Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
705 lines
26 KiB
705 lines
26 KiB
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] |
|
*/ |
|
/* ==================================================================== |
|
* Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* openssl-core@openssl.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). */ |
|
|
|
#include <openssl/ssl.h> |
|
|
|
#include <assert.h> |
|
#include <string.h> |
|
|
|
#include <openssl/bytestring.h> |
|
#include <openssl/err.h> |
|
#include <openssl/mem.h> |
|
|
|
#include "internal.h" |
|
#include "../crypto/internal.h" |
|
|
|
|
|
BSSL_NAMESPACE_BEGIN |
|
|
|
// kMaxEmptyRecords is the number of consecutive, empty records that will be |
|
// processed. Without this limit an attacker could send empty records at a |
|
// faster rate than we can process and cause record processing to loop |
|
// forever. |
|
static const uint8_t kMaxEmptyRecords = 32; |
|
|
|
// kMaxEarlyDataSkipped is the maximum number of rejected early data bytes that |
|
// will be skipped. Without this limit an attacker could send records at a |
|
// faster rate than we can process and cause trial decryption to loop forever. |
|
// This value should be slightly above kMaxEarlyDataAccepted, which is measured |
|
// in plaintext. |
|
static const size_t kMaxEarlyDataSkipped = 16384; |
|
|
|
// kMaxWarningAlerts is the number of consecutive warning alerts that will be |
|
// processed. |
|
static const uint8_t kMaxWarningAlerts = 4; |
|
|
|
// ssl_needs_record_splitting returns one if |ssl|'s current outgoing cipher |
|
// state needs record-splitting and zero otherwise. |
|
static bool ssl_needs_record_splitting(const SSL *ssl) { |
|
#if !defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
|
return !ssl->s3->aead_write_ctx->is_null_cipher() && |
|
ssl->s3->aead_write_ctx->ProtocolVersion() < TLS1_1_VERSION && |
|
(ssl->mode & SSL_MODE_CBC_RECORD_SPLITTING) != 0 && |
|
SSL_CIPHER_is_block_cipher(ssl->s3->aead_write_ctx->cipher()); |
|
#else |
|
return false; |
|
#endif |
|
} |
|
|
|
bool ssl_record_sequence_update(uint8_t *seq, size_t seq_len) { |
|
for (size_t i = seq_len - 1; i < seq_len; i--) { |
|
++seq[i]; |
|
if (seq[i] != 0) { |
|
return true; |
|
} |
|
} |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
|
return false; |
|
} |
|
|
|
size_t ssl_record_prefix_len(const SSL *ssl) { |
|
size_t header_len; |
|
if (SSL_is_dtls(ssl)) { |
|
header_len = DTLS1_RT_HEADER_LENGTH; |
|
} else { |
|
header_len = SSL3_RT_HEADER_LENGTH; |
|
} |
|
|
|
return header_len + ssl->s3->aead_read_ctx->ExplicitNonceLen(); |
|
} |
|
|
|
size_t ssl_seal_align_prefix_len(const SSL *ssl) { |
|
if (SSL_is_dtls(ssl)) { |
|
return DTLS1_RT_HEADER_LENGTH + ssl->s3->aead_write_ctx->ExplicitNonceLen(); |
|
} |
|
|
|
size_t ret = |
|
SSL3_RT_HEADER_LENGTH + ssl->s3->aead_write_ctx->ExplicitNonceLen(); |
|
if (ssl_needs_record_splitting(ssl)) { |
|
ret += SSL3_RT_HEADER_LENGTH; |
|
ret += ssl_cipher_get_record_split_len(ssl->s3->aead_write_ctx->cipher()); |
|
} |
|
return ret; |
|
} |
|
|
|
static ssl_open_record_t skip_early_data(SSL *ssl, uint8_t *out_alert, |
|
size_t consumed) { |
|
ssl->s3->early_data_skipped += consumed; |
|
if (ssl->s3->early_data_skipped < consumed) { |
|
ssl->s3->early_data_skipped = kMaxEarlyDataSkipped + 1; |
|
} |
|
|
|
if (ssl->s3->early_data_skipped > kMaxEarlyDataSkipped) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MUCH_SKIPPED_EARLY_DATA); |
|
*out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
|
return ssl_open_record_error; |
|
} |
|
|
|
return ssl_open_record_discard; |
|
} |
|
|
|
ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type, |
|
Span<uint8_t> *out, size_t *out_consumed, |
|
uint8_t *out_alert, Span<uint8_t> in) { |
|
*out_consumed = 0; |
|
if (ssl->s3->read_shutdown == ssl_shutdown_close_notify) { |
|
return ssl_open_record_close_notify; |
|
} |
|
|
|
// If there is an unprocessed handshake message or we are already buffering |
|
// too much, stop before decrypting another handshake record. |
|
if (!tls_can_accept_handshake_data(ssl, out_alert)) { |
|
return ssl_open_record_error; |
|
} |
|
|
|
CBS cbs = CBS(in); |
|
|
|
// Decode the record header. |
|
uint8_t type; |
|
uint16_t version, ciphertext_len; |
|
if (!CBS_get_u8(&cbs, &type) || |
|
!CBS_get_u16(&cbs, &version) || |
|
!CBS_get_u16(&cbs, &ciphertext_len)) { |
|
*out_consumed = SSL3_RT_HEADER_LENGTH; |
|
return ssl_open_record_partial; |
|
} |
|
|
|
bool version_ok; |
|
if (ssl->s3->aead_read_ctx->is_null_cipher()) { |
|
// Only check the first byte. Enforcing beyond that can prevent decoding |
|
// version negotiation failure alerts. |
|
version_ok = (version >> 8) == SSL3_VERSION_MAJOR; |
|
} else { |
|
version_ok = version == ssl->s3->aead_read_ctx->RecordVersion(); |
|
} |
|
|
|
if (!version_ok) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_NUMBER); |
|
*out_alert = SSL_AD_PROTOCOL_VERSION; |
|
return ssl_open_record_error; |
|
} |
|
|
|
// Check the ciphertext length. |
|
if (ciphertext_len > SSL3_RT_MAX_ENCRYPTED_LENGTH) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_ENCRYPTED_LENGTH_TOO_LONG); |
|
*out_alert = SSL_AD_RECORD_OVERFLOW; |
|
return ssl_open_record_error; |
|
} |
|
|
|
// Extract the body. |
|
CBS body; |
|
if (!CBS_get_bytes(&cbs, &body, ciphertext_len)) { |
|
*out_consumed = SSL3_RT_HEADER_LENGTH + (size_t)ciphertext_len; |
|
return ssl_open_record_partial; |
|
} |
|
|
|
Span<const uint8_t> header = in.subspan(0, SSL3_RT_HEADER_LENGTH); |
|
ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HEADER, header); |
|
|
|
*out_consumed = in.size() - CBS_len(&cbs); |
|
|
|
if (ssl->s3->have_version && |
|
ssl_protocol_version(ssl) >= TLS1_3_VERSION && |
|
SSL_in_init(ssl) && |
|
type == SSL3_RT_CHANGE_CIPHER_SPEC && |
|
ciphertext_len == 1 && |
|
CBS_data(&body)[0] == 1) { |
|
ssl->s3->empty_record_count++; |
|
if (ssl->s3->empty_record_count > kMaxEmptyRecords) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_EMPTY_FRAGMENTS); |
|
*out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
|
return ssl_open_record_error; |
|
} |
|
return ssl_open_record_discard; |
|
} |
|
|
|
// Skip early data received when expecting a second ClientHello if we rejected |
|
// 0RTT. |
|
if (ssl->s3->skip_early_data && |
|
ssl->s3->aead_read_ctx->is_null_cipher() && |
|
type == SSL3_RT_APPLICATION_DATA) { |
|
return skip_early_data(ssl, out_alert, *out_consumed); |
|
} |
|
|
|
// Decrypt the body in-place. |
|
if (!ssl->s3->aead_read_ctx->Open( |
|
out, type, version, ssl->s3->read_sequence, header, |
|
MakeSpan(const_cast<uint8_t *>(CBS_data(&body)), CBS_len(&body)))) { |
|
if (ssl->s3->skip_early_data && !ssl->s3->aead_read_ctx->is_null_cipher()) { |
|
ERR_clear_error(); |
|
return skip_early_data(ssl, out_alert, *out_consumed); |
|
} |
|
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); |
|
*out_alert = SSL_AD_BAD_RECORD_MAC; |
|
return ssl_open_record_error; |
|
} |
|
|
|
ssl->s3->skip_early_data = false; |
|
|
|
if (!ssl_record_sequence_update(ssl->s3->read_sequence, 8)) { |
|
*out_alert = SSL_AD_INTERNAL_ERROR; |
|
return ssl_open_record_error; |
|
} |
|
|
|
// TLS 1.3 hides the record type inside the encrypted data. |
|
bool has_padding = |
|
!ssl->s3->aead_read_ctx->is_null_cipher() && |
|
ssl->s3->aead_read_ctx->ProtocolVersion() >= TLS1_3_VERSION; |
|
|
|
// If there is padding, the plaintext limit includes the padding, but includes |
|
// extra room for the inner content type. |
|
size_t plaintext_limit = |
|
has_padding ? SSL3_RT_MAX_PLAIN_LENGTH + 1 : SSL3_RT_MAX_PLAIN_LENGTH; |
|
if (out->size() > plaintext_limit) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); |
|
*out_alert = SSL_AD_RECORD_OVERFLOW; |
|
return ssl_open_record_error; |
|
} |
|
|
|
if (has_padding) { |
|
// The outer record type is always application_data. |
|
if (type != SSL3_RT_APPLICATION_DATA) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_OUTER_RECORD_TYPE); |
|
*out_alert = SSL_AD_DECODE_ERROR; |
|
return ssl_open_record_error; |
|
} |
|
|
|
do { |
|
if (out->empty()) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); |
|
*out_alert = SSL_AD_DECRYPT_ERROR; |
|
return ssl_open_record_error; |
|
} |
|
type = out->back(); |
|
*out = out->subspan(0, out->size() - 1); |
|
} while (type == 0); |
|
} |
|
|
|
// Limit the number of consecutive empty records. |
|
if (out->empty()) { |
|
ssl->s3->empty_record_count++; |
|
if (ssl->s3->empty_record_count > kMaxEmptyRecords) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_EMPTY_FRAGMENTS); |
|
*out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
|
return ssl_open_record_error; |
|
} |
|
// Apart from the limit, empty records are returned up to the caller. This |
|
// allows the caller to reject records of the wrong type. |
|
} else { |
|
ssl->s3->empty_record_count = 0; |
|
} |
|
|
|
if (type == SSL3_RT_ALERT) { |
|
return ssl_process_alert(ssl, out_alert, *out); |
|
} |
|
|
|
// Handshake messages may not interleave with any other record type. |
|
if (type != SSL3_RT_HANDSHAKE && |
|
tls_has_unprocessed_handshake_data(ssl)) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
|
*out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
|
return ssl_open_record_error; |
|
} |
|
|
|
ssl->s3->warning_alert_count = 0; |
|
|
|
*out_type = type; |
|
return ssl_open_record_success; |
|
} |
|
|
|
static bool do_seal_record(SSL *ssl, uint8_t *out_prefix, uint8_t *out, |
|
uint8_t *out_suffix, uint8_t type, const uint8_t *in, |
|
const size_t in_len) { |
|
SSLAEADContext *aead = ssl->s3->aead_write_ctx.get(); |
|
uint8_t *extra_in = NULL; |
|
size_t extra_in_len = 0; |
|
if (!aead->is_null_cipher() && |
|
aead->ProtocolVersion() >= TLS1_3_VERSION) { |
|
// TLS 1.3 hides the actual record type inside the encrypted data. |
|
extra_in = &type; |
|
extra_in_len = 1; |
|
} |
|
|
|
size_t suffix_len, ciphertext_len; |
|
if (!aead->SuffixLen(&suffix_len, in_len, extra_in_len) || |
|
!aead->CiphertextLen(&ciphertext_len, in_len, extra_in_len)) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); |
|
return false; |
|
} |
|
|
|
assert(in == out || !buffers_alias(in, in_len, out, in_len)); |
|
assert(!buffers_alias(in, in_len, out_prefix, ssl_record_prefix_len(ssl))); |
|
assert(!buffers_alias(in, in_len, out_suffix, suffix_len)); |
|
|
|
if (extra_in_len) { |
|
out_prefix[0] = SSL3_RT_APPLICATION_DATA; |
|
} else { |
|
out_prefix[0] = type; |
|
} |
|
|
|
uint16_t record_version = aead->RecordVersion(); |
|
|
|
out_prefix[1] = record_version >> 8; |
|
out_prefix[2] = record_version & 0xff; |
|
out_prefix[3] = ciphertext_len >> 8; |
|
out_prefix[4] = ciphertext_len & 0xff; |
|
Span<const uint8_t> header = MakeSpan(out_prefix, SSL3_RT_HEADER_LENGTH); |
|
|
|
if (!aead->SealScatter(out_prefix + SSL3_RT_HEADER_LENGTH, out, out_suffix, |
|
out_prefix[0], record_version, ssl->s3->write_sequence, |
|
header, in, in_len, extra_in, extra_in_len) || |
|
!ssl_record_sequence_update(ssl->s3->write_sequence, 8)) { |
|
return false; |
|
} |
|
|
|
ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HEADER, header); |
|
return true; |
|
} |
|
|
|
static size_t tls_seal_scatter_prefix_len(const SSL *ssl, uint8_t type, |
|
size_t in_len) { |
|
size_t ret = SSL3_RT_HEADER_LENGTH; |
|
if (type == SSL3_RT_APPLICATION_DATA && in_len > 1 && |
|
ssl_needs_record_splitting(ssl)) { |
|
// In the case of record splitting, the 1-byte record (of the 1/n-1 split) |
|
// will be placed in the prefix, as will four of the five bytes of the |
|
// record header for the main record. The final byte will replace the first |
|
// byte of the plaintext that was used in the small record. |
|
ret += ssl_cipher_get_record_split_len(ssl->s3->aead_write_ctx->cipher()); |
|
ret += SSL3_RT_HEADER_LENGTH - 1; |
|
} else { |
|
ret += ssl->s3->aead_write_ctx->ExplicitNonceLen(); |
|
} |
|
return ret; |
|
} |
|
|
|
static bool tls_seal_scatter_suffix_len(const SSL *ssl, size_t *out_suffix_len, |
|
uint8_t type, size_t in_len) { |
|
size_t extra_in_len = 0; |
|
if (!ssl->s3->aead_write_ctx->is_null_cipher() && |
|
ssl->s3->aead_write_ctx->ProtocolVersion() >= TLS1_3_VERSION) { |
|
// TLS 1.3 adds an extra byte for encrypted record type. |
|
extra_in_len = 1; |
|
} |
|
// clang-format off |
|
if (type == SSL3_RT_APPLICATION_DATA && |
|
in_len > 1 && |
|
ssl_needs_record_splitting(ssl)) { |
|
// With record splitting enabled, the first byte gets sealed into a separate |
|
// record which is written into the prefix. |
|
in_len -= 1; |
|
} |
|
// clang-format on |
|
return ssl->s3->aead_write_ctx->SuffixLen(out_suffix_len, in_len, extra_in_len); |
|
} |
|
|
|
// tls_seal_scatter_record seals a new record of type |type| and body |in| and |
|
// splits it between |out_prefix|, |out|, and |out_suffix|. Exactly |
|
// |tls_seal_scatter_prefix_len| bytes are written to |out_prefix|, |in_len| |
|
// bytes to |out|, and |tls_seal_scatter_suffix_len| bytes to |out_suffix|. It |
|
// returns one on success and zero on error. If enabled, |
|
// |tls_seal_scatter_record| implements TLS 1.0 CBC 1/n-1 record splitting and |
|
// may write two records concatenated. |
|
static bool tls_seal_scatter_record(SSL *ssl, uint8_t *out_prefix, uint8_t *out, |
|
uint8_t *out_suffix, uint8_t type, |
|
const uint8_t *in, size_t in_len) { |
|
if (type == SSL3_RT_APPLICATION_DATA && in_len > 1 && |
|
ssl_needs_record_splitting(ssl)) { |
|
assert(ssl->s3->aead_write_ctx->ExplicitNonceLen() == 0); |
|
const size_t prefix_len = SSL3_RT_HEADER_LENGTH; |
|
|
|
// Write the 1-byte fragment into |out_prefix|. |
|
uint8_t *split_body = out_prefix + prefix_len; |
|
uint8_t *split_suffix = split_body + 1; |
|
|
|
if (!do_seal_record(ssl, out_prefix, split_body, split_suffix, type, in, |
|
1)) { |
|
return false; |
|
} |
|
|
|
size_t split_record_suffix_len; |
|
if (!ssl->s3->aead_write_ctx->SuffixLen(&split_record_suffix_len, 1, 0)) { |
|
assert(false); |
|
return false; |
|
} |
|
const size_t split_record_len = prefix_len + 1 + split_record_suffix_len; |
|
assert(SSL3_RT_HEADER_LENGTH + ssl_cipher_get_record_split_len( |
|
ssl->s3->aead_write_ctx->cipher()) == |
|
split_record_len); |
|
|
|
// Write the n-1-byte fragment. The header gets split between |out_prefix| |
|
// (header[:-1]) and |out| (header[-1:]). |
|
uint8_t tmp_prefix[SSL3_RT_HEADER_LENGTH]; |
|
if (!do_seal_record(ssl, tmp_prefix, out + 1, out_suffix, type, in + 1, |
|
in_len - 1)) { |
|
return false; |
|
} |
|
assert(tls_seal_scatter_prefix_len(ssl, type, in_len) == |
|
split_record_len + SSL3_RT_HEADER_LENGTH - 1); |
|
OPENSSL_memcpy(out_prefix + split_record_len, tmp_prefix, |
|
SSL3_RT_HEADER_LENGTH - 1); |
|
OPENSSL_memcpy(out, tmp_prefix + SSL3_RT_HEADER_LENGTH - 1, 1); |
|
return true; |
|
} |
|
|
|
return do_seal_record(ssl, out_prefix, out, out_suffix, type, in, in_len); |
|
} |
|
|
|
bool tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, |
|
size_t max_out_len, uint8_t type, const uint8_t *in, |
|
size_t in_len) { |
|
if (buffers_alias(in, in_len, out, max_out_len)) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT); |
|
return false; |
|
} |
|
|
|
const size_t prefix_len = tls_seal_scatter_prefix_len(ssl, type, in_len); |
|
size_t suffix_len; |
|
if (!tls_seal_scatter_suffix_len(ssl, &suffix_len, type, in_len)) { |
|
return false; |
|
} |
|
if (in_len + prefix_len < in_len || |
|
prefix_len + in_len + suffix_len < prefix_len + in_len) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); |
|
return false; |
|
} |
|
if (max_out_len < in_len + prefix_len + suffix_len) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL); |
|
return false; |
|
} |
|
|
|
uint8_t *prefix = out; |
|
uint8_t *body = out + prefix_len; |
|
uint8_t *suffix = body + in_len; |
|
if (!tls_seal_scatter_record(ssl, prefix, body, suffix, type, in, in_len)) { |
|
return false; |
|
} |
|
|
|
*out_len = prefix_len + in_len + suffix_len; |
|
return true; |
|
} |
|
|
|
enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert, |
|
Span<const uint8_t> in) { |
|
// Alerts records may not contain fragmented or multiple alerts. |
|
if (in.size() != 2) { |
|
*out_alert = SSL_AD_DECODE_ERROR; |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ALERT); |
|
return ssl_open_record_error; |
|
} |
|
|
|
ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_ALERT, in); |
|
|
|
const uint8_t alert_level = in[0]; |
|
const uint8_t alert_descr = in[1]; |
|
|
|
uint16_t alert = (alert_level << 8) | alert_descr; |
|
ssl_do_info_callback(ssl, SSL_CB_READ_ALERT, alert); |
|
|
|
if (alert_level == SSL3_AL_WARNING) { |
|
if (alert_descr == SSL_AD_CLOSE_NOTIFY) { |
|
ssl->s3->read_shutdown = ssl_shutdown_close_notify; |
|
return ssl_open_record_close_notify; |
|
} |
|
|
|
// Warning alerts do not exist in TLS 1.3, but RFC 8446 section 6.1 |
|
// continues to define user_canceled as a signal to cancel the handshake, |
|
// without specifying how to handle it. JDK11 misuses it to signal |
|
// full-duplex connection close after the handshake. As a workaround, skip |
|
// user_canceled as in TLS 1.2. This matches NSS and OpenSSL. |
|
if (ssl->s3->have_version && |
|
ssl_protocol_version(ssl) >= TLS1_3_VERSION && |
|
alert_descr != SSL_AD_USER_CANCELLED) { |
|
*out_alert = SSL_AD_DECODE_ERROR; |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ALERT); |
|
return ssl_open_record_error; |
|
} |
|
|
|
ssl->s3->warning_alert_count++; |
|
if (ssl->s3->warning_alert_count > kMaxWarningAlerts) { |
|
*out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_WARNING_ALERTS); |
|
return ssl_open_record_error; |
|
} |
|
return ssl_open_record_discard; |
|
} |
|
|
|
if (alert_level == SSL3_AL_FATAL) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_AD_REASON_OFFSET + alert_descr); |
|
ERR_add_error_dataf("SSL alert number %d", alert_descr); |
|
*out_alert = 0; // No alert to send back to the peer. |
|
return ssl_open_record_error; |
|
} |
|
|
|
*out_alert = SSL_AD_ILLEGAL_PARAMETER; |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_ALERT_TYPE); |
|
return ssl_open_record_error; |
|
} |
|
|
|
OpenRecordResult OpenRecord(SSL *ssl, Span<uint8_t> *out, |
|
size_t *out_record_len, uint8_t *out_alert, |
|
const Span<uint8_t> in) { |
|
// This API is a work in progress and currently only works for TLS 1.2 servers |
|
// and below. |
|
if (SSL_in_init(ssl) || |
|
SSL_is_dtls(ssl) || |
|
ssl_protocol_version(ssl) > TLS1_2_VERSION) { |
|
assert(false); |
|
*out_alert = SSL_AD_INTERNAL_ERROR; |
|
return OpenRecordResult::kError; |
|
} |
|
|
|
Span<uint8_t> plaintext; |
|
uint8_t type = 0; |
|
const ssl_open_record_t result = tls_open_record( |
|
ssl, &type, &plaintext, out_record_len, out_alert, in); |
|
|
|
switch (result) { |
|
case ssl_open_record_success: |
|
if (type != SSL3_RT_APPLICATION_DATA && type != SSL3_RT_ALERT) { |
|
*out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
|
return OpenRecordResult::kError; |
|
} |
|
*out = plaintext; |
|
return OpenRecordResult::kOK; |
|
case ssl_open_record_discard: |
|
return OpenRecordResult::kDiscard; |
|
case ssl_open_record_partial: |
|
return OpenRecordResult::kIncompleteRecord; |
|
case ssl_open_record_close_notify: |
|
return OpenRecordResult::kAlertCloseNotify; |
|
case ssl_open_record_error: |
|
return OpenRecordResult::kError; |
|
} |
|
assert(false); |
|
return OpenRecordResult::kError; |
|
} |
|
|
|
size_t SealRecordPrefixLen(const SSL *ssl, const size_t record_len) { |
|
return tls_seal_scatter_prefix_len(ssl, SSL3_RT_APPLICATION_DATA, record_len); |
|
} |
|
|
|
size_t SealRecordSuffixLen(const SSL *ssl, const size_t plaintext_len) { |
|
assert(plaintext_len <= SSL3_RT_MAX_PLAIN_LENGTH); |
|
size_t suffix_len; |
|
if (!tls_seal_scatter_suffix_len(ssl, &suffix_len, SSL3_RT_APPLICATION_DATA, |
|
plaintext_len)) { |
|
assert(false); |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
|
return 0; |
|
} |
|
assert(suffix_len <= SSL3_RT_MAX_ENCRYPTED_OVERHEAD); |
|
return suffix_len; |
|
} |
|
|
|
bool SealRecord(SSL *ssl, const Span<uint8_t> out_prefix, |
|
const Span<uint8_t> out, Span<uint8_t> out_suffix, |
|
const Span<const uint8_t> in) { |
|
// This API is a work in progress and currently only works for TLS 1.2 servers |
|
// and below. |
|
if (SSL_in_init(ssl) || |
|
SSL_is_dtls(ssl) || |
|
ssl_protocol_version(ssl) > TLS1_2_VERSION) { |
|
assert(false); |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
|
return false; |
|
} |
|
|
|
if (out_prefix.size() != SealRecordPrefixLen(ssl, in.size()) || |
|
out.size() != in.size() || |
|
out_suffix.size() != SealRecordSuffixLen(ssl, in.size())) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL); |
|
return false; |
|
} |
|
return tls_seal_scatter_record(ssl, out_prefix.data(), out.data(), |
|
out_suffix.data(), SSL3_RT_APPLICATION_DATA, |
|
in.data(), in.size()); |
|
} |
|
|
|
BSSL_NAMESPACE_END |
|
|
|
using namespace bssl; |
|
|
|
size_t SSL_max_seal_overhead(const SSL *ssl) { |
|
if (SSL_is_dtls(ssl)) { |
|
return dtls_max_seal_overhead(ssl, dtls1_use_current_epoch); |
|
} |
|
|
|
size_t ret = SSL3_RT_HEADER_LENGTH; |
|
ret += ssl->s3->aead_write_ctx->MaxOverhead(); |
|
// TLS 1.3 needs an extra byte for the encrypted record type. |
|
if (!ssl->s3->aead_write_ctx->is_null_cipher() && |
|
ssl->s3->aead_write_ctx->ProtocolVersion() >= TLS1_3_VERSION) { |
|
ret += 1; |
|
} |
|
if (ssl_needs_record_splitting(ssl)) { |
|
ret *= 2; |
|
} |
|
return ret; |
|
}
|
|
|