Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
210 lines
7.9 KiB
210 lines
7.9 KiB
/* |
|
* Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. |
|
* |
|
* Licensed under the OpenSSL license (the "License"). You may not use |
|
* this file except in compliance with the License. You can obtain a copy |
|
* in the file LICENSE in the source distribution or at |
|
* https://www.openssl.org/source/license.html |
|
*/ |
|
|
|
#include <openssl/evp.h> |
|
|
|
#include <assert.h> |
|
|
|
#include <openssl/err.h> |
|
#include <openssl/mem.h> |
|
|
|
#include "../internal.h" |
|
|
|
|
|
// This file implements scrypt, described in RFC 7914. |
|
// |
|
// Note scrypt refers to both "blocks" and a "block size" parameter, r. These |
|
// are two different notions of blocks. A Salsa20 block is 64 bytes long, |
|
// represented in this implementation by 16 |uint32_t|s. |r| determines the |
|
// number of 64-byte Salsa20 blocks in a scryptBlockMix block, which is 2 * |r| |
|
// Salsa20 blocks. This implementation refers to them as Salsa20 blocks and |
|
// scrypt blocks, respectively. |
|
|
|
// A block_t is a Salsa20 block. |
|
typedef struct { uint32_t words[16]; } block_t; |
|
|
|
static_assert(sizeof(block_t) == 64, "block_t has padding"); |
|
|
|
// salsa208_word_specification implements the Salsa20/8 core function, also |
|
// described in RFC 7914, section 3. It modifies the block at |inout| |
|
// in-place. |
|
static void salsa208_word_specification(block_t *inout) { |
|
block_t x; |
|
OPENSSL_memcpy(&x, inout, sizeof(x)); |
|
|
|
for (int i = 8; i > 0; i -= 2) { |
|
x.words[4] ^= CRYPTO_rotl_u32(x.words[0] + x.words[12], 7); |
|
x.words[8] ^= CRYPTO_rotl_u32(x.words[4] + x.words[0], 9); |
|
x.words[12] ^= CRYPTO_rotl_u32(x.words[8] + x.words[4], 13); |
|
x.words[0] ^= CRYPTO_rotl_u32(x.words[12] + x.words[8], 18); |
|
x.words[9] ^= CRYPTO_rotl_u32(x.words[5] + x.words[1], 7); |
|
x.words[13] ^= CRYPTO_rotl_u32(x.words[9] + x.words[5], 9); |
|
x.words[1] ^= CRYPTO_rotl_u32(x.words[13] + x.words[9], 13); |
|
x.words[5] ^= CRYPTO_rotl_u32(x.words[1] + x.words[13], 18); |
|
x.words[14] ^= CRYPTO_rotl_u32(x.words[10] + x.words[6], 7); |
|
x.words[2] ^= CRYPTO_rotl_u32(x.words[14] + x.words[10], 9); |
|
x.words[6] ^= CRYPTO_rotl_u32(x.words[2] + x.words[14], 13); |
|
x.words[10] ^= CRYPTO_rotl_u32(x.words[6] + x.words[2], 18); |
|
x.words[3] ^= CRYPTO_rotl_u32(x.words[15] + x.words[11], 7); |
|
x.words[7] ^= CRYPTO_rotl_u32(x.words[3] + x.words[15], 9); |
|
x.words[11] ^= CRYPTO_rotl_u32(x.words[7] + x.words[3], 13); |
|
x.words[15] ^= CRYPTO_rotl_u32(x.words[11] + x.words[7], 18); |
|
x.words[1] ^= CRYPTO_rotl_u32(x.words[0] + x.words[3], 7); |
|
x.words[2] ^= CRYPTO_rotl_u32(x.words[1] + x.words[0], 9); |
|
x.words[3] ^= CRYPTO_rotl_u32(x.words[2] + x.words[1], 13); |
|
x.words[0] ^= CRYPTO_rotl_u32(x.words[3] + x.words[2], 18); |
|
x.words[6] ^= CRYPTO_rotl_u32(x.words[5] + x.words[4], 7); |
|
x.words[7] ^= CRYPTO_rotl_u32(x.words[6] + x.words[5], 9); |
|
x.words[4] ^= CRYPTO_rotl_u32(x.words[7] + x.words[6], 13); |
|
x.words[5] ^= CRYPTO_rotl_u32(x.words[4] + x.words[7], 18); |
|
x.words[11] ^= CRYPTO_rotl_u32(x.words[10] + x.words[9], 7); |
|
x.words[8] ^= CRYPTO_rotl_u32(x.words[11] + x.words[10], 9); |
|
x.words[9] ^= CRYPTO_rotl_u32(x.words[8] + x.words[11], 13); |
|
x.words[10] ^= CRYPTO_rotl_u32(x.words[9] + x.words[8], 18); |
|
x.words[12] ^= CRYPTO_rotl_u32(x.words[15] + x.words[14], 7); |
|
x.words[13] ^= CRYPTO_rotl_u32(x.words[12] + x.words[15], 9); |
|
x.words[14] ^= CRYPTO_rotl_u32(x.words[13] + x.words[12], 13); |
|
x.words[15] ^= CRYPTO_rotl_u32(x.words[14] + x.words[13], 18); |
|
} |
|
|
|
for (int i = 0; i < 16; ++i) { |
|
inout->words[i] += x.words[i]; |
|
} |
|
} |
|
|
|
// xor_block sets |*out| to be |*a| XOR |*b|. |
|
static void xor_block(block_t *out, const block_t *a, const block_t *b) { |
|
for (size_t i = 0; i < 16; i++) { |
|
out->words[i] = a->words[i] ^ b->words[i]; |
|
} |
|
} |
|
|
|
// scryptBlockMix implements the function described in RFC 7914, section 4. B' |
|
// is written to |out|. |out| and |B| may not alias and must be each one scrypt |
|
// block (2 * |r| Salsa20 blocks) long. |
|
static void scryptBlockMix(block_t *out, const block_t *B, uint64_t r) { |
|
assert(out != B); |
|
|
|
block_t X; |
|
OPENSSL_memcpy(&X, &B[r * 2 - 1], sizeof(X)); |
|
for (uint64_t i = 0; i < r * 2; i++) { |
|
xor_block(&X, &X, &B[i]); |
|
salsa208_word_specification(&X); |
|
|
|
// This implements the permutation in step 3. |
|
OPENSSL_memcpy(&out[i / 2 + (i & 1) * r], &X, sizeof(X)); |
|
} |
|
} |
|
|
|
// scryptROMix implements the function described in RFC 7914, section 5. |B| is |
|
// an scrypt block (2 * |r| Salsa20 blocks) and is modified in-place. |T| and |
|
// |V| are scratch space allocated by the caller. |T| must have space for one |
|
// scrypt block (2 * |r| Salsa20 blocks). |V| must have space for |N| scrypt |
|
// blocks (2 * |r| * |N| Salsa20 blocks). |
|
static void scryptROMix(block_t *B, uint64_t r, uint64_t N, block_t *T, |
|
block_t *V) { |
|
// Steps 1 and 2. |
|
OPENSSL_memcpy(V, B, 2 * r * sizeof(block_t)); |
|
for (uint64_t i = 1; i < N; i++) { |
|
scryptBlockMix(&V[2 * r * i /* scrypt block i */], |
|
&V[2 * r * (i - 1) /* scrypt block i-1 */], r); |
|
} |
|
scryptBlockMix(B, &V[2 * r * (N - 1) /* scrypt block N-1 */], r); |
|
|
|
// Step 3. |
|
for (uint64_t i = 0; i < N; i++) { |
|
// Note this assumes |N| <= 2^32 and is a power of 2. |
|
uint32_t j = B[2 * r - 1].words[0] & (N - 1); |
|
for (size_t k = 0; k < 2 * r; k++) { |
|
xor_block(&T[k], &B[k], &V[2 * r * j + k]); |
|
} |
|
scryptBlockMix(B, T, r); |
|
} |
|
} |
|
|
|
// SCRYPT_PR_MAX is the maximum value of p * r. This is equivalent to the |
|
// bounds on p in section 6: |
|
// |
|
// p <= ((2^32-1) * hLen) / MFLen iff |
|
// p <= ((2^32-1) * 32) / (128 * r) iff |
|
// p * r <= (2^30-1) |
|
#define SCRYPT_PR_MAX ((1 << 30) - 1) |
|
|
|
// SCRYPT_MAX_MEM is the default maximum memory that may be allocated by |
|
// |EVP_PBE_scrypt|. |
|
#define SCRYPT_MAX_MEM (1024 * 1024 * 32) |
|
|
|
int EVP_PBE_scrypt(const char *password, size_t password_len, |
|
const uint8_t *salt, size_t salt_len, uint64_t N, uint64_t r, |
|
uint64_t p, size_t max_mem, uint8_t *out_key, |
|
size_t key_len) { |
|
if (r == 0 || p == 0 || p > SCRYPT_PR_MAX / r || |
|
// |N| must be a power of two. |
|
N < 2 || (N & (N - 1)) || |
|
// We only support |N| <= 2^32 in |scryptROMix|. |
|
N > UINT64_C(1) << 32 || |
|
// Check that |N| < 2^(128×r / 8). |
|
(16 * r <= 63 && N >= UINT64_C(1) << (16 * r))) { |
|
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PARAMETERS); |
|
return 0; |
|
} |
|
|
|
// Determine the amount of memory needed. B, T, and V are |p|, 1, and |N| |
|
// scrypt blocks, respectively. Each scrypt block is 2*|r| |block_t|s. |
|
if (max_mem == 0) { |
|
max_mem = SCRYPT_MAX_MEM; |
|
} |
|
|
|
size_t max_scrypt_blocks = max_mem / (2 * r * sizeof(block_t)); |
|
if (max_scrypt_blocks < p + 1 || |
|
max_scrypt_blocks - p - 1 < N) { |
|
OPENSSL_PUT_ERROR(EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); |
|
return 0; |
|
} |
|
|
|
// Allocate and divide up the scratch space. |max_mem| fits in a size_t, which |
|
// is no bigger than uint64_t, so none of these operations may overflow. |
|
static_assert(UINT64_MAX >= ((size_t)-1), "size_t exceeds uint64_t"); |
|
size_t B_blocks = p * 2 * r; |
|
size_t B_bytes = B_blocks * sizeof(block_t); |
|
size_t T_blocks = 2 * r; |
|
size_t V_blocks = N * 2 * r; |
|
block_t *B = OPENSSL_malloc((B_blocks + T_blocks + V_blocks) * sizeof(block_t)); |
|
if (B == NULL) { |
|
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); |
|
return 0; |
|
} |
|
|
|
int ret = 0; |
|
block_t *T = B + B_blocks; |
|
block_t *V = T + T_blocks; |
|
|
|
// NOTE: PKCS5_PBKDF2_HMAC can only fail due to allocation failure |
|
// or |iterations| of 0 (we pass 1 here). This is consistent with |
|
// the documented failure conditions of EVP_PBE_scrypt. |
|
if (!PKCS5_PBKDF2_HMAC(password, password_len, salt, salt_len, 1, |
|
EVP_sha256(), B_bytes, (uint8_t *)B)) { |
|
goto err; |
|
} |
|
|
|
for (uint64_t i = 0; i < p; i++) { |
|
scryptROMix(B + 2 * r * i, r, N, T, V); |
|
} |
|
|
|
if (!PKCS5_PBKDF2_HMAC(password, password_len, (const uint8_t *)B, B_bytes, 1, |
|
EVP_sha256(), key_len, out_key)) { |
|
goto err; |
|
} |
|
|
|
ret = 1; |
|
|
|
err: |
|
OPENSSL_free(B); |
|
return ret; |
|
}
|
|
|