Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
766 lines
23 KiB
766 lines
23 KiB
/* Copyright (c) 2020, Google Inc. |
|
* |
|
* Permission to use, copy, modify, and/or distribute this software for any |
|
* purpose with or without fee is hereby granted, provided that the above |
|
* copyright notice and this permission notice appear in all copies. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
|
|
|
#include <openssl/trust_token.h> |
|
|
|
#include <openssl/bn.h> |
|
#include <openssl/bytestring.h> |
|
#include <openssl/ec.h> |
|
#include <openssl/err.h> |
|
#include <openssl/mem.h> |
|
#include <openssl/nid.h> |
|
#include <openssl/rand.h> |
|
|
|
#include "../ec_extra/internal.h" |
|
#include "../fipsmodule/ec/internal.h" |
|
|
|
#include "internal.h" |
|
|
|
|
|
typedef int (*hash_to_group_func_t)(const EC_GROUP *group, EC_RAW_POINT *out, |
|
const uint8_t t[TRUST_TOKEN_NONCE_SIZE]); |
|
typedef int (*hash_to_scalar_func_t)(const EC_GROUP *group, EC_SCALAR *out, |
|
uint8_t *buf, size_t len); |
|
|
|
typedef struct { |
|
const EC_GROUP *group; |
|
|
|
// hash_to_group implements the HashToGroup operation for VOPRFs. It returns |
|
// one on success and zero on error. |
|
hash_to_group_func_t hash_to_group; |
|
// hash_to_scalar implements the HashToScalar operation for VOPRFs. It returns |
|
// one on success and zero on error. |
|
hash_to_scalar_func_t hash_to_scalar; |
|
} VOPRF_METHOD; |
|
|
|
static const uint8_t kDefaultAdditionalData[32] = {0}; |
|
|
|
static int voprf_init_method(VOPRF_METHOD *method, int curve_nid, |
|
hash_to_group_func_t hash_to_group, |
|
hash_to_scalar_func_t hash_to_scalar) { |
|
method->group = EC_GROUP_new_by_curve_name(curve_nid); |
|
if (method->group == NULL) { |
|
return 0; |
|
} |
|
|
|
method->hash_to_group = hash_to_group; |
|
method->hash_to_scalar = hash_to_scalar; |
|
|
|
return 1; |
|
} |
|
|
|
static int cbb_add_point(CBB *out, const EC_GROUP *group, |
|
const EC_AFFINE *point) { |
|
size_t len = |
|
ec_point_to_bytes(group, point, POINT_CONVERSION_UNCOMPRESSED, NULL, 0); |
|
if (len == 0) { |
|
return 0; |
|
} |
|
|
|
uint8_t *p; |
|
return CBB_add_space(out, &p, len) && |
|
ec_point_to_bytes(group, point, POINT_CONVERSION_UNCOMPRESSED, p, |
|
len) == len && |
|
CBB_flush(out); |
|
} |
|
|
|
static int cbs_get_point(CBS *cbs, const EC_GROUP *group, EC_AFFINE *out) { |
|
CBS child; |
|
size_t plen = 1 + 2 * BN_num_bytes(&group->field); |
|
if (!CBS_get_bytes(cbs, &child, plen) || |
|
!ec_point_from_uncompressed(group, out, CBS_data(&child), |
|
CBS_len(&child))) { |
|
return 0; |
|
} |
|
return 1; |
|
} |
|
|
|
static int scalar_to_cbb(CBB *out, const EC_GROUP *group, |
|
const EC_SCALAR *scalar) { |
|
uint8_t *buf; |
|
size_t scalar_len = BN_num_bytes(&group->order); |
|
if (!CBB_add_space(out, &buf, scalar_len)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
|
return 0; |
|
} |
|
ec_scalar_to_bytes(group, buf, &scalar_len, scalar); |
|
return 1; |
|
} |
|
|
|
static int scalar_from_cbs(CBS *cbs, const EC_GROUP *group, EC_SCALAR *out) { |
|
size_t scalar_len = BN_num_bytes(&group->order); |
|
CBS tmp; |
|
if (!CBS_get_bytes(cbs, &tmp, scalar_len)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); |
|
return 0; |
|
} |
|
|
|
ec_scalar_from_bytes(group, out, CBS_data(&tmp), CBS_len(&tmp)); |
|
return 1; |
|
} |
|
|
|
static int voprf_generate_key(const VOPRF_METHOD *method, CBB *out_private, |
|
CBB *out_public) { |
|
const EC_GROUP *group = method->group; |
|
EC_RAW_POINT pub; |
|
EC_SCALAR priv; |
|
EC_AFFINE pub_affine; |
|
if (!ec_random_nonzero_scalar(group, &priv, kDefaultAdditionalData) || |
|
!ec_point_mul_scalar_base(group, &pub, &priv) || |
|
!ec_jacobian_to_affine(group, &pub_affine, &pub)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_KEYGEN_FAILURE); |
|
return 0; |
|
} |
|
|
|
if (!scalar_to_cbb(out_private, group, &priv) || |
|
!cbb_add_point(out_public, group, &pub_affine)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_BUFFER_TOO_SMALL); |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
static int voprf_client_key_from_bytes(const VOPRF_METHOD *method, |
|
TRUST_TOKEN_CLIENT_KEY *key, |
|
const uint8_t *in, size_t len) { |
|
const EC_GROUP *group = method->group; |
|
if (!ec_point_from_uncompressed(group, &key->pubs, in, len)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
static int voprf_issuer_key_from_bytes(const VOPRF_METHOD *method, |
|
TRUST_TOKEN_ISSUER_KEY *key, |
|
const uint8_t *in, size_t len) { |
|
const EC_GROUP *group = method->group; |
|
if (!ec_scalar_from_bytes(group, &key->xs, in, len)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); |
|
return 0; |
|
} |
|
|
|
// Recompute the public key. |
|
EC_RAW_POINT pub; |
|
if (!ec_point_mul_scalar_base(group, &pub, &key->xs) || |
|
!ec_jacobian_to_affine(group, &key->pubs, &pub)) { |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
static STACK_OF(TRUST_TOKEN_PRETOKEN) * |
|
voprf_blind(const VOPRF_METHOD *method, CBB *cbb, size_t count) { |
|
const EC_GROUP *group = method->group; |
|
STACK_OF(TRUST_TOKEN_PRETOKEN) *pretokens = |
|
sk_TRUST_TOKEN_PRETOKEN_new_null(); |
|
if (pretokens == NULL) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
|
goto err; |
|
} |
|
|
|
for (size_t i = 0; i < count; i++) { |
|
// Insert |pretoken| into |pretokens| early to simplify error-handling. |
|
TRUST_TOKEN_PRETOKEN *pretoken = |
|
OPENSSL_malloc(sizeof(TRUST_TOKEN_PRETOKEN)); |
|
if (pretoken == NULL || |
|
!sk_TRUST_TOKEN_PRETOKEN_push(pretokens, pretoken)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
|
TRUST_TOKEN_PRETOKEN_free(pretoken); |
|
goto err; |
|
} |
|
|
|
RAND_bytes(pretoken->t, sizeof(pretoken->t)); |
|
|
|
// We sample r in Montgomery form to simplify inverting. |
|
EC_SCALAR r; |
|
if (!ec_random_nonzero_scalar(group, &r, |
|
kDefaultAdditionalData)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
|
goto err; |
|
} |
|
|
|
// pretoken->r is rinv. |
|
ec_scalar_inv0_montgomery(group, &pretoken->r, &r); |
|
// Convert both out of Montgomery form. |
|
ec_scalar_from_montgomery(group, &r, &r); |
|
ec_scalar_from_montgomery(group, &pretoken->r, &pretoken->r); |
|
|
|
// Tp is the blinded token in the VOPRF protocol. |
|
EC_RAW_POINT P, Tp; |
|
if (!method->hash_to_group(group, &P, pretoken->t) || |
|
!ec_point_mul_scalar(group, &Tp, &P, &r) || |
|
!ec_jacobian_to_affine(group, &pretoken->Tp, &Tp)) { |
|
goto err; |
|
} |
|
|
|
if (!cbb_add_point(cbb, group, &pretoken->Tp)) { |
|
goto err; |
|
} |
|
} |
|
|
|
return pretokens; |
|
|
|
err: |
|
sk_TRUST_TOKEN_PRETOKEN_pop_free(pretokens, TRUST_TOKEN_PRETOKEN_free); |
|
return NULL; |
|
} |
|
|
|
static int hash_to_scalar_dleq(const VOPRF_METHOD *method, EC_SCALAR *out, |
|
const EC_AFFINE *X, const EC_AFFINE *T, |
|
const EC_AFFINE *W, const EC_AFFINE *K0, |
|
const EC_AFFINE *K1) { |
|
static const uint8_t kDLEQLabel[] = "DLEQ"; |
|
|
|
int ok = 0; |
|
CBB cbb; |
|
CBB_zero(&cbb); |
|
uint8_t *buf = NULL; |
|
size_t len; |
|
if (!CBB_init(&cbb, 0) || |
|
!CBB_add_bytes(&cbb, kDLEQLabel, sizeof(kDLEQLabel)) || |
|
!cbb_add_point(&cbb, method->group, X) || |
|
!cbb_add_point(&cbb, method->group, T) || |
|
!cbb_add_point(&cbb, method->group, W) || |
|
!cbb_add_point(&cbb, method->group, K0) || |
|
!cbb_add_point(&cbb, method->group, K1) || |
|
!CBB_finish(&cbb, &buf, &len) || |
|
!method->hash_to_scalar(method->group, out, buf, len)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
|
goto err; |
|
} |
|
|
|
ok = 1; |
|
|
|
err: |
|
CBB_cleanup(&cbb); |
|
OPENSSL_free(buf); |
|
return ok; |
|
} |
|
|
|
static int hash_to_scalar_batch(const VOPRF_METHOD *method, EC_SCALAR *out, |
|
const CBB *points, size_t index) { |
|
static const uint8_t kDLEQBatchLabel[] = "DLEQ BATCH"; |
|
if (index > 0xffff) { |
|
// The protocol supports only two-byte batches. |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_OVERFLOW); |
|
return 0; |
|
} |
|
|
|
int ok = 0; |
|
CBB cbb; |
|
CBB_zero(&cbb); |
|
uint8_t *buf = NULL; |
|
size_t len; |
|
if (!CBB_init(&cbb, 0) || |
|
!CBB_add_bytes(&cbb, kDLEQBatchLabel, sizeof(kDLEQBatchLabel)) || |
|
!CBB_add_bytes(&cbb, CBB_data(points), CBB_len(points)) || |
|
!CBB_add_u16(&cbb, (uint16_t)index) || |
|
!CBB_finish(&cbb, &buf, &len) || |
|
!method->hash_to_scalar(method->group, out, buf, len)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
|
goto err; |
|
} |
|
|
|
ok = 1; |
|
|
|
err: |
|
CBB_cleanup(&cbb); |
|
OPENSSL_free(buf); |
|
return ok; |
|
} |
|
|
|
static int dleq_generate(const VOPRF_METHOD *method, CBB *cbb, |
|
const TRUST_TOKEN_ISSUER_KEY *priv, |
|
const EC_RAW_POINT *T, const EC_RAW_POINT *W) { |
|
const EC_GROUP *group = method->group; |
|
|
|
enum { |
|
idx_T, |
|
idx_W, |
|
idx_k0, |
|
idx_k1, |
|
num_idx, |
|
}; |
|
EC_RAW_POINT jacobians[num_idx]; |
|
|
|
// Setup the DLEQ proof. |
|
EC_SCALAR r; |
|
if (// r <- Zp |
|
!ec_random_nonzero_scalar(group, &r, kDefaultAdditionalData) || |
|
// k0;k1 = r*(G;T) |
|
!ec_point_mul_scalar_base(group, &jacobians[idx_k0], &r) || |
|
!ec_point_mul_scalar(group, &jacobians[idx_k1], T, &r)) { |
|
return 0; |
|
} |
|
|
|
EC_AFFINE affines[num_idx]; |
|
jacobians[idx_T] = *T; |
|
jacobians[idx_W] = *W; |
|
if (!ec_jacobian_to_affine_batch(group, affines, jacobians, num_idx)) { |
|
return 0; |
|
} |
|
|
|
// Compute c = Hc(...). |
|
EC_SCALAR c; |
|
if (!hash_to_scalar_dleq(method, &c, &priv->pubs, &affines[idx_T], |
|
&affines[idx_W], &affines[idx_k0], |
|
&affines[idx_k1])) { |
|
return 0; |
|
} |
|
|
|
|
|
EC_SCALAR c_mont; |
|
ec_scalar_to_montgomery(group, &c_mont, &c); |
|
|
|
// u = r + c*xs |
|
EC_SCALAR u; |
|
ec_scalar_mul_montgomery(group, &u, &priv->xs, &c_mont); |
|
ec_scalar_add(group, &u, &r, &u); |
|
|
|
// Store DLEQ proof in transcript. |
|
if (!scalar_to_cbb(cbb, group, &c) || |
|
!scalar_to_cbb(cbb, group, &u)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
static int mul_public_2(const EC_GROUP *group, EC_RAW_POINT *out, |
|
const EC_RAW_POINT *p0, const EC_SCALAR *scalar0, |
|
const EC_RAW_POINT *p1, const EC_SCALAR *scalar1) { |
|
EC_RAW_POINT points[2] = {*p0, *p1}; |
|
EC_SCALAR scalars[2] = {*scalar0, *scalar1}; |
|
return ec_point_mul_scalar_public_batch(group, out, /*g_scalar=*/NULL, points, |
|
scalars, 2); |
|
} |
|
|
|
static int dleq_verify(const VOPRF_METHOD *method, CBS *cbs, |
|
const TRUST_TOKEN_CLIENT_KEY *pub, const EC_RAW_POINT *T, |
|
const EC_RAW_POINT *W) { |
|
const EC_GROUP *group = method->group; |
|
|
|
|
|
enum { |
|
idx_T, |
|
idx_W, |
|
idx_k0, |
|
idx_k1, |
|
num_idx, |
|
}; |
|
EC_RAW_POINT jacobians[num_idx]; |
|
|
|
// Decode the DLEQ proof. |
|
EC_SCALAR c, u; |
|
if (!scalar_from_cbs(cbs, group, &c) || |
|
!scalar_from_cbs(cbs, group, &u)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); |
|
return 0; |
|
} |
|
|
|
// k0;k1 = u*(G;T) - c*(pub;W) |
|
EC_RAW_POINT pubs; |
|
ec_affine_to_jacobian(group, &pubs, &pub->pubs); |
|
EC_SCALAR minus_c; |
|
ec_scalar_neg(group, &minus_c, &c); |
|
if (!ec_point_mul_scalar_public(group, &jacobians[idx_k0], &u, &pubs, |
|
&minus_c) || |
|
!mul_public_2(group, &jacobians[idx_k1], T, &u, W, &minus_c)) { |
|
return 0; |
|
} |
|
|
|
// Check the DLEQ proof. |
|
EC_AFFINE affines[num_idx]; |
|
jacobians[idx_T] = *T; |
|
jacobians[idx_W] = *W; |
|
if (!ec_jacobian_to_affine_batch(group, affines, jacobians, num_idx)) { |
|
return 0; |
|
} |
|
|
|
// Compute c = Hc(...). |
|
EC_SCALAR calculated; |
|
if (!hash_to_scalar_dleq(method, &calculated, &pub->pubs, &affines[idx_T], |
|
&affines[idx_W], &affines[idx_k0], |
|
&affines[idx_k1])) { |
|
return 0; |
|
} |
|
|
|
// c == calculated |
|
if (!ec_scalar_equal_vartime(group, &c, &calculated)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_INVALID_PROOF); |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
static int voprf_sign(const VOPRF_METHOD *method, |
|
const TRUST_TOKEN_ISSUER_KEY *key, CBB *cbb, CBS *cbs, |
|
size_t num_requested, size_t num_to_issue) { |
|
const EC_GROUP *group = method->group; |
|
if (num_requested < num_to_issue) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_INTERNAL_ERROR); |
|
return 0; |
|
} |
|
|
|
if (num_to_issue > ((size_t)-1) / sizeof(EC_RAW_POINT) || |
|
num_to_issue > ((size_t)-1) / sizeof(EC_SCALAR)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_OVERFLOW); |
|
return 0; |
|
} |
|
|
|
int ret = 0; |
|
EC_RAW_POINT *BTs = OPENSSL_malloc(num_to_issue * sizeof(EC_RAW_POINT)); |
|
EC_RAW_POINT *Zs = OPENSSL_malloc(num_to_issue * sizeof(EC_RAW_POINT)); |
|
EC_SCALAR *es = OPENSSL_malloc(num_to_issue * sizeof(EC_SCALAR)); |
|
CBB batch_cbb; |
|
CBB_zero(&batch_cbb); |
|
if (!BTs || |
|
!Zs || |
|
!es || |
|
!CBB_init(&batch_cbb, 0) || |
|
!cbb_add_point(&batch_cbb, method->group, &key->pubs)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
|
goto err; |
|
} |
|
|
|
for (size_t i = 0; i < num_to_issue; i++) { |
|
EC_AFFINE BT_affine, Z_affine; |
|
EC_RAW_POINT BT, Z; |
|
if (!cbs_get_point(cbs, group, &BT_affine)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); |
|
goto err; |
|
} |
|
ec_affine_to_jacobian(group, &BT, &BT_affine); |
|
if (!ec_point_mul_scalar(group, &Z, &BT, &key->xs) || |
|
!ec_jacobian_to_affine(group, &Z_affine, &Z) || |
|
!cbb_add_point(cbb, group, &Z_affine)) { |
|
goto err; |
|
} |
|
|
|
if (!cbb_add_point(&batch_cbb, group, &BT_affine) || |
|
!cbb_add_point(&batch_cbb, group, &Z_affine)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
|
goto err; |
|
} |
|
BTs[i] = BT; |
|
Zs[i] = Z; |
|
|
|
if (!CBB_flush(cbb)) { |
|
goto err; |
|
} |
|
} |
|
|
|
// The DLEQ batching construction is described in appendix B of |
|
// https://eprint.iacr.org/2020/072/20200324:214215. Note the additional |
|
// computations all act on public inputs. |
|
for (size_t i = 0; i < num_to_issue; i++) { |
|
if (!hash_to_scalar_batch(method, &es[i], &batch_cbb, i)) { |
|
goto err; |
|
} |
|
} |
|
|
|
EC_RAW_POINT BT_batch, Z_batch; |
|
if (!ec_point_mul_scalar_public_batch(group, &BT_batch, |
|
/*g_scalar=*/NULL, BTs, es, |
|
num_to_issue) || |
|
!ec_point_mul_scalar_public_batch(group, &Z_batch, |
|
/*g_scalar=*/NULL, Zs, es, |
|
num_to_issue)) { |
|
goto err; |
|
} |
|
|
|
CBB proof; |
|
if (!CBB_add_u16_length_prefixed(cbb, &proof) || |
|
!dleq_generate(method, &proof, key, &BT_batch, &Z_batch) || |
|
!CBB_flush(cbb)) { |
|
goto err; |
|
} |
|
|
|
// Skip over any unused requests. |
|
size_t point_len = 1 + 2 * BN_num_bytes(&group->field); |
|
if (!CBS_skip(cbs, point_len * (num_requested - num_to_issue))) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); |
|
goto err; |
|
} |
|
|
|
ret = 1; |
|
|
|
err: |
|
OPENSSL_free(BTs); |
|
OPENSSL_free(Zs); |
|
OPENSSL_free(es); |
|
CBB_cleanup(&batch_cbb); |
|
return ret; |
|
} |
|
|
|
static STACK_OF(TRUST_TOKEN) * |
|
voprf_unblind(const VOPRF_METHOD *method, const TRUST_TOKEN_CLIENT_KEY *key, |
|
const STACK_OF(TRUST_TOKEN_PRETOKEN) * pretokens, CBS *cbs, |
|
size_t count, uint32_t key_id) { |
|
const EC_GROUP *group = method->group; |
|
if (count > sk_TRUST_TOKEN_PRETOKEN_num(pretokens)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); |
|
return NULL; |
|
} |
|
|
|
int ok = 0; |
|
STACK_OF(TRUST_TOKEN) *ret = sk_TRUST_TOKEN_new_null(); |
|
if (ret == NULL) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
|
return NULL; |
|
} |
|
|
|
if (count > ((size_t)-1) / sizeof(EC_RAW_POINT) || |
|
count > ((size_t)-1) / sizeof(EC_SCALAR)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_OVERFLOW); |
|
return 0; |
|
} |
|
EC_RAW_POINT *BTs = OPENSSL_malloc(count * sizeof(EC_RAW_POINT)); |
|
EC_RAW_POINT *Zs = OPENSSL_malloc(count * sizeof(EC_RAW_POINT)); |
|
EC_SCALAR *es = OPENSSL_malloc(count * sizeof(EC_SCALAR)); |
|
CBB batch_cbb; |
|
CBB_zero(&batch_cbb); |
|
if (!BTs || |
|
!Zs || |
|
!es || |
|
!CBB_init(&batch_cbb, 0) || |
|
!cbb_add_point(&batch_cbb, method->group, &key->pubs)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
|
goto err; |
|
} |
|
|
|
for (size_t i = 0; i < count; i++) { |
|
const TRUST_TOKEN_PRETOKEN *pretoken = |
|
sk_TRUST_TOKEN_PRETOKEN_value(pretokens, i); |
|
|
|
EC_AFFINE Z_affine; |
|
if (!cbs_get_point(cbs, group, &Z_affine)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); |
|
goto err; |
|
} |
|
|
|
ec_affine_to_jacobian(group, &BTs[i], &pretoken->Tp); |
|
ec_affine_to_jacobian(group, &Zs[i], &Z_affine); |
|
|
|
if (!cbb_add_point(&batch_cbb, group, &pretoken->Tp) || |
|
!cbb_add_point(&batch_cbb, group, &Z_affine)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
|
goto err; |
|
} |
|
|
|
// Unblind the token. |
|
// pretoken->r is rinv. |
|
EC_RAW_POINT N; |
|
EC_AFFINE N_affine; |
|
if (!ec_point_mul_scalar(group, &N, &Zs[i], &pretoken->r) || |
|
!ec_jacobian_to_affine(group, &N_affine, &N)) { |
|
goto err; |
|
} |
|
|
|
// Serialize the token. Include |key_id| to avoid an extra copy in the layer |
|
// above. |
|
CBB token_cbb; |
|
size_t point_len = 1 + 2 * BN_num_bytes(&group->field); |
|
if (!CBB_init(&token_cbb, 4 + TRUST_TOKEN_NONCE_SIZE + (2 + point_len)) || |
|
!CBB_add_u32(&token_cbb, key_id) || |
|
!CBB_add_bytes(&token_cbb, pretoken->t, TRUST_TOKEN_NONCE_SIZE) || |
|
!cbb_add_point(&token_cbb, group, &N_affine) || |
|
!CBB_flush(&token_cbb)) { |
|
CBB_cleanup(&token_cbb); |
|
goto err; |
|
} |
|
|
|
TRUST_TOKEN *token = |
|
TRUST_TOKEN_new(CBB_data(&token_cbb), CBB_len(&token_cbb)); |
|
CBB_cleanup(&token_cbb); |
|
if (token == NULL || |
|
!sk_TRUST_TOKEN_push(ret, token)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
|
TRUST_TOKEN_free(token); |
|
goto err; |
|
} |
|
} |
|
|
|
// The DLEQ batching construction is described in appendix B of |
|
// https://eprint.iacr.org/2020/072/20200324:214215. Note the additional |
|
// computations all act on public inputs. |
|
for (size_t i = 0; i < count; i++) { |
|
if (!hash_to_scalar_batch(method, &es[i], &batch_cbb, i)) { |
|
goto err; |
|
} |
|
} |
|
|
|
EC_RAW_POINT BT_batch, Z_batch; |
|
if (!ec_point_mul_scalar_public_batch(group, &BT_batch, |
|
/*g_scalar=*/NULL, BTs, es, count) || |
|
!ec_point_mul_scalar_public_batch(group, &Z_batch, |
|
/*g_scalar=*/NULL, Zs, es, count)) { |
|
goto err; |
|
} |
|
|
|
CBS proof; |
|
if (!CBS_get_u16_length_prefixed(cbs, &proof) || |
|
!dleq_verify(method, &proof, key, &BT_batch, &Z_batch) || |
|
CBS_len(&proof) != 0) { |
|
goto err; |
|
} |
|
|
|
ok = 1; |
|
|
|
err: |
|
OPENSSL_free(BTs); |
|
OPENSSL_free(Zs); |
|
OPENSSL_free(es); |
|
CBB_cleanup(&batch_cbb); |
|
if (!ok) { |
|
sk_TRUST_TOKEN_pop_free(ret, TRUST_TOKEN_free); |
|
ret = NULL; |
|
} |
|
return ret; |
|
} |
|
|
|
static int voprf_read(const VOPRF_METHOD *method, |
|
const TRUST_TOKEN_ISSUER_KEY *key, |
|
uint8_t out_nonce[TRUST_TOKEN_NONCE_SIZE], |
|
const uint8_t *token, size_t token_len) { |
|
const EC_GROUP *group = method->group; |
|
CBS cbs; |
|
CBS_init(&cbs, token, token_len); |
|
EC_AFFINE Ws; |
|
if (!CBS_copy_bytes(&cbs, out_nonce, TRUST_TOKEN_NONCE_SIZE) || |
|
!cbs_get_point(&cbs, group, &Ws) || |
|
CBS_len(&cbs) != 0) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_INVALID_TOKEN); |
|
return 0; |
|
} |
|
|
|
|
|
EC_RAW_POINT T; |
|
if (!method->hash_to_group(group, &T, out_nonce)) { |
|
return 0; |
|
} |
|
|
|
EC_RAW_POINT Ws_calculated; |
|
if (!ec_point_mul_scalar(group, &Ws_calculated, &T, &key->xs) || |
|
!ec_affine_jacobian_equal(group, &Ws, &Ws_calculated)) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_BAD_VALIDITY_CHECK); |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
|
|
// VOPRF experiment v2. |
|
|
|
static int voprf_exp2_hash_to_group(const EC_GROUP *group, EC_RAW_POINT *out, |
|
const uint8_t t[TRUST_TOKEN_NONCE_SIZE]) { |
|
const uint8_t kHashTLabel[] = "TrustToken VOPRF Experiment V2 HashToGroup"; |
|
return ec_hash_to_curve_p384_xmd_sha512_sswu_draft07( |
|
group, out, kHashTLabel, sizeof(kHashTLabel), t, TRUST_TOKEN_NONCE_SIZE); |
|
} |
|
|
|
static int voprf_exp2_hash_to_scalar(const EC_GROUP *group, EC_SCALAR *out, |
|
uint8_t *buf, size_t len) { |
|
const uint8_t kHashCLabel[] = "TrustToken VOPRF Experiment V2 HashToScalar"; |
|
return ec_hash_to_scalar_p384_xmd_sha512_draft07( |
|
group, out, kHashCLabel, sizeof(kHashCLabel), buf, len); |
|
} |
|
|
|
static int voprf_exp2_ok = 0; |
|
static VOPRF_METHOD voprf_exp2_method; |
|
static CRYPTO_once_t voprf_exp2_method_once = CRYPTO_ONCE_INIT; |
|
|
|
static void voprf_exp2_init_method_impl(void) { |
|
voprf_exp2_ok = |
|
voprf_init_method(&voprf_exp2_method, NID_secp384r1, |
|
voprf_exp2_hash_to_group, voprf_exp2_hash_to_scalar); |
|
} |
|
|
|
static int voprf_exp2_init_method(void) { |
|
CRYPTO_once(&voprf_exp2_method_once, voprf_exp2_init_method_impl); |
|
if (!voprf_exp2_ok) { |
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_INTERNAL_ERROR); |
|
return 0; |
|
} |
|
return 1; |
|
} |
|
|
|
int voprf_exp2_generate_key(CBB *out_private, CBB *out_public) { |
|
if (!voprf_exp2_init_method()) { |
|
return 0; |
|
} |
|
|
|
return voprf_generate_key(&voprf_exp2_method, out_private, out_public); |
|
} |
|
|
|
int voprf_exp2_client_key_from_bytes(TRUST_TOKEN_CLIENT_KEY *key, |
|
const uint8_t *in, size_t len) { |
|
if (!voprf_exp2_init_method()) { |
|
return 0; |
|
} |
|
return voprf_client_key_from_bytes(&voprf_exp2_method, key, in, len); |
|
} |
|
|
|
int voprf_exp2_issuer_key_from_bytes(TRUST_TOKEN_ISSUER_KEY *key, |
|
const uint8_t *in, size_t len) { |
|
if (!voprf_exp2_init_method()) { |
|
return 0; |
|
} |
|
return voprf_issuer_key_from_bytes(&voprf_exp2_method, key, in, len); |
|
} |
|
|
|
STACK_OF(TRUST_TOKEN_PRETOKEN) * voprf_exp2_blind(CBB *cbb, size_t count) { |
|
if (!voprf_exp2_init_method()) { |
|
return NULL; |
|
} |
|
return voprf_blind(&voprf_exp2_method, cbb, count); |
|
} |
|
|
|
int voprf_exp2_sign(const TRUST_TOKEN_ISSUER_KEY *key, CBB *cbb, CBS *cbs, |
|
size_t num_requested, size_t num_to_issue, |
|
uint8_t private_metadata) { |
|
if (!voprf_exp2_init_method() || private_metadata != 0) { |
|
return 0; |
|
} |
|
return voprf_sign(&voprf_exp2_method, key, cbb, cbs, num_requested, |
|
num_to_issue); |
|
} |
|
|
|
STACK_OF(TRUST_TOKEN) * |
|
voprf_exp2_unblind(const TRUST_TOKEN_CLIENT_KEY *key, |
|
const STACK_OF(TRUST_TOKEN_PRETOKEN) * pretokens, |
|
CBS *cbs, size_t count, uint32_t key_id) { |
|
if (!voprf_exp2_init_method()) { |
|
return NULL; |
|
} |
|
return voprf_unblind(&voprf_exp2_method, key, pretokens, cbs, count, |
|
key_id); |
|
} |
|
|
|
int voprf_exp2_read(const TRUST_TOKEN_ISSUER_KEY *key, |
|
uint8_t out_nonce[TRUST_TOKEN_NONCE_SIZE], |
|
uint8_t *out_private_metadata, const uint8_t *token, |
|
size_t token_len) { |
|
if (!voprf_exp2_init_method()) { |
|
return 0; |
|
} |
|
return voprf_read(&voprf_exp2_method, key, out_nonce, token, token_len); |
|
}
|
|
|