Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
489 lines
13 KiB
489 lines
13 KiB
/* ==================================================================== |
|
* Copyright (c) 2006 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* licensing@OpenSSL.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). */ |
|
|
|
#include <openssl/evp.h> |
|
|
|
#include <openssl/bio.h> |
|
#include <openssl/bn.h> |
|
#include <openssl/dsa.h> |
|
#include <openssl/ec.h> |
|
#include <openssl/ec_key.h> |
|
#include <openssl/mem.h> |
|
#include <openssl/rsa.h> |
|
|
|
#include "../internal.h" |
|
#include "../fipsmodule/rsa/internal.h" |
|
|
|
|
|
static int bn_print(BIO *bp, const char *number, const BIGNUM *num, |
|
uint8_t *buf, int off) { |
|
if (num == NULL) { |
|
return 1; |
|
} |
|
|
|
if (!BIO_indent(bp, off, 128)) { |
|
return 0; |
|
} |
|
if (BN_is_zero(num)) { |
|
if (BIO_printf(bp, "%s 0\n", number) <= 0) { |
|
return 0; |
|
} |
|
return 1; |
|
} |
|
|
|
if (BN_num_bytes(num) <= sizeof(long)) { |
|
const char *neg = BN_is_negative(num) ? "-" : ""; |
|
if (BIO_printf(bp, "%s %s%lu (%s0x%lx)\n", number, neg, |
|
(unsigned long)num->d[0], neg, |
|
(unsigned long)num->d[0]) <= 0) { |
|
return 0; |
|
} |
|
} else { |
|
buf[0] = 0; |
|
if (BIO_printf(bp, "%s%s", number, |
|
(BN_is_negative(num)) ? " (Negative)" : "") <= 0) { |
|
return 0; |
|
} |
|
int n = BN_bn2bin(num, &buf[1]); |
|
|
|
if (buf[1] & 0x80) { |
|
n++; |
|
} else { |
|
buf++; |
|
} |
|
|
|
int i; |
|
for (i = 0; i < n; i++) { |
|
if ((i % 15) == 0) { |
|
if (BIO_puts(bp, "\n") <= 0 || |
|
!BIO_indent(bp, off + 4, 128)) { |
|
return 0; |
|
} |
|
} |
|
if (BIO_printf(bp, "%02x%s", buf[i], ((i + 1) == n) ? "" : ":") <= 0) { |
|
return 0; |
|
} |
|
} |
|
if (BIO_write(bp, "\n", 1) <= 0) { |
|
return 0; |
|
} |
|
} |
|
return 1; |
|
} |
|
|
|
static void update_buflen(const BIGNUM *b, size_t *pbuflen) { |
|
if (!b) { |
|
return; |
|
} |
|
|
|
size_t len = BN_num_bytes(b); |
|
if (*pbuflen < len) { |
|
*pbuflen = len; |
|
} |
|
} |
|
|
|
// RSA keys. |
|
|
|
static int do_rsa_print(BIO *out, const RSA *rsa, int off, |
|
int include_private) { |
|
const char *s, *str; |
|
uint8_t *m = NULL; |
|
int ret = 0, mod_len = 0; |
|
size_t buf_len = 0; |
|
|
|
update_buflen(rsa->n, &buf_len); |
|
update_buflen(rsa->e, &buf_len); |
|
|
|
if (include_private) { |
|
update_buflen(rsa->d, &buf_len); |
|
update_buflen(rsa->p, &buf_len); |
|
update_buflen(rsa->q, &buf_len); |
|
update_buflen(rsa->dmp1, &buf_len); |
|
update_buflen(rsa->dmq1, &buf_len); |
|
update_buflen(rsa->iqmp, &buf_len); |
|
} |
|
|
|
m = (uint8_t *)OPENSSL_malloc(buf_len + 10); |
|
if (m == NULL) { |
|
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); |
|
goto err; |
|
} |
|
|
|
if (rsa->n != NULL) { |
|
mod_len = BN_num_bits(rsa->n); |
|
} |
|
|
|
if (!BIO_indent(out, off, 128)) { |
|
goto err; |
|
} |
|
|
|
if (include_private && rsa->d) { |
|
if (BIO_printf(out, "Private-Key: (%d bit)\n", mod_len) <= 0) { |
|
goto err; |
|
} |
|
str = "modulus:"; |
|
s = "publicExponent:"; |
|
} else { |
|
if (BIO_printf(out, "Public-Key: (%d bit)\n", mod_len) <= 0) { |
|
goto err; |
|
} |
|
str = "Modulus:"; |
|
s = "Exponent:"; |
|
} |
|
if (!bn_print(out, str, rsa->n, m, off) || |
|
!bn_print(out, s, rsa->e, m, off)) { |
|
goto err; |
|
} |
|
|
|
if (include_private) { |
|
if (!bn_print(out, "privateExponent:", rsa->d, m, off) || |
|
!bn_print(out, "prime1:", rsa->p, m, off) || |
|
!bn_print(out, "prime2:", rsa->q, m, off) || |
|
!bn_print(out, "exponent1:", rsa->dmp1, m, off) || |
|
!bn_print(out, "exponent2:", rsa->dmq1, m, off) || |
|
!bn_print(out, "coefficient:", rsa->iqmp, m, off)) { |
|
goto err; |
|
} |
|
} |
|
ret = 1; |
|
|
|
err: |
|
OPENSSL_free(m); |
|
return ret; |
|
} |
|
|
|
static int rsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
|
ASN1_PCTX *ctx) { |
|
return do_rsa_print(bp, pkey->pkey.rsa, indent, 0); |
|
} |
|
|
|
static int rsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
|
ASN1_PCTX *ctx) { |
|
return do_rsa_print(bp, pkey->pkey.rsa, indent, 1); |
|
} |
|
|
|
|
|
// DSA keys. |
|
|
|
static int do_dsa_print(BIO *bp, const DSA *x, int off, int ptype) { |
|
uint8_t *m = NULL; |
|
int ret = 0; |
|
size_t buf_len = 0; |
|
const char *ktype = NULL; |
|
|
|
const BIGNUM *priv_key, *pub_key; |
|
|
|
priv_key = NULL; |
|
if (ptype == 2) { |
|
priv_key = x->priv_key; |
|
} |
|
|
|
pub_key = NULL; |
|
if (ptype > 0) { |
|
pub_key = x->pub_key; |
|
} |
|
|
|
ktype = "DSA-Parameters"; |
|
if (ptype == 2) { |
|
ktype = "Private-Key"; |
|
} else if (ptype == 1) { |
|
ktype = "Public-Key"; |
|
} |
|
|
|
update_buflen(x->p, &buf_len); |
|
update_buflen(x->q, &buf_len); |
|
update_buflen(x->g, &buf_len); |
|
update_buflen(priv_key, &buf_len); |
|
update_buflen(pub_key, &buf_len); |
|
|
|
m = (uint8_t *)OPENSSL_malloc(buf_len + 10); |
|
if (m == NULL) { |
|
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); |
|
goto err; |
|
} |
|
|
|
if (priv_key) { |
|
if (!BIO_indent(bp, off, 128) || |
|
BIO_printf(bp, "%s: (%u bit)\n", ktype, BN_num_bits(x->p)) <= 0) { |
|
goto err; |
|
} |
|
} |
|
|
|
if (!bn_print(bp, "priv:", priv_key, m, off) || |
|
!bn_print(bp, "pub: ", pub_key, m, off) || |
|
!bn_print(bp, "P: ", x->p, m, off) || |
|
!bn_print(bp, "Q: ", x->q, m, off) || |
|
!bn_print(bp, "G: ", x->g, m, off)) { |
|
goto err; |
|
} |
|
ret = 1; |
|
|
|
err: |
|
OPENSSL_free(m); |
|
return ret; |
|
} |
|
|
|
static int dsa_param_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
|
ASN1_PCTX *ctx) { |
|
return do_dsa_print(bp, pkey->pkey.dsa, indent, 0); |
|
} |
|
|
|
static int dsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
|
ASN1_PCTX *ctx) { |
|
return do_dsa_print(bp, pkey->pkey.dsa, indent, 1); |
|
} |
|
|
|
static int dsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
|
ASN1_PCTX *ctx) { |
|
return do_dsa_print(bp, pkey->pkey.dsa, indent, 2); |
|
} |
|
|
|
|
|
// EC keys. |
|
|
|
static int do_EC_KEY_print(BIO *bp, const EC_KEY *x, int off, int ktype) { |
|
uint8_t *buffer = NULL; |
|
const char *ecstr; |
|
size_t buf_len = 0, i; |
|
int ret = 0, reason = ERR_R_BIO_LIB; |
|
BIGNUM *order = NULL; |
|
BN_CTX *ctx = NULL; |
|
const EC_GROUP *group; |
|
const EC_POINT *public_key; |
|
const BIGNUM *priv_key; |
|
uint8_t *pub_key_bytes = NULL; |
|
size_t pub_key_bytes_len = 0; |
|
|
|
if (x == NULL || (group = EC_KEY_get0_group(x)) == NULL) { |
|
reason = ERR_R_PASSED_NULL_PARAMETER; |
|
goto err; |
|
} |
|
|
|
ctx = BN_CTX_new(); |
|
if (ctx == NULL) { |
|
reason = ERR_R_MALLOC_FAILURE; |
|
goto err; |
|
} |
|
|
|
if (ktype > 0) { |
|
public_key = EC_KEY_get0_public_key(x); |
|
if (public_key != NULL) { |
|
pub_key_bytes_len = EC_POINT_point2oct( |
|
group, public_key, EC_KEY_get_conv_form(x), NULL, 0, ctx); |
|
if (pub_key_bytes_len == 0) { |
|
reason = ERR_R_MALLOC_FAILURE; |
|
goto err; |
|
} |
|
pub_key_bytes = OPENSSL_malloc(pub_key_bytes_len); |
|
if (pub_key_bytes == NULL) { |
|
reason = ERR_R_MALLOC_FAILURE; |
|
goto err; |
|
} |
|
pub_key_bytes_len = |
|
EC_POINT_point2oct(group, public_key, EC_KEY_get_conv_form(x), |
|
pub_key_bytes, pub_key_bytes_len, ctx); |
|
if (pub_key_bytes_len == 0) { |
|
reason = ERR_R_MALLOC_FAILURE; |
|
goto err; |
|
} |
|
buf_len = pub_key_bytes_len; |
|
} |
|
} |
|
|
|
if (ktype == 2) { |
|
priv_key = EC_KEY_get0_private_key(x); |
|
if (priv_key && (i = (size_t)BN_num_bytes(priv_key)) > buf_len) { |
|
buf_len = i; |
|
} |
|
} else { |
|
priv_key = NULL; |
|
} |
|
|
|
if (ktype > 0) { |
|
buf_len += 10; |
|
if ((buffer = OPENSSL_malloc(buf_len)) == NULL) { |
|
reason = ERR_R_MALLOC_FAILURE; |
|
goto err; |
|
} |
|
} |
|
if (ktype == 2) { |
|
ecstr = "Private-Key"; |
|
} else if (ktype == 1) { |
|
ecstr = "Public-Key"; |
|
} else { |
|
ecstr = "ECDSA-Parameters"; |
|
} |
|
|
|
if (!BIO_indent(bp, off, 128)) { |
|
goto err; |
|
} |
|
order = BN_new(); |
|
if (order == NULL || !EC_GROUP_get_order(group, order, NULL) || |
|
BIO_printf(bp, "%s: (%u bit)\n", ecstr, BN_num_bits(order)) <= 0) { |
|
goto err; |
|
} |
|
|
|
if ((priv_key != NULL) && |
|
!bn_print(bp, "priv:", priv_key, buffer, off)) { |
|
goto err; |
|
} |
|
if (pub_key_bytes != NULL) { |
|
BIO_hexdump(bp, pub_key_bytes, pub_key_bytes_len, off); |
|
} |
|
// TODO(fork): implement |
|
/* |
|
if (!ECPKParameters_print(bp, group, off)) |
|
goto err; */ |
|
ret = 1; |
|
|
|
err: |
|
if (!ret) { |
|
OPENSSL_PUT_ERROR(EVP, reason); |
|
} |
|
OPENSSL_free(pub_key_bytes); |
|
BN_free(order); |
|
BN_CTX_free(ctx); |
|
OPENSSL_free(buffer); |
|
return ret; |
|
} |
|
|
|
static int eckey_param_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
|
ASN1_PCTX *ctx) { |
|
return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 0); |
|
} |
|
|
|
static int eckey_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
|
ASN1_PCTX *ctx) { |
|
return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 1); |
|
} |
|
|
|
|
|
static int eckey_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent, |
|
ASN1_PCTX *ctx) { |
|
return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 2); |
|
} |
|
|
|
|
|
typedef struct { |
|
int type; |
|
int (*pub_print)(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx); |
|
int (*priv_print)(BIO *out, const EVP_PKEY *pkey, int indent, |
|
ASN1_PCTX *pctx); |
|
int (*param_print)(BIO *out, const EVP_PKEY *pkey, int indent, |
|
ASN1_PCTX *pctx); |
|
} EVP_PKEY_PRINT_METHOD; |
|
|
|
static EVP_PKEY_PRINT_METHOD kPrintMethods[] = { |
|
{ |
|
EVP_PKEY_RSA, |
|
rsa_pub_print, |
|
rsa_priv_print, |
|
NULL /* param_print */, |
|
}, |
|
{ |
|
EVP_PKEY_DSA, |
|
dsa_pub_print, |
|
dsa_priv_print, |
|
dsa_param_print, |
|
}, |
|
{ |
|
EVP_PKEY_EC, |
|
eckey_pub_print, |
|
eckey_priv_print, |
|
eckey_param_print, |
|
}, |
|
}; |
|
|
|
static size_t kPrintMethodsLen = OPENSSL_ARRAY_SIZE(kPrintMethods); |
|
|
|
static EVP_PKEY_PRINT_METHOD *find_method(int type) { |
|
for (size_t i = 0; i < kPrintMethodsLen; i++) { |
|
if (kPrintMethods[i].type == type) { |
|
return &kPrintMethods[i]; |
|
} |
|
} |
|
return NULL; |
|
} |
|
|
|
static int print_unsupported(BIO *out, const EVP_PKEY *pkey, int indent, |
|
const char *kstr) { |
|
BIO_indent(out, indent, 128); |
|
BIO_printf(out, "%s algorithm unsupported\n", kstr); |
|
return 1; |
|
} |
|
|
|
int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey, int indent, |
|
ASN1_PCTX *pctx) { |
|
EVP_PKEY_PRINT_METHOD *method = find_method(pkey->type); |
|
if (method != NULL && method->pub_print != NULL) { |
|
return method->pub_print(out, pkey, indent, pctx); |
|
} |
|
return print_unsupported(out, pkey, indent, "Public Key"); |
|
} |
|
|
|
int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey, int indent, |
|
ASN1_PCTX *pctx) { |
|
EVP_PKEY_PRINT_METHOD *method = find_method(pkey->type); |
|
if (method != NULL && method->priv_print != NULL) { |
|
return method->priv_print(out, pkey, indent, pctx); |
|
} |
|
return print_unsupported(out, pkey, indent, "Private Key"); |
|
} |
|
|
|
int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey, int indent, |
|
ASN1_PCTX *pctx) { |
|
EVP_PKEY_PRINT_METHOD *method = find_method(pkey->type); |
|
if (method != NULL && method->param_print != NULL) { |
|
return method->param_print(out, pkey, indent, pctx); |
|
} |
|
return print_unsupported(out, pkey, indent, "Parameters"); |
|
}
|
|
|