Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
831 lines
28 KiB
831 lines
28 KiB
/* |
|
* DTLS implementation written by Nagendra Modadugu |
|
* (nagendra@cs.stanford.edu) for the OpenSSL project 2005. |
|
*/ |
|
/* ==================================================================== |
|
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* openssl-core@openssl.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). |
|
* |
|
*/ |
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] */ |
|
|
|
#include <openssl/ssl.h> |
|
|
|
#include <assert.h> |
|
#include <limits.h> |
|
#include <string.h> |
|
|
|
#include <openssl/err.h> |
|
#include <openssl/evp.h> |
|
#include <openssl/mem.h> |
|
#include <openssl/rand.h> |
|
|
|
#include "../crypto/internal.h" |
|
#include "internal.h" |
|
|
|
|
|
BSSL_NAMESPACE_BEGIN |
|
|
|
// TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable |
|
// for these values? Notably, why is kMinMTU a function of the transport |
|
// protocol's overhead rather than, say, what's needed to hold a minimally-sized |
|
// handshake fragment plus protocol overhead. |
|
|
|
// kMinMTU is the minimum acceptable MTU value. |
|
static const unsigned int kMinMTU = 256 - 28; |
|
|
|
// kDefaultMTU is the default MTU value to use if neither the user nor |
|
// the underlying BIO supplies one. |
|
static const unsigned int kDefaultMTU = 1500 - 28; |
|
|
|
|
|
// Receiving handshake messages. |
|
|
|
hm_fragment::~hm_fragment() { |
|
OPENSSL_free(data); |
|
OPENSSL_free(reassembly); |
|
} |
|
|
|
static UniquePtr<hm_fragment> dtls1_hm_fragment_new( |
|
const struct hm_header_st *msg_hdr) { |
|
ScopedCBB cbb; |
|
UniquePtr<hm_fragment> frag = MakeUnique<hm_fragment>(); |
|
if (!frag) { |
|
return nullptr; |
|
} |
|
frag->type = msg_hdr->type; |
|
frag->seq = msg_hdr->seq; |
|
frag->msg_len = msg_hdr->msg_len; |
|
|
|
// Allocate space for the reassembled message and fill in the header. |
|
frag->data = |
|
(uint8_t *)OPENSSL_malloc(DTLS1_HM_HEADER_LENGTH + msg_hdr->msg_len); |
|
if (frag->data == NULL) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
|
return nullptr; |
|
} |
|
|
|
if (!CBB_init_fixed(cbb.get(), frag->data, DTLS1_HM_HEADER_LENGTH) || |
|
!CBB_add_u8(cbb.get(), msg_hdr->type) || |
|
!CBB_add_u24(cbb.get(), msg_hdr->msg_len) || |
|
!CBB_add_u16(cbb.get(), msg_hdr->seq) || |
|
!CBB_add_u24(cbb.get(), 0 /* frag_off */) || |
|
!CBB_add_u24(cbb.get(), msg_hdr->msg_len) || |
|
!CBB_finish(cbb.get(), NULL, NULL)) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
|
return nullptr; |
|
} |
|
|
|
// If the handshake message is empty, |frag->reassembly| is NULL. |
|
if (msg_hdr->msg_len > 0) { |
|
// Initialize reassembly bitmask. |
|
if (msg_hdr->msg_len + 7 < msg_hdr->msg_len) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
|
return nullptr; |
|
} |
|
size_t bitmask_len = (msg_hdr->msg_len + 7) / 8; |
|
frag->reassembly = (uint8_t *)OPENSSL_malloc(bitmask_len); |
|
if (frag->reassembly == NULL) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
|
return nullptr; |
|
} |
|
OPENSSL_memset(frag->reassembly, 0, bitmask_len); |
|
} |
|
|
|
return frag; |
|
} |
|
|
|
// bit_range returns a |uint8_t| with bits |start|, inclusive, to |end|, |
|
// exclusive, set. |
|
static uint8_t bit_range(size_t start, size_t end) { |
|
return (uint8_t)(~((1u << start) - 1) & ((1u << end) - 1)); |
|
} |
|
|
|
// dtls1_hm_fragment_mark marks bytes |start|, inclusive, to |end|, exclusive, |
|
// as received in |frag|. If |frag| becomes complete, it clears |
|
// |frag->reassembly|. The range must be within the bounds of |frag|'s message |
|
// and |frag->reassembly| must not be NULL. |
|
static void dtls1_hm_fragment_mark(hm_fragment *frag, size_t start, |
|
size_t end) { |
|
size_t msg_len = frag->msg_len; |
|
|
|
if (frag->reassembly == NULL || start > end || end > msg_len) { |
|
assert(0); |
|
return; |
|
} |
|
// A zero-length message will never have a pending reassembly. |
|
assert(msg_len > 0); |
|
|
|
if (start == end) { |
|
return; |
|
} |
|
|
|
if ((start >> 3) == (end >> 3)) { |
|
frag->reassembly[start >> 3] |= bit_range(start & 7, end & 7); |
|
} else { |
|
frag->reassembly[start >> 3] |= bit_range(start & 7, 8); |
|
for (size_t i = (start >> 3) + 1; i < (end >> 3); i++) { |
|
frag->reassembly[i] = 0xff; |
|
} |
|
if ((end & 7) != 0) { |
|
frag->reassembly[end >> 3] |= bit_range(0, end & 7); |
|
} |
|
} |
|
|
|
// Check if the fragment is complete. |
|
for (size_t i = 0; i < (msg_len >> 3); i++) { |
|
if (frag->reassembly[i] != 0xff) { |
|
return; |
|
} |
|
} |
|
if ((msg_len & 7) != 0 && |
|
frag->reassembly[msg_len >> 3] != bit_range(0, msg_len & 7)) { |
|
return; |
|
} |
|
|
|
OPENSSL_free(frag->reassembly); |
|
frag->reassembly = NULL; |
|
} |
|
|
|
// dtls1_is_current_message_complete returns whether the current handshake |
|
// message is complete. |
|
static bool dtls1_is_current_message_complete(const SSL *ssl) { |
|
size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
|
hm_fragment *frag = ssl->d1->incoming_messages[idx].get(); |
|
return frag != NULL && frag->reassembly == NULL; |
|
} |
|
|
|
// dtls1_get_incoming_message returns the incoming message corresponding to |
|
// |msg_hdr|. If none exists, it creates a new one and inserts it in the |
|
// queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It |
|
// returns NULL on failure. The caller does not take ownership of the result. |
|
static hm_fragment *dtls1_get_incoming_message( |
|
SSL *ssl, uint8_t *out_alert, const struct hm_header_st *msg_hdr) { |
|
if (msg_hdr->seq < ssl->d1->handshake_read_seq || |
|
msg_hdr->seq - ssl->d1->handshake_read_seq >= SSL_MAX_HANDSHAKE_FLIGHT) { |
|
*out_alert = SSL_AD_INTERNAL_ERROR; |
|
return NULL; |
|
} |
|
|
|
size_t idx = msg_hdr->seq % SSL_MAX_HANDSHAKE_FLIGHT; |
|
hm_fragment *frag = ssl->d1->incoming_messages[idx].get(); |
|
if (frag != NULL) { |
|
assert(frag->seq == msg_hdr->seq); |
|
// The new fragment must be compatible with the previous fragments from this |
|
// message. |
|
if (frag->type != msg_hdr->type || |
|
frag->msg_len != msg_hdr->msg_len) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_FRAGMENT_MISMATCH); |
|
*out_alert = SSL_AD_ILLEGAL_PARAMETER; |
|
return NULL; |
|
} |
|
return frag; |
|
} |
|
|
|
// This is the first fragment from this message. |
|
ssl->d1->incoming_messages[idx] = dtls1_hm_fragment_new(msg_hdr); |
|
if (!ssl->d1->incoming_messages[idx]) { |
|
*out_alert = SSL_AD_INTERNAL_ERROR; |
|
return NULL; |
|
} |
|
return ssl->d1->incoming_messages[idx].get(); |
|
} |
|
|
|
ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed, |
|
uint8_t *out_alert, Span<uint8_t> in) { |
|
uint8_t type; |
|
Span<uint8_t> record; |
|
auto ret = dtls_open_record(ssl, &type, &record, out_consumed, out_alert, in); |
|
if (ret != ssl_open_record_success) { |
|
return ret; |
|
} |
|
|
|
switch (type) { |
|
case SSL3_RT_APPLICATION_DATA: |
|
// Unencrypted application data records are always illegal. |
|
if (ssl->s3->aead_read_ctx->is_null_cipher()) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
|
*out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
|
return ssl_open_record_error; |
|
} |
|
|
|
// Out-of-order application data may be received between ChangeCipherSpec |
|
// and finished. Discard it. |
|
return ssl_open_record_discard; |
|
|
|
case SSL3_RT_CHANGE_CIPHER_SPEC: |
|
// We do not support renegotiation, so encrypted ChangeCipherSpec records |
|
// are illegal. |
|
if (!ssl->s3->aead_read_ctx->is_null_cipher()) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
|
*out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
|
return ssl_open_record_error; |
|
} |
|
|
|
if (record.size() != 1u || record[0] != SSL3_MT_CCS) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_CHANGE_CIPHER_SPEC); |
|
*out_alert = SSL_AD_ILLEGAL_PARAMETER; |
|
return ssl_open_record_error; |
|
} |
|
|
|
// Flag the ChangeCipherSpec for later. |
|
ssl->d1->has_change_cipher_spec = true; |
|
ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_CHANGE_CIPHER_SPEC, |
|
record); |
|
return ssl_open_record_success; |
|
|
|
case SSL3_RT_HANDSHAKE: |
|
// Break out to main processing. |
|
break; |
|
|
|
default: |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
|
*out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
|
return ssl_open_record_error; |
|
} |
|
|
|
CBS cbs; |
|
CBS_init(&cbs, record.data(), record.size()); |
|
while (CBS_len(&cbs) > 0) { |
|
// Read a handshake fragment. |
|
struct hm_header_st msg_hdr; |
|
CBS body; |
|
if (!dtls1_parse_fragment(&cbs, &msg_hdr, &body)) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HANDSHAKE_RECORD); |
|
*out_alert = SSL_AD_DECODE_ERROR; |
|
return ssl_open_record_error; |
|
} |
|
|
|
const size_t frag_off = msg_hdr.frag_off; |
|
const size_t frag_len = msg_hdr.frag_len; |
|
const size_t msg_len = msg_hdr.msg_len; |
|
if (frag_off > msg_len || frag_off + frag_len < frag_off || |
|
frag_off + frag_len > msg_len || |
|
msg_len > ssl_max_handshake_message_len(ssl)) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE); |
|
*out_alert = SSL_AD_ILLEGAL_PARAMETER; |
|
return ssl_open_record_error; |
|
} |
|
|
|
// The encrypted epoch in DTLS has only one handshake message. |
|
if (ssl->d1->r_epoch == 1 && msg_hdr.seq != ssl->d1->handshake_read_seq) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
|
*out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
|
return ssl_open_record_error; |
|
} |
|
|
|
if (msg_hdr.seq < ssl->d1->handshake_read_seq || |
|
msg_hdr.seq > |
|
(unsigned)ssl->d1->handshake_read_seq + SSL_MAX_HANDSHAKE_FLIGHT) { |
|
// Ignore fragments from the past, or ones too far in the future. |
|
continue; |
|
} |
|
|
|
hm_fragment *frag = dtls1_get_incoming_message(ssl, out_alert, &msg_hdr); |
|
if (frag == NULL) { |
|
return ssl_open_record_error; |
|
} |
|
assert(frag->msg_len == msg_len); |
|
|
|
if (frag->reassembly == NULL) { |
|
// The message is already assembled. |
|
continue; |
|
} |
|
assert(msg_len > 0); |
|
|
|
// Copy the body into the fragment. |
|
OPENSSL_memcpy(frag->data + DTLS1_HM_HEADER_LENGTH + frag_off, |
|
CBS_data(&body), CBS_len(&body)); |
|
dtls1_hm_fragment_mark(frag, frag_off, frag_off + frag_len); |
|
} |
|
|
|
return ssl_open_record_success; |
|
} |
|
|
|
bool dtls1_get_message(const SSL *ssl, SSLMessage *out) { |
|
if (!dtls1_is_current_message_complete(ssl)) { |
|
return false; |
|
} |
|
|
|
size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
|
hm_fragment *frag = ssl->d1->incoming_messages[idx].get(); |
|
out->type = frag->type; |
|
CBS_init(&out->body, frag->data + DTLS1_HM_HEADER_LENGTH, frag->msg_len); |
|
CBS_init(&out->raw, frag->data, DTLS1_HM_HEADER_LENGTH + frag->msg_len); |
|
out->is_v2_hello = false; |
|
if (!ssl->s3->has_message) { |
|
ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HANDSHAKE, out->raw); |
|
ssl->s3->has_message = true; |
|
} |
|
return true; |
|
} |
|
|
|
void dtls1_next_message(SSL *ssl) { |
|
assert(ssl->s3->has_message); |
|
assert(dtls1_is_current_message_complete(ssl)); |
|
size_t index = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
|
ssl->d1->incoming_messages[index].reset(); |
|
ssl->d1->handshake_read_seq++; |
|
ssl->s3->has_message = false; |
|
// If we previously sent a flight, mark it as having a reply, so |
|
// |on_handshake_complete| can manage post-handshake retransmission. |
|
if (ssl->d1->outgoing_messages_complete) { |
|
ssl->d1->flight_has_reply = true; |
|
} |
|
} |
|
|
|
bool dtls_has_unprocessed_handshake_data(const SSL *ssl) { |
|
size_t current = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
|
for (size_t i = 0; i < SSL_MAX_HANDSHAKE_FLIGHT; i++) { |
|
// Skip the current message. |
|
if (ssl->s3->has_message && i == current) { |
|
assert(dtls1_is_current_message_complete(ssl)); |
|
continue; |
|
} |
|
if (ssl->d1->incoming_messages[i] != nullptr) { |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr, |
|
CBS *out_body) { |
|
OPENSSL_memset(out_hdr, 0x00, sizeof(struct hm_header_st)); |
|
|
|
if (!CBS_get_u8(cbs, &out_hdr->type) || |
|
!CBS_get_u24(cbs, &out_hdr->msg_len) || |
|
!CBS_get_u16(cbs, &out_hdr->seq) || |
|
!CBS_get_u24(cbs, &out_hdr->frag_off) || |
|
!CBS_get_u24(cbs, &out_hdr->frag_len) || |
|
!CBS_get_bytes(cbs, out_body, out_hdr->frag_len)) { |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, |
|
uint8_t *out_alert, |
|
Span<uint8_t> in) { |
|
if (!ssl->d1->has_change_cipher_spec) { |
|
// dtls1_open_handshake processes both handshake and ChangeCipherSpec. |
|
auto ret = dtls1_open_handshake(ssl, out_consumed, out_alert, in); |
|
if (ret != ssl_open_record_success) { |
|
return ret; |
|
} |
|
} |
|
if (ssl->d1->has_change_cipher_spec) { |
|
ssl->d1->has_change_cipher_spec = false; |
|
return ssl_open_record_success; |
|
} |
|
return ssl_open_record_discard; |
|
} |
|
|
|
|
|
// Sending handshake messages. |
|
|
|
void DTLS_OUTGOING_MESSAGE::Clear() { data.Reset(); } |
|
|
|
void dtls_clear_outgoing_messages(SSL *ssl) { |
|
for (size_t i = 0; i < ssl->d1->outgoing_messages_len; i++) { |
|
ssl->d1->outgoing_messages[i].Clear(); |
|
} |
|
ssl->d1->outgoing_messages_len = 0; |
|
ssl->d1->outgoing_written = 0; |
|
ssl->d1->outgoing_offset = 0; |
|
ssl->d1->outgoing_messages_complete = false; |
|
ssl->d1->flight_has_reply = false; |
|
} |
|
|
|
bool dtls1_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type) { |
|
// Pick a modest size hint to save most of the |realloc| calls. |
|
if (!CBB_init(cbb, 64) || |
|
!CBB_add_u8(cbb, type) || |
|
!CBB_add_u24(cbb, 0 /* length (filled in later) */) || |
|
!CBB_add_u16(cbb, ssl->d1->handshake_write_seq) || |
|
!CBB_add_u24(cbb, 0 /* offset */) || |
|
!CBB_add_u24_length_prefixed(cbb, body)) { |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool dtls1_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg) { |
|
if (!CBBFinishArray(cbb, out_msg) || |
|
out_msg->size() < DTLS1_HM_HEADER_LENGTH) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
|
return false; |
|
} |
|
|
|
// Fix up the header. Copy the fragment length into the total message |
|
// length. |
|
OPENSSL_memcpy(out_msg->data() + 1, |
|
out_msg->data() + DTLS1_HM_HEADER_LENGTH - 3, 3); |
|
return true; |
|
} |
|
|
|
// ssl_size_t_greater_than_32_bits returns whether |v| exceeds the bounds of a |
|
// 32-bit value. The obvious thing doesn't work because, in some 32-bit build |
|
// configurations, the compiler warns that the test is always false and breaks |
|
// the build. |
|
static bool ssl_size_t_greater_than_32_bits(size_t v) { |
|
#if defined(OPENSSL_64_BIT) |
|
return v > 0xffffffff; |
|
#elif defined(OPENSSL_32_BIT) |
|
return false; |
|
#else |
|
#error "Building for neither 32- nor 64-bits." |
|
#endif |
|
} |
|
|
|
// add_outgoing adds a new handshake message or ChangeCipherSpec to the current |
|
// outgoing flight. It returns true on success and false on error. |
|
static bool add_outgoing(SSL *ssl, bool is_ccs, Array<uint8_t> data) { |
|
if (ssl->d1->outgoing_messages_complete) { |
|
// If we've begun writing a new flight, we received the peer flight. Discard |
|
// the timer and the our flight. |
|
dtls1_stop_timer(ssl); |
|
dtls_clear_outgoing_messages(ssl); |
|
} |
|
|
|
static_assert(SSL_MAX_HANDSHAKE_FLIGHT < |
|
(1 << 8 * sizeof(ssl->d1->outgoing_messages_len)), |
|
"outgoing_messages_len is too small"); |
|
if (ssl->d1->outgoing_messages_len >= SSL_MAX_HANDSHAKE_FLIGHT || |
|
ssl_size_t_greater_than_32_bits(data.size())) { |
|
assert(false); |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
|
return false; |
|
} |
|
|
|
if (!is_ccs) { |
|
// TODO(svaldez): Move this up a layer to fix abstraction for SSLTranscript |
|
// on hs. |
|
if (ssl->s3->hs != NULL && |
|
!ssl->s3->hs->transcript.Update(data)) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
|
return false; |
|
} |
|
ssl->d1->handshake_write_seq++; |
|
} |
|
|
|
DTLS_OUTGOING_MESSAGE *msg = |
|
&ssl->d1->outgoing_messages[ssl->d1->outgoing_messages_len]; |
|
msg->data = std::move(data); |
|
msg->epoch = ssl->d1->w_epoch; |
|
msg->is_ccs = is_ccs; |
|
|
|
ssl->d1->outgoing_messages_len++; |
|
return true; |
|
} |
|
|
|
bool dtls1_add_message(SSL *ssl, Array<uint8_t> data) { |
|
return add_outgoing(ssl, false /* handshake */, std::move(data)); |
|
} |
|
|
|
bool dtls1_add_change_cipher_spec(SSL *ssl) { |
|
return add_outgoing(ssl, true /* ChangeCipherSpec */, Array<uint8_t>()); |
|
} |
|
|
|
// dtls1_update_mtu updates the current MTU from the BIO, ensuring it is above |
|
// the minimum. |
|
static void dtls1_update_mtu(SSL *ssl) { |
|
// TODO(davidben): No consumer implements |BIO_CTRL_DGRAM_SET_MTU| and the |
|
// only |BIO_CTRL_DGRAM_QUERY_MTU| implementation could use |
|
// |SSL_set_mtu|. Does this need to be so complex? |
|
if (ssl->d1->mtu < dtls1_min_mtu() && |
|
!(SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) { |
|
long mtu = BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL); |
|
if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) { |
|
ssl->d1->mtu = (unsigned)mtu; |
|
} else { |
|
ssl->d1->mtu = kDefaultMTU; |
|
BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_SET_MTU, ssl->d1->mtu, NULL); |
|
} |
|
} |
|
|
|
// The MTU should be above the minimum now. |
|
assert(ssl->d1->mtu >= dtls1_min_mtu()); |
|
} |
|
|
|
enum seal_result_t { |
|
seal_error, |
|
seal_no_progress, |
|
seal_partial, |
|
seal_success, |
|
}; |
|
|
|
// seal_next_message seals |msg|, which must be the next message, to |out|. If |
|
// progress was made, it returns |seal_partial| or |seal_success| and sets |
|
// |*out_len| to the number of bytes written. |
|
static enum seal_result_t seal_next_message(SSL *ssl, uint8_t *out, |
|
size_t *out_len, size_t max_out, |
|
const DTLS_OUTGOING_MESSAGE *msg) { |
|
assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len); |
|
assert(msg == &ssl->d1->outgoing_messages[ssl->d1->outgoing_written]); |
|
|
|
enum dtls1_use_epoch_t use_epoch = dtls1_use_current_epoch; |
|
if (ssl->d1->w_epoch >= 1 && msg->epoch == ssl->d1->w_epoch - 1) { |
|
use_epoch = dtls1_use_previous_epoch; |
|
} else if (msg->epoch != ssl->d1->w_epoch) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
|
return seal_error; |
|
} |
|
|
|
size_t overhead = dtls_max_seal_overhead(ssl, use_epoch); |
|
size_t prefix = dtls_seal_prefix_len(ssl, use_epoch); |
|
|
|
if (msg->is_ccs) { |
|
// Check there is room for the ChangeCipherSpec. |
|
static const uint8_t kChangeCipherSpec[1] = {SSL3_MT_CCS}; |
|
if (max_out < sizeof(kChangeCipherSpec) + overhead) { |
|
return seal_no_progress; |
|
} |
|
|
|
if (!dtls_seal_record(ssl, out, out_len, max_out, |
|
SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec, |
|
sizeof(kChangeCipherSpec), use_epoch)) { |
|
return seal_error; |
|
} |
|
|
|
ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_CHANGE_CIPHER_SPEC, |
|
kChangeCipherSpec); |
|
return seal_success; |
|
} |
|
|
|
// DTLS messages are serialized as a single fragment in |msg|. |
|
CBS cbs, body; |
|
struct hm_header_st hdr; |
|
CBS_init(&cbs, msg->data.data(), msg->data.size()); |
|
if (!dtls1_parse_fragment(&cbs, &hdr, &body) || |
|
hdr.frag_off != 0 || |
|
hdr.frag_len != CBS_len(&body) || |
|
hdr.msg_len != CBS_len(&body) || |
|
!CBS_skip(&body, ssl->d1->outgoing_offset) || |
|
CBS_len(&cbs) != 0) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
|
return seal_error; |
|
} |
|
|
|
// Determine how much progress can be made. |
|
if (max_out < DTLS1_HM_HEADER_LENGTH + 1 + overhead || max_out < prefix) { |
|
return seal_no_progress; |
|
} |
|
size_t todo = CBS_len(&body); |
|
if (todo > max_out - DTLS1_HM_HEADER_LENGTH - overhead) { |
|
todo = max_out - DTLS1_HM_HEADER_LENGTH - overhead; |
|
} |
|
|
|
// Assemble a fragment, to be sealed in-place. |
|
ScopedCBB cbb; |
|
CBB child; |
|
uint8_t *frag = out + prefix; |
|
size_t max_frag = max_out - prefix, frag_len; |
|
if (!CBB_init_fixed(cbb.get(), frag, max_frag) || |
|
!CBB_add_u8(cbb.get(), hdr.type) || |
|
!CBB_add_u24(cbb.get(), hdr.msg_len) || |
|
!CBB_add_u16(cbb.get(), hdr.seq) || |
|
!CBB_add_u24(cbb.get(), ssl->d1->outgoing_offset) || |
|
!CBB_add_u24_length_prefixed(cbb.get(), &child) || |
|
!CBB_add_bytes(&child, CBS_data(&body), todo) || |
|
!CBB_finish(cbb.get(), NULL, &frag_len)) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
|
return seal_error; |
|
} |
|
|
|
ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HANDSHAKE, |
|
MakeSpan(frag, frag_len)); |
|
|
|
if (!dtls_seal_record(ssl, out, out_len, max_out, SSL3_RT_HANDSHAKE, |
|
out + prefix, frag_len, use_epoch)) { |
|
return seal_error; |
|
} |
|
|
|
if (todo == CBS_len(&body)) { |
|
// The next message is complete. |
|
ssl->d1->outgoing_offset = 0; |
|
return seal_success; |
|
} |
|
|
|
ssl->d1->outgoing_offset += todo; |
|
return seal_partial; |
|
} |
|
|
|
// seal_next_packet writes as much of the next flight as possible to |out| and |
|
// advances |ssl->d1->outgoing_written| and |ssl->d1->outgoing_offset| as |
|
// appropriate. |
|
static bool seal_next_packet(SSL *ssl, uint8_t *out, size_t *out_len, |
|
size_t max_out) { |
|
bool made_progress = false; |
|
size_t total = 0; |
|
assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len); |
|
for (; ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len; |
|
ssl->d1->outgoing_written++) { |
|
const DTLS_OUTGOING_MESSAGE *msg = |
|
&ssl->d1->outgoing_messages[ssl->d1->outgoing_written]; |
|
size_t len; |
|
enum seal_result_t ret = seal_next_message(ssl, out, &len, max_out, msg); |
|
switch (ret) { |
|
case seal_error: |
|
return false; |
|
|
|
case seal_no_progress: |
|
goto packet_full; |
|
|
|
case seal_partial: |
|
case seal_success: |
|
out += len; |
|
max_out -= len; |
|
total += len; |
|
made_progress = true; |
|
|
|
if (ret == seal_partial) { |
|
goto packet_full; |
|
} |
|
break; |
|
} |
|
} |
|
|
|
packet_full: |
|
// The MTU was too small to make any progress. |
|
if (!made_progress) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_MTU_TOO_SMALL); |
|
return false; |
|
} |
|
|
|
*out_len = total; |
|
return true; |
|
} |
|
|
|
static int send_flight(SSL *ssl) { |
|
if (ssl->s3->write_shutdown != ssl_shutdown_none) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); |
|
return -1; |
|
} |
|
|
|
if (ssl->wbio == nullptr) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_BIO_NOT_SET); |
|
return -1; |
|
} |
|
|
|
dtls1_update_mtu(ssl); |
|
|
|
Array<uint8_t> packet; |
|
if (!packet.Init(ssl->d1->mtu)) { |
|
return -1; |
|
} |
|
|
|
while (ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len) { |
|
uint8_t old_written = ssl->d1->outgoing_written; |
|
uint32_t old_offset = ssl->d1->outgoing_offset; |
|
|
|
size_t packet_len; |
|
if (!seal_next_packet(ssl, packet.data(), &packet_len, packet.size())) { |
|
return -1; |
|
} |
|
|
|
int bio_ret = BIO_write(ssl->wbio.get(), packet.data(), packet_len); |
|
if (bio_ret <= 0) { |
|
// Retry this packet the next time around. |
|
ssl->d1->outgoing_written = old_written; |
|
ssl->d1->outgoing_offset = old_offset; |
|
ssl->s3->rwstate = SSL_ERROR_WANT_WRITE; |
|
return bio_ret; |
|
} |
|
} |
|
|
|
if (BIO_flush(ssl->wbio.get()) <= 0) { |
|
ssl->s3->rwstate = SSL_ERROR_WANT_WRITE; |
|
return -1; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
int dtls1_flush_flight(SSL *ssl) { |
|
ssl->d1->outgoing_messages_complete = true; |
|
// Start the retransmission timer for the next flight (if any). |
|
dtls1_start_timer(ssl); |
|
return send_flight(ssl); |
|
} |
|
|
|
int dtls1_retransmit_outgoing_messages(SSL *ssl) { |
|
// Rewind to the start of the flight and write it again. |
|
// |
|
// TODO(davidben): This does not allow retransmits to be resumed on |
|
// non-blocking write. |
|
ssl->d1->outgoing_written = 0; |
|
ssl->d1->outgoing_offset = 0; |
|
|
|
return send_flight(ssl); |
|
} |
|
|
|
unsigned int dtls1_min_mtu(void) { |
|
return kMinMTU; |
|
} |
|
|
|
BSSL_NAMESPACE_END
|
|
|