
|
|
const EC_METHOD *EC_GFp_nistp224_method(void); |
|
const EC_METHOD *EC_GFp_nistp256_method(void); |
|
|
|
// EC_GFp_nistz256_method is a GFp method using montgomery multiplication, with |
|
// x86-64 optimized P256. See http://eprint.iacr.org/2013/816. |
|
const EC_METHOD *EC_GFp_nistz256_method(void); |
|
|
|
// An EC_WRAPPED_SCALAR is an |EC_SCALAR| with a parallel |BIGNUM| |
|
// representation. It exists to support the |EC_KEY_get0_private_key| API. |
|
typedef struct { |
|
BIGNUM bignum; |
|
EC_SCALAR scalar; |
|
} EC_WRAPPED_SCALAR; |
|
|
|
struct ec_key_st { |
|
EC_GROUP *group; |
|
|
|
// Ideally |pub_key| would be an |EC_AFFINE| so serializing it does not pay an |
|
// inversion each time, but the |EC_KEY_get0_public_key| API implies public |
|
// keys are stored in an |EC_POINT|-compatible form. |
|
EC_POINT *pub_key; |
|
EC_WRAPPED_SCALAR *priv_key; |
|
|
|
// fixed_k may contain a specific value of 'k', to be used in ECDSA signing. |
|
// This is only for the FIPS power-on tests. |
|
BIGNUM *fixed_k; |
|
|
|
unsigned int enc_flag; |
|
point_conversion_form_t conv_form; |
|
|
|
CRYPTO_refcount_t references; |
|
|
|
ECDSA_METHOD *ecdsa_meth; |
|
|
|
CRYPTO_EX_DATA ex_data; |
|
} /* EC_KEY */; |
|
|
|
struct built_in_curve { |
|
int nid; |
|
const uint8_t *oid; |
|
uint8_t oid_len; |
|
// comment is a human-readable string describing the curve. |
|
const char *comment; |
|
// param_len is the number of bytes needed to store a field element. |
|
uint8_t param_len; |
|
// params points to an array of 6*|param_len| bytes which hold the field |
|
// elements of the following (in big-endian order): prime, a, b, generator x, |
|
// generator y, order. |
|
const uint8_t *params; |
|
const EC_METHOD *method; |
|
}; |
|
|
|
#define OPENSSL_NUM_BUILT_IN_CURVES 4 |
|
|
|
struct built_in_curves { |
|
struct built_in_curve curves[OPENSSL_NUM_BUILT_IN_CURVES]; |
|
}; |
|
|
|
// OPENSSL_built_in_curves returns a pointer to static information about |
|
// standard curves. The array is terminated with an entry where |nid| is |
|
// |NID_undef|. |
|
const struct built_in_curves *OPENSSL_built_in_curves(void); |
|
|
|
#if defined(__cplusplus) |
|
} // extern C |
|
#endif |
|
|
|
#endif // OPENSSL_HEADER_EC_INTERNAL_H
|
|
|