Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
546 lines
20 KiB
546 lines
20 KiB
/* Copyright (c) 2016, Google Inc. |
|
* |
|
* Permission to use, copy, modify, and/or distribute this software for any |
|
* purpose with or without fee is hereby granted, provided that the above |
|
* copyright notice and this permission notice appear in all copies. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
|
|
|
#include <openssl/ssl.h> |
|
|
|
#include <assert.h> |
|
#include <string.h> |
|
|
|
#include <algorithm> |
|
#include <utility> |
|
|
|
#include <openssl/aead.h> |
|
#include <openssl/bytestring.h> |
|
#include <openssl/digest.h> |
|
#include <openssl/hkdf.h> |
|
#include <openssl/hmac.h> |
|
#include <openssl/mem.h> |
|
|
|
#include "../crypto/internal.h" |
|
#include "internal.h" |
|
|
|
|
|
BSSL_NAMESPACE_BEGIN |
|
|
|
static bool init_key_schedule(SSL_HANDSHAKE *hs, uint16_t version, |
|
const SSL_CIPHER *cipher) { |
|
if (!hs->transcript.InitHash(version, cipher)) { |
|
return false; |
|
} |
|
|
|
// Initialize the secret to the zero key. |
|
hs->ResizeSecrets(hs->transcript.DigestLen()); |
|
OPENSSL_memset(hs->secret().data(), 0, hs->secret().size()); |
|
|
|
return true; |
|
} |
|
|
|
static bool hkdf_extract_to_secret(SSL_HANDSHAKE *hs, Span<const uint8_t> in) { |
|
size_t len; |
|
if (!HKDF_extract(hs->secret().data(), &len, hs->transcript.Digest(), |
|
in.data(), in.size(), hs->secret().data(), |
|
hs->secret().size())) { |
|
return false; |
|
} |
|
assert(len == hs->secret().size()); |
|
return true; |
|
} |
|
|
|
bool tls13_init_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> psk) { |
|
if (!init_key_schedule(hs, ssl_protocol_version(hs->ssl), hs->new_cipher)) { |
|
return false; |
|
} |
|
|
|
// Handback includes the whole handshake transcript, so we cannot free the |
|
// transcript buffer in the handback case. |
|
if (!hs->handback) { |
|
hs->transcript.FreeBuffer(); |
|
} |
|
return hkdf_extract_to_secret(hs, psk); |
|
} |
|
|
|
bool tls13_init_early_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> psk) { |
|
SSL *const ssl = hs->ssl; |
|
return init_key_schedule(hs, ssl_session_protocol_version(ssl->session.get()), |
|
ssl->session->cipher) && |
|
hkdf_extract_to_secret(hs, psk); |
|
} |
|
|
|
static Span<const char> label_to_span(const char *label) { |
|
return MakeConstSpan(label, strlen(label)); |
|
} |
|
|
|
static bool hkdf_expand_label(Span<uint8_t> out, const EVP_MD *digest, |
|
Span<const uint8_t> secret, |
|
Span<const char> label, |
|
Span<const uint8_t> hash) { |
|
Span<const char> protocol_label = label_to_span("tls13 "); |
|
ScopedCBB cbb; |
|
CBB child; |
|
Array<uint8_t> hkdf_label; |
|
if (!CBB_init(cbb.get(), 2 + 1 + protocol_label.size() + label.size() + 1 + |
|
hash.size()) || |
|
!CBB_add_u16(cbb.get(), out.size()) || |
|
!CBB_add_u8_length_prefixed(cbb.get(), &child) || |
|
!CBB_add_bytes(&child, |
|
reinterpret_cast<const uint8_t *>(protocol_label.data()), |
|
protocol_label.size()) || |
|
!CBB_add_bytes(&child, reinterpret_cast<const uint8_t *>(label.data()), |
|
label.size()) || |
|
!CBB_add_u8_length_prefixed(cbb.get(), &child) || |
|
!CBB_add_bytes(&child, hash.data(), hash.size()) || |
|
!CBBFinishArray(cbb.get(), &hkdf_label)) { |
|
return false; |
|
} |
|
|
|
return HKDF_expand(out.data(), out.size(), digest, secret.data(), |
|
secret.size(), hkdf_label.data(), hkdf_label.size()); |
|
} |
|
|
|
static const char kTLS13LabelDerived[] = "derived"; |
|
|
|
bool tls13_advance_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> in) { |
|
uint8_t derive_context[EVP_MAX_MD_SIZE]; |
|
unsigned derive_context_len; |
|
return EVP_Digest(nullptr, 0, derive_context, &derive_context_len, |
|
hs->transcript.Digest(), nullptr) && |
|
hkdf_expand_label(hs->secret(), hs->transcript.Digest(), hs->secret(), |
|
label_to_span(kTLS13LabelDerived), |
|
MakeConstSpan(derive_context, derive_context_len)) && |
|
hkdf_extract_to_secret(hs, in); |
|
} |
|
|
|
// derive_secret derives a secret of length |out.size()| and writes the result |
|
// in |out| with the given label, the current base secret, and the most |
|
// recently-saved handshake context. It returns true on success and false on |
|
// error. |
|
static bool derive_secret(SSL_HANDSHAKE *hs, Span<uint8_t> out, |
|
Span<const char> label) { |
|
uint8_t context_hash[EVP_MAX_MD_SIZE]; |
|
size_t context_hash_len; |
|
if (!hs->transcript.GetHash(context_hash, &context_hash_len)) { |
|
return false; |
|
} |
|
|
|
return hkdf_expand_label(out, hs->transcript.Digest(), hs->secret(), label, |
|
MakeConstSpan(context_hash, context_hash_len)); |
|
} |
|
|
|
bool tls13_set_traffic_key(SSL *ssl, enum ssl_encryption_level_t level, |
|
enum evp_aead_direction_t direction, |
|
const SSL_SESSION *session, |
|
Span<const uint8_t> traffic_secret) { |
|
uint16_t version = ssl_session_protocol_version(session); |
|
UniquePtr<SSLAEADContext> traffic_aead; |
|
Span<const uint8_t> secret_for_quic; |
|
if (ssl->quic_method != nullptr) { |
|
// Install a placeholder SSLAEADContext so that SSL accessors work. The |
|
// encryption itself will be handled by the SSL_QUIC_METHOD. |
|
traffic_aead = |
|
SSLAEADContext::CreatePlaceholderForQUIC(version, session->cipher); |
|
secret_for_quic = traffic_secret; |
|
} else { |
|
// Look up cipher suite properties. |
|
const EVP_AEAD *aead; |
|
size_t discard; |
|
if (!ssl_cipher_get_evp_aead(&aead, &discard, &discard, session->cipher, |
|
version, SSL_is_dtls(ssl))) { |
|
return false; |
|
} |
|
|
|
const EVP_MD *digest = ssl_session_get_digest(session); |
|
|
|
// Derive the key. |
|
size_t key_len = EVP_AEAD_key_length(aead); |
|
uint8_t key_buf[EVP_AEAD_MAX_KEY_LENGTH]; |
|
auto key = MakeSpan(key_buf, key_len); |
|
if (!hkdf_expand_label(key, digest, traffic_secret, label_to_span("key"), |
|
{})) { |
|
return false; |
|
} |
|
|
|
// Derive the IV. |
|
size_t iv_len = EVP_AEAD_nonce_length(aead); |
|
uint8_t iv_buf[EVP_AEAD_MAX_NONCE_LENGTH]; |
|
auto iv = MakeSpan(iv_buf, iv_len); |
|
if (!hkdf_expand_label(iv, digest, traffic_secret, label_to_span("iv"), |
|
{})) { |
|
return false; |
|
} |
|
|
|
traffic_aead = SSLAEADContext::Create(direction, session->ssl_version, |
|
SSL_is_dtls(ssl), session->cipher, |
|
key, Span<const uint8_t>(), iv); |
|
} |
|
|
|
if (!traffic_aead) { |
|
return false; |
|
} |
|
|
|
if (traffic_secret.size() > |
|
OPENSSL_ARRAY_SIZE(ssl->s3->read_traffic_secret) || |
|
traffic_secret.size() > |
|
OPENSSL_ARRAY_SIZE(ssl->s3->write_traffic_secret)) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
|
return false; |
|
} |
|
|
|
if (direction == evp_aead_open) { |
|
if (!ssl->method->set_read_state(ssl, level, std::move(traffic_aead), |
|
secret_for_quic)) { |
|
return false; |
|
} |
|
OPENSSL_memmove(ssl->s3->read_traffic_secret, traffic_secret.data(), |
|
traffic_secret.size()); |
|
ssl->s3->read_traffic_secret_len = traffic_secret.size(); |
|
} else { |
|
if (!ssl->method->set_write_state(ssl, level, std::move(traffic_aead), |
|
secret_for_quic)) { |
|
return false; |
|
} |
|
OPENSSL_memmove(ssl->s3->write_traffic_secret, traffic_secret.data(), |
|
traffic_secret.size()); |
|
ssl->s3->write_traffic_secret_len = traffic_secret.size(); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
|
|
static const char kTLS13LabelExporter[] = "exp master"; |
|
|
|
static const char kTLS13LabelClientEarlyTraffic[] = "c e traffic"; |
|
static const char kTLS13LabelClientHandshakeTraffic[] = "c hs traffic"; |
|
static const char kTLS13LabelServerHandshakeTraffic[] = "s hs traffic"; |
|
static const char kTLS13LabelClientApplicationTraffic[] = "c ap traffic"; |
|
static const char kTLS13LabelServerApplicationTraffic[] = "s ap traffic"; |
|
|
|
bool tls13_derive_early_secret(SSL_HANDSHAKE *hs) { |
|
SSL *const ssl = hs->ssl; |
|
if (!derive_secret(hs, hs->early_traffic_secret(), |
|
label_to_span(kTLS13LabelClientEarlyTraffic)) || |
|
!ssl_log_secret(ssl, "CLIENT_EARLY_TRAFFIC_SECRET", |
|
hs->early_traffic_secret())) { |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
bool tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs) { |
|
SSL *const ssl = hs->ssl; |
|
if (!derive_secret(hs, hs->client_handshake_secret(), |
|
label_to_span(kTLS13LabelClientHandshakeTraffic)) || |
|
!ssl_log_secret(ssl, "CLIENT_HANDSHAKE_TRAFFIC_SECRET", |
|
hs->client_handshake_secret()) || |
|
!derive_secret(hs, hs->server_handshake_secret(), |
|
label_to_span(kTLS13LabelServerHandshakeTraffic)) || |
|
!ssl_log_secret(ssl, "SERVER_HANDSHAKE_TRAFFIC_SECRET", |
|
hs->server_handshake_secret())) { |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool tls13_derive_application_secrets(SSL_HANDSHAKE *hs) { |
|
SSL *const ssl = hs->ssl; |
|
ssl->s3->exporter_secret_len = hs->transcript.DigestLen(); |
|
if (!derive_secret(hs, hs->client_traffic_secret_0(), |
|
label_to_span(kTLS13LabelClientApplicationTraffic)) || |
|
!ssl_log_secret(ssl, "CLIENT_TRAFFIC_SECRET_0", |
|
hs->client_traffic_secret_0()) || |
|
!derive_secret(hs, hs->server_traffic_secret_0(), |
|
label_to_span(kTLS13LabelServerApplicationTraffic)) || |
|
!ssl_log_secret(ssl, "SERVER_TRAFFIC_SECRET_0", |
|
hs->server_traffic_secret_0()) || |
|
!derive_secret( |
|
hs, MakeSpan(ssl->s3->exporter_secret, ssl->s3->exporter_secret_len), |
|
label_to_span(kTLS13LabelExporter)) || |
|
!ssl_log_secret(ssl, "EXPORTER_SECRET", |
|
MakeConstSpan(ssl->s3->exporter_secret, |
|
ssl->s3->exporter_secret_len))) { |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static const char kTLS13LabelApplicationTraffic[] = "traffic upd"; |
|
|
|
bool tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction) { |
|
Span<uint8_t> secret; |
|
if (direction == evp_aead_open) { |
|
secret = MakeSpan(ssl->s3->read_traffic_secret, |
|
ssl->s3->read_traffic_secret_len); |
|
} else { |
|
secret = MakeSpan(ssl->s3->write_traffic_secret, |
|
ssl->s3->write_traffic_secret_len); |
|
} |
|
|
|
const SSL_SESSION *session = SSL_get_session(ssl); |
|
const EVP_MD *digest = ssl_session_get_digest(session); |
|
return hkdf_expand_label(secret, digest, secret, |
|
label_to_span(kTLS13LabelApplicationTraffic), {}) && |
|
tls13_set_traffic_key(ssl, ssl_encryption_application, direction, |
|
session, secret); |
|
} |
|
|
|
static const char kTLS13LabelResumption[] = "res master"; |
|
|
|
bool tls13_derive_resumption_secret(SSL_HANDSHAKE *hs) { |
|
if (hs->transcript.DigestLen() > SSL_MAX_MASTER_KEY_LENGTH) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
|
return false; |
|
} |
|
hs->new_session->secret_length = hs->transcript.DigestLen(); |
|
return derive_secret( |
|
hs, MakeSpan(hs->new_session->secret, hs->new_session->secret_length), |
|
label_to_span(kTLS13LabelResumption)); |
|
} |
|
|
|
static const char kTLS13LabelFinished[] = "finished"; |
|
|
|
// tls13_verify_data sets |out| to be the HMAC of |context| using a derived |
|
// Finished key for both Finished messages and the PSK binder. |out| must have |
|
// space available for |EVP_MAX_MD_SIZE| bytes. |
|
static bool tls13_verify_data(uint8_t *out, size_t *out_len, |
|
const EVP_MD *digest, uint16_t version, |
|
Span<const uint8_t> secret, |
|
Span<const uint8_t> context) { |
|
uint8_t key_buf[EVP_MAX_MD_SIZE]; |
|
auto key = MakeSpan(key_buf, EVP_MD_size(digest)); |
|
unsigned len; |
|
if (!hkdf_expand_label(key, digest, secret, |
|
label_to_span(kTLS13LabelFinished), {}) || |
|
HMAC(digest, key.data(), key.size(), context.data(), context.size(), out, |
|
&len) == nullptr) { |
|
return false; |
|
} |
|
*out_len = len; |
|
return true; |
|
} |
|
|
|
bool tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, |
|
bool is_server) { |
|
Span<const uint8_t> traffic_secret = |
|
is_server ? hs->server_handshake_secret() : hs->client_handshake_secret(); |
|
|
|
uint8_t context_hash[EVP_MAX_MD_SIZE]; |
|
size_t context_hash_len; |
|
if (!hs->transcript.GetHash(context_hash, &context_hash_len) || |
|
!tls13_verify_data(out, out_len, hs->transcript.Digest(), |
|
hs->ssl->version, traffic_secret, |
|
MakeConstSpan(context_hash, context_hash_len))) { |
|
return 0; |
|
} |
|
return 1; |
|
} |
|
|
|
static const char kTLS13LabelResumptionPSK[] = "resumption"; |
|
|
|
bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce) { |
|
const EVP_MD *digest = ssl_session_get_digest(session); |
|
// The session initially stores the resumption_master_secret, which we |
|
// override with the PSK. |
|
auto session_secret = MakeSpan(session->secret, session->secret_length); |
|
return hkdf_expand_label(session_secret, digest, session_secret, |
|
label_to_span(kTLS13LabelResumptionPSK), nonce); |
|
} |
|
|
|
static const char kTLS13LabelExportKeying[] = "exporter"; |
|
|
|
bool tls13_export_keying_material(SSL *ssl, Span<uint8_t> out, |
|
Span<const uint8_t> secret, |
|
Span<const char> label, |
|
Span<const uint8_t> context) { |
|
if (secret.empty()) { |
|
assert(0); |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
|
return false; |
|
} |
|
|
|
const EVP_MD *digest = ssl_session_get_digest(SSL_get_session(ssl)); |
|
|
|
uint8_t hash_buf[EVP_MAX_MD_SIZE]; |
|
uint8_t export_context_buf[EVP_MAX_MD_SIZE]; |
|
unsigned hash_len; |
|
unsigned export_context_len; |
|
if (!EVP_Digest(context.data(), context.size(), hash_buf, &hash_len, digest, |
|
nullptr) || |
|
!EVP_Digest(nullptr, 0, export_context_buf, &export_context_len, digest, |
|
nullptr)) { |
|
return false; |
|
} |
|
|
|
auto hash = MakeConstSpan(hash_buf, hash_len); |
|
auto export_context = MakeConstSpan(export_context_buf, export_context_len); |
|
uint8_t derived_secret_buf[EVP_MAX_MD_SIZE]; |
|
auto derived_secret = MakeSpan(derived_secret_buf, EVP_MD_size(digest)); |
|
return hkdf_expand_label(derived_secret, digest, secret, label, |
|
export_context) && |
|
hkdf_expand_label(out, digest, derived_secret, |
|
label_to_span(kTLS13LabelExportKeying), hash); |
|
} |
|
|
|
static const char kTLS13LabelPSKBinder[] = "res binder"; |
|
|
|
static bool tls13_psk_binder(uint8_t *out, size_t *out_len, uint16_t version, |
|
const EVP_MD *digest, Span<const uint8_t> psk, |
|
Span<const uint8_t> context) { |
|
uint8_t binder_context[EVP_MAX_MD_SIZE]; |
|
unsigned binder_context_len; |
|
if (!EVP_Digest(NULL, 0, binder_context, &binder_context_len, digest, NULL)) { |
|
return false; |
|
} |
|
|
|
uint8_t early_secret[EVP_MAX_MD_SIZE] = {0}; |
|
size_t early_secret_len; |
|
if (!HKDF_extract(early_secret, &early_secret_len, digest, psk.data(), |
|
psk.size(), NULL, 0)) { |
|
return false; |
|
} |
|
|
|
uint8_t binder_key_buf[EVP_MAX_MD_SIZE] = {0}; |
|
auto binder_key = MakeSpan(binder_key_buf, EVP_MD_size(digest)); |
|
if (!hkdf_expand_label(binder_key, digest, |
|
MakeConstSpan(early_secret, early_secret_len), |
|
label_to_span(kTLS13LabelPSKBinder), |
|
MakeConstSpan(binder_context, binder_context_len)) || |
|
!tls13_verify_data(out, out_len, digest, version, binder_key, context)) { |
|
return false; |
|
} |
|
|
|
assert(*out_len == EVP_MD_size(digest)); |
|
return true; |
|
} |
|
|
|
static bool hash_transcript_and_truncated_client_hello( |
|
SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, const EVP_MD *digest, |
|
Span<const uint8_t> client_hello, size_t binders_len) { |
|
// Truncate the ClientHello. |
|
if (binders_len + 2 < binders_len || client_hello.size() < binders_len + 2) { |
|
return false; |
|
} |
|
client_hello = client_hello.subspan(0, client_hello.size() - binders_len - 2); |
|
|
|
ScopedEVP_MD_CTX ctx; |
|
unsigned len; |
|
if (!hs->transcript.CopyToHashContext(ctx.get(), digest) || |
|
!EVP_DigestUpdate(ctx.get(), client_hello.data(), client_hello.size()) || |
|
!EVP_DigestFinal_ex(ctx.get(), out, &len)) { |
|
return false; |
|
} |
|
|
|
*out_len = len; |
|
return true; |
|
} |
|
|
|
bool tls13_write_psk_binder(SSL_HANDSHAKE *hs, Span<uint8_t> msg) { |
|
SSL *const ssl = hs->ssl; |
|
const EVP_MD *digest = ssl_session_get_digest(ssl->session.get()); |
|
size_t hash_len = EVP_MD_size(digest); |
|
|
|
ScopedEVP_MD_CTX ctx; |
|
uint8_t context[EVP_MAX_MD_SIZE]; |
|
size_t context_len; |
|
uint8_t verify_data[EVP_MAX_MD_SIZE]; |
|
size_t verify_data_len; |
|
if (!hash_transcript_and_truncated_client_hello( |
|
hs, context, &context_len, digest, msg, |
|
1 /* length prefix */ + hash_len) || |
|
!tls13_psk_binder( |
|
verify_data, &verify_data_len, ssl->session->ssl_version, digest, |
|
MakeConstSpan(ssl->session->secret, ssl->session->secret_length), |
|
MakeConstSpan(context, context_len)) || |
|
verify_data_len != hash_len) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
|
return false; |
|
} |
|
|
|
OPENSSL_memcpy(msg.data() + msg.size() - verify_data_len, verify_data, |
|
verify_data_len); |
|
return true; |
|
} |
|
|
|
bool tls13_verify_psk_binder(SSL_HANDSHAKE *hs, SSL_SESSION *session, |
|
const SSLMessage &msg, CBS *binders) { |
|
uint8_t context[EVP_MAX_MD_SIZE]; |
|
size_t context_len; |
|
uint8_t verify_data[EVP_MAX_MD_SIZE]; |
|
size_t verify_data_len; |
|
CBS binder; |
|
if (!hash_transcript_and_truncated_client_hello(hs, context, &context_len, |
|
hs->transcript.Digest(), |
|
msg.raw, CBS_len(binders)) || |
|
!tls13_psk_binder(verify_data, &verify_data_len, hs->ssl->version, |
|
hs->transcript.Digest(), |
|
MakeConstSpan(session->secret, session->secret_length), |
|
MakeConstSpan(context, context_len)) || |
|
// We only consider the first PSK, so compare against the first binder. |
|
!CBS_get_u8_length_prefixed(binders, &binder)) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
|
return false; |
|
} |
|
|
|
bool binder_ok = |
|
CBS_len(&binder) == verify_data_len && |
|
CRYPTO_memcmp(CBS_data(&binder), verify_data, verify_data_len) == 0; |
|
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
|
binder_ok = true; |
|
#endif |
|
if (!binder_ok) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_DIGEST_CHECK_FAILED); |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool tls13_ech_accept_confirmation( |
|
SSL_HANDSHAKE *hs, bssl::Span<uint8_t> out, |
|
bssl::Span<const uint8_t> server_hello_ech_conf) { |
|
// Compute the hash of the transcript concatenated with |
|
// |server_hello_ech_conf| without modifying |hs->transcript|. |
|
uint8_t context_hash[EVP_MAX_MD_SIZE]; |
|
unsigned context_hash_len; |
|
ScopedEVP_MD_CTX ctx; |
|
if (!hs->transcript.CopyToHashContext(ctx.get(), hs->transcript.Digest()) || |
|
!EVP_DigestUpdate(ctx.get(), server_hello_ech_conf.data(), |
|
server_hello_ech_conf.size()) || |
|
!EVP_DigestFinal_ex(ctx.get(), context_hash, &context_hash_len)) { |
|
return false; |
|
} |
|
|
|
// Per draft-ietf-tls-esni-10, accept_confirmation is computed with |
|
// Derive-Secret, which derives a secret of size Hash.length. That value is |
|
// then truncated to the first 8 bytes. Note this differs from deriving an |
|
// 8-byte secret because the target length is included in the derivation. |
|
uint8_t accept_confirmation_buf[EVP_MAX_MD_SIZE]; |
|
bssl::Span<uint8_t> accept_confirmation = |
|
MakeSpan(accept_confirmation_buf, hs->transcript.DigestLen()); |
|
if (!hkdf_expand_label(accept_confirmation, hs->transcript.Digest(), |
|
hs->secret(), label_to_span("ech accept confirmation"), |
|
MakeConstSpan(context_hash, context_hash_len))) { |
|
return false; |
|
} |
|
|
|
if (out.size() > accept_confirmation.size()) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
|
return false; |
|
} |
|
OPENSSL_memcpy(out.data(), accept_confirmation.data(), out.size()); |
|
return true; |
|
} |
|
|
|
BSSL_NAMESPACE_END
|
|
|