Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
723 lines
20 KiB
723 lines
20 KiB
/* ==================================================================== |
|
* Copyright (c) 2008 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* openssl-core@openssl.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== */ |
|
|
|
#include <openssl/base.h> |
|
|
|
#include <assert.h> |
|
#include <string.h> |
|
|
|
#include <openssl/mem.h> |
|
|
|
#include "internal.h" |
|
#include "../../internal.h" |
|
|
|
|
|
// kSizeTWithoutLower4Bits is a mask that can be used to zero the lower four |
|
// bits of a |size_t|. |
|
static const size_t kSizeTWithoutLower4Bits = (size_t) -16; |
|
|
|
|
|
#define GCM_MUL(ctx, Xi) gcm_gmult_nohw((ctx)->Xi.u, (ctx)->gcm_key.Htable) |
|
#define GHASH(ctx, in, len) \ |
|
gcm_ghash_nohw((ctx)->Xi.u, (ctx)->gcm_key.Htable, in, len) |
|
// GHASH_CHUNK is "stride parameter" missioned to mitigate cache |
|
// trashing effect. In other words idea is to hash data while it's |
|
// still in L1 cache after encryption pass... |
|
#define GHASH_CHUNK (3 * 1024) |
|
|
|
#if defined(GHASH_ASM_X86_64) || defined(GHASH_ASM_X86) |
|
static inline void gcm_reduce_1bit(u128 *V) { |
|
if (sizeof(crypto_word_t) == 8) { |
|
uint64_t T = UINT64_C(0xe100000000000000) & (0 - (V->hi & 1)); |
|
V->hi = (V->lo << 63) | (V->hi >> 1); |
|
V->lo = (V->lo >> 1) ^ T; |
|
} else { |
|
uint32_t T = 0xe1000000U & (0 - (uint32_t)(V->hi & 1)); |
|
V->hi = (V->lo << 63) | (V->hi >> 1); |
|
V->lo = (V->lo >> 1) ^ ((uint64_t)T << 32); |
|
} |
|
} |
|
|
|
void gcm_init_ssse3(u128 Htable[16], const uint64_t H[2]) { |
|
Htable[0].hi = 0; |
|
Htable[0].lo = 0; |
|
u128 V; |
|
V.hi = H[1]; |
|
V.lo = H[0]; |
|
|
|
Htable[8] = V; |
|
gcm_reduce_1bit(&V); |
|
Htable[4] = V; |
|
gcm_reduce_1bit(&V); |
|
Htable[2] = V; |
|
gcm_reduce_1bit(&V); |
|
Htable[1] = V; |
|
Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo; |
|
V = Htable[4]; |
|
Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo; |
|
Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo; |
|
Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo; |
|
V = Htable[8]; |
|
Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo; |
|
Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo; |
|
Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo; |
|
Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo; |
|
Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo; |
|
Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo; |
|
Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo; |
|
|
|
// Treat |Htable| as a 16x16 byte table and transpose it. Thus, Htable[i] |
|
// contains the i'th byte of j*H for all j. |
|
uint8_t *Hbytes = (uint8_t *)Htable; |
|
for (int i = 0; i < 16; i++) { |
|
for (int j = 0; j < i; j++) { |
|
uint8_t tmp = Hbytes[16*i + j]; |
|
Hbytes[16*i + j] = Hbytes[16*j + i]; |
|
Hbytes[16*j + i] = tmp; |
|
} |
|
} |
|
} |
|
#endif // GHASH_ASM_X86_64 || GHASH_ASM_X86 |
|
|
|
#ifdef GCM_FUNCREF |
|
#undef GCM_MUL |
|
#define GCM_MUL(ctx, Xi) (*gcm_gmult_p)((ctx)->Xi.u, (ctx)->gcm_key.Htable) |
|
#undef GHASH |
|
#define GHASH(ctx, in, len) \ |
|
(*gcm_ghash_p)((ctx)->Xi.u, (ctx)->gcm_key.Htable, in, len) |
|
#endif // GCM_FUNCREF |
|
|
|
void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash, |
|
u128 *out_key, u128 out_table[16], int *out_is_avx, |
|
const uint8_t gcm_key[16]) { |
|
*out_is_avx = 0; |
|
|
|
// H is stored in host byte order. |
|
uint64_t H[2] = {CRYPTO_load_u64_be(gcm_key), |
|
CRYPTO_load_u64_be(gcm_key + 8)}; |
|
out_key->hi = H[0]; |
|
out_key->lo = H[1]; |
|
|
|
#if defined(GHASH_ASM_X86_64) |
|
if (crypto_gcm_clmul_enabled()) { |
|
if (CRYPTO_is_AVX_capable() && CRYPTO_is_MOVBE_capable()) { |
|
gcm_init_avx(out_table, H); |
|
*out_mult = gcm_gmult_avx; |
|
*out_hash = gcm_ghash_avx; |
|
*out_is_avx = 1; |
|
return; |
|
} |
|
gcm_init_clmul(out_table, H); |
|
*out_mult = gcm_gmult_clmul; |
|
*out_hash = gcm_ghash_clmul; |
|
return; |
|
} |
|
if (CRYPTO_is_SSSE3_capable()) { |
|
gcm_init_ssse3(out_table, H); |
|
*out_mult = gcm_gmult_ssse3; |
|
*out_hash = gcm_ghash_ssse3; |
|
return; |
|
} |
|
#elif defined(GHASH_ASM_X86) |
|
if (crypto_gcm_clmul_enabled()) { |
|
gcm_init_clmul(out_table, H); |
|
*out_mult = gcm_gmult_clmul; |
|
*out_hash = gcm_ghash_clmul; |
|
return; |
|
} |
|
if (CRYPTO_is_SSSE3_capable()) { |
|
gcm_init_ssse3(out_table, H); |
|
*out_mult = gcm_gmult_ssse3; |
|
*out_hash = gcm_ghash_ssse3; |
|
return; |
|
} |
|
#elif defined(GHASH_ASM_ARM) |
|
if (gcm_pmull_capable()) { |
|
gcm_init_v8(out_table, H); |
|
*out_mult = gcm_gmult_v8; |
|
*out_hash = gcm_ghash_v8; |
|
return; |
|
} |
|
|
|
if (gcm_neon_capable()) { |
|
gcm_init_neon(out_table, H); |
|
*out_mult = gcm_gmult_neon; |
|
*out_hash = gcm_ghash_neon; |
|
return; |
|
} |
|
#elif defined(GHASH_ASM_PPC64LE) |
|
if (CRYPTO_is_PPC64LE_vcrypto_capable()) { |
|
gcm_init_p8(out_table, H); |
|
*out_mult = gcm_gmult_p8; |
|
*out_hash = gcm_ghash_p8; |
|
return; |
|
} |
|
#endif |
|
|
|
gcm_init_nohw(out_table, H); |
|
*out_mult = gcm_gmult_nohw; |
|
*out_hash = gcm_ghash_nohw; |
|
} |
|
|
|
void CRYPTO_gcm128_init_key(GCM128_KEY *gcm_key, const AES_KEY *aes_key, |
|
block128_f block, int block_is_hwaes) { |
|
OPENSSL_memset(gcm_key, 0, sizeof(*gcm_key)); |
|
gcm_key->block = block; |
|
|
|
uint8_t ghash_key[16]; |
|
OPENSSL_memset(ghash_key, 0, sizeof(ghash_key)); |
|
(*block)(ghash_key, ghash_key, aes_key); |
|
|
|
int is_avx; |
|
CRYPTO_ghash_init(&gcm_key->gmult, &gcm_key->ghash, &gcm_key->H, |
|
gcm_key->Htable, &is_avx, ghash_key); |
|
|
|
gcm_key->use_aesni_gcm_crypt = (is_avx && block_is_hwaes) ? 1 : 0; |
|
} |
|
|
|
void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const AES_KEY *key, |
|
const uint8_t *iv, size_t len) { |
|
#ifdef GCM_FUNCREF |
|
void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
|
ctx->gcm_key.gmult; |
|
#endif |
|
|
|
ctx->Yi.u[0] = 0; |
|
ctx->Yi.u[1] = 0; |
|
ctx->Xi.u[0] = 0; |
|
ctx->Xi.u[1] = 0; |
|
ctx->len.u[0] = 0; // AAD length |
|
ctx->len.u[1] = 0; // message length |
|
ctx->ares = 0; |
|
ctx->mres = 0; |
|
|
|
uint32_t ctr; |
|
if (len == 12) { |
|
OPENSSL_memcpy(ctx->Yi.c, iv, 12); |
|
ctx->Yi.c[15] = 1; |
|
ctr = 1; |
|
} else { |
|
uint64_t len0 = len; |
|
|
|
while (len >= 16) { |
|
for (size_t i = 0; i < 16; ++i) { |
|
ctx->Yi.c[i] ^= iv[i]; |
|
} |
|
GCM_MUL(ctx, Yi); |
|
iv += 16; |
|
len -= 16; |
|
} |
|
if (len) { |
|
for (size_t i = 0; i < len; ++i) { |
|
ctx->Yi.c[i] ^= iv[i]; |
|
} |
|
GCM_MUL(ctx, Yi); |
|
} |
|
len0 <<= 3; |
|
ctx->Yi.u[1] ^= CRYPTO_bswap8(len0); |
|
|
|
GCM_MUL(ctx, Yi); |
|
ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
|
} |
|
|
|
(*ctx->gcm_key.block)(ctx->Yi.c, ctx->EK0.c, key); |
|
++ctr; |
|
ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
|
} |
|
|
|
int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad, size_t len) { |
|
#ifdef GCM_FUNCREF |
|
void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
|
ctx->gcm_key.gmult; |
|
void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
|
size_t len) = ctx->gcm_key.ghash; |
|
#endif |
|
|
|
if (ctx->len.u[1]) { |
|
return 0; |
|
} |
|
|
|
uint64_t alen = ctx->len.u[0] + len; |
|
if (alen > (UINT64_C(1) << 61) || (sizeof(len) == 8 && alen < len)) { |
|
return 0; |
|
} |
|
ctx->len.u[0] = alen; |
|
|
|
unsigned n = ctx->ares; |
|
if (n) { |
|
while (n && len) { |
|
ctx->Xi.c[n] ^= *(aad++); |
|
--len; |
|
n = (n + 1) % 16; |
|
} |
|
if (n == 0) { |
|
GCM_MUL(ctx, Xi); |
|
} else { |
|
ctx->ares = n; |
|
return 1; |
|
} |
|
} |
|
|
|
// Process a whole number of blocks. |
|
size_t len_blocks = len & kSizeTWithoutLower4Bits; |
|
if (len_blocks != 0) { |
|
GHASH(ctx, aad, len_blocks); |
|
aad += len_blocks; |
|
len -= len_blocks; |
|
} |
|
|
|
// Process the remainder. |
|
if (len != 0) { |
|
n = (unsigned int)len; |
|
for (size_t i = 0; i < len; ++i) { |
|
ctx->Xi.c[i] ^= aad[i]; |
|
} |
|
} |
|
|
|
ctx->ares = n; |
|
return 1; |
|
} |
|
|
|
int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const AES_KEY *key, |
|
const uint8_t *in, uint8_t *out, size_t len) { |
|
block128_f block = ctx->gcm_key.block; |
|
#ifdef GCM_FUNCREF |
|
void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
|
ctx->gcm_key.gmult; |
|
void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
|
size_t len) = ctx->gcm_key.ghash; |
|
#endif |
|
|
|
uint64_t mlen = ctx->len.u[1] + len; |
|
if (mlen > ((UINT64_C(1) << 36) - 32) || |
|
(sizeof(len) == 8 && mlen < len)) { |
|
return 0; |
|
} |
|
ctx->len.u[1] = mlen; |
|
|
|
if (ctx->ares) { |
|
// First call to encrypt finalizes GHASH(AAD) |
|
GCM_MUL(ctx, Xi); |
|
ctx->ares = 0; |
|
} |
|
|
|
unsigned n = ctx->mres; |
|
if (n) { |
|
while (n && len) { |
|
ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; |
|
--len; |
|
n = (n + 1) % 16; |
|
} |
|
if (n == 0) { |
|
GCM_MUL(ctx, Xi); |
|
} else { |
|
ctx->mres = n; |
|
return 1; |
|
} |
|
} |
|
|
|
uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
|
while (len >= GHASH_CHUNK) { |
|
size_t j = GHASH_CHUNK; |
|
|
|
while (j) { |
|
(*block)(ctx->Yi.c, ctx->EKi.c, key); |
|
++ctr; |
|
ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
|
for (size_t i = 0; i < 16; i += sizeof(crypto_word_t)) { |
|
CRYPTO_store_word_le(out + i, |
|
CRYPTO_load_word_le(in + i) ^ |
|
ctx->EKi.t[i / sizeof(crypto_word_t)]); |
|
} |
|
out += 16; |
|
in += 16; |
|
j -= 16; |
|
} |
|
GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK); |
|
len -= GHASH_CHUNK; |
|
} |
|
size_t len_blocks = len & kSizeTWithoutLower4Bits; |
|
if (len_blocks != 0) { |
|
while (len >= 16) { |
|
(*block)(ctx->Yi.c, ctx->EKi.c, key); |
|
++ctr; |
|
ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
|
for (size_t i = 0; i < 16; i += sizeof(crypto_word_t)) { |
|
CRYPTO_store_word_le(out + i, |
|
CRYPTO_load_word_le(in + i) ^ |
|
ctx->EKi.t[i / sizeof(crypto_word_t)]); |
|
} |
|
out += 16; |
|
in += 16; |
|
len -= 16; |
|
} |
|
GHASH(ctx, out - len_blocks, len_blocks); |
|
} |
|
if (len) { |
|
(*block)(ctx->Yi.c, ctx->EKi.c, key); |
|
++ctr; |
|
ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
|
while (len--) { |
|
ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; |
|
++n; |
|
} |
|
} |
|
|
|
ctx->mres = n; |
|
return 1; |
|
} |
|
|
|
int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const AES_KEY *key, |
|
const unsigned char *in, unsigned char *out, |
|
size_t len) { |
|
block128_f block = ctx->gcm_key.block; |
|
#ifdef GCM_FUNCREF |
|
void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
|
ctx->gcm_key.gmult; |
|
void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
|
size_t len) = ctx->gcm_key.ghash; |
|
#endif |
|
|
|
uint64_t mlen = ctx->len.u[1] + len; |
|
if (mlen > ((UINT64_C(1) << 36) - 32) || |
|
(sizeof(len) == 8 && mlen < len)) { |
|
return 0; |
|
} |
|
ctx->len.u[1] = mlen; |
|
|
|
if (ctx->ares) { |
|
// First call to decrypt finalizes GHASH(AAD) |
|
GCM_MUL(ctx, Xi); |
|
ctx->ares = 0; |
|
} |
|
|
|
unsigned n = ctx->mres; |
|
if (n) { |
|
while (n && len) { |
|
uint8_t c = *(in++); |
|
*(out++) = c ^ ctx->EKi.c[n]; |
|
ctx->Xi.c[n] ^= c; |
|
--len; |
|
n = (n + 1) % 16; |
|
} |
|
if (n == 0) { |
|
GCM_MUL(ctx, Xi); |
|
} else { |
|
ctx->mres = n; |
|
return 1; |
|
} |
|
} |
|
|
|
uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
|
while (len >= GHASH_CHUNK) { |
|
size_t j = GHASH_CHUNK; |
|
|
|
GHASH(ctx, in, GHASH_CHUNK); |
|
while (j) { |
|
(*block)(ctx->Yi.c, ctx->EKi.c, key); |
|
++ctr; |
|
ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
|
for (size_t i = 0; i < 16; i += sizeof(crypto_word_t)) { |
|
CRYPTO_store_word_le(out + i, |
|
CRYPTO_load_word_le(in + i) ^ |
|
ctx->EKi.t[i / sizeof(crypto_word_t)]); |
|
} |
|
out += 16; |
|
in += 16; |
|
j -= 16; |
|
} |
|
len -= GHASH_CHUNK; |
|
} |
|
size_t len_blocks = len & kSizeTWithoutLower4Bits; |
|
if (len_blocks != 0) { |
|
GHASH(ctx, in, len_blocks); |
|
while (len >= 16) { |
|
(*block)(ctx->Yi.c, ctx->EKi.c, key); |
|
++ctr; |
|
ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
|
for (size_t i = 0; i < 16; i += sizeof(crypto_word_t)) { |
|
CRYPTO_store_word_le(out + i, |
|
CRYPTO_load_word_le(in + i) ^ |
|
ctx->EKi.t[i / sizeof(crypto_word_t)]); |
|
} |
|
out += 16; |
|
in += 16; |
|
len -= 16; |
|
} |
|
} |
|
if (len) { |
|
(*block)(ctx->Yi.c, ctx->EKi.c, key); |
|
++ctr; |
|
ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
|
while (len--) { |
|
uint8_t c = in[n]; |
|
ctx->Xi.c[n] ^= c; |
|
out[n] = c ^ ctx->EKi.c[n]; |
|
++n; |
|
} |
|
} |
|
|
|
ctx->mres = n; |
|
return 1; |
|
} |
|
|
|
int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, const AES_KEY *key, |
|
const uint8_t *in, uint8_t *out, size_t len, |
|
ctr128_f stream) { |
|
#ifdef GCM_FUNCREF |
|
void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
|
ctx->gcm_key.gmult; |
|
void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
|
size_t len) = ctx->gcm_key.ghash; |
|
#endif |
|
|
|
uint64_t mlen = ctx->len.u[1] + len; |
|
if (mlen > ((UINT64_C(1) << 36) - 32) || |
|
(sizeof(len) == 8 && mlen < len)) { |
|
return 0; |
|
} |
|
ctx->len.u[1] = mlen; |
|
|
|
if (ctx->ares) { |
|
// First call to encrypt finalizes GHASH(AAD) |
|
GCM_MUL(ctx, Xi); |
|
ctx->ares = 0; |
|
} |
|
|
|
unsigned n = ctx->mres; |
|
if (n) { |
|
while (n && len) { |
|
ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; |
|
--len; |
|
n = (n + 1) % 16; |
|
} |
|
if (n == 0) { |
|
GCM_MUL(ctx, Xi); |
|
} else { |
|
ctx->mres = n; |
|
return 1; |
|
} |
|
} |
|
|
|
#if defined(AESNI_GCM) |
|
// Check |len| to work around a C language bug. See https://crbug.com/1019588. |
|
if (ctx->gcm_key.use_aesni_gcm_crypt && len > 0) { |
|
// |aesni_gcm_encrypt| may not process all the input given to it. It may |
|
// not process *any* of its input if it is deemed too small. |
|
size_t bulk = aesni_gcm_encrypt(in, out, len, key, ctx->Yi.c, ctx->Xi.u); |
|
in += bulk; |
|
out += bulk; |
|
len -= bulk; |
|
} |
|
#endif |
|
|
|
uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
|
while (len >= GHASH_CHUNK) { |
|
(*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); |
|
ctr += GHASH_CHUNK / 16; |
|
ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
|
GHASH(ctx, out, GHASH_CHUNK); |
|
out += GHASH_CHUNK; |
|
in += GHASH_CHUNK; |
|
len -= GHASH_CHUNK; |
|
} |
|
size_t len_blocks = len & kSizeTWithoutLower4Bits; |
|
if (len_blocks != 0) { |
|
size_t j = len_blocks / 16; |
|
|
|
(*stream)(in, out, j, key, ctx->Yi.c); |
|
ctr += (unsigned int)j; |
|
ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
|
in += len_blocks; |
|
len -= len_blocks; |
|
GHASH(ctx, out, len_blocks); |
|
out += len_blocks; |
|
} |
|
if (len) { |
|
(*ctx->gcm_key.block)(ctx->Yi.c, ctx->EKi.c, key); |
|
++ctr; |
|
ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
|
while (len--) { |
|
ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; |
|
++n; |
|
} |
|
} |
|
|
|
ctx->mres = n; |
|
return 1; |
|
} |
|
|
|
int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, const AES_KEY *key, |
|
const uint8_t *in, uint8_t *out, size_t len, |
|
ctr128_f stream) { |
|
#ifdef GCM_FUNCREF |
|
void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
|
ctx->gcm_key.gmult; |
|
void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
|
size_t len) = ctx->gcm_key.ghash; |
|
#endif |
|
|
|
uint64_t mlen = ctx->len.u[1] + len; |
|
if (mlen > ((UINT64_C(1) << 36) - 32) || |
|
(sizeof(len) == 8 && mlen < len)) { |
|
return 0; |
|
} |
|
ctx->len.u[1] = mlen; |
|
|
|
if (ctx->ares) { |
|
// First call to decrypt finalizes GHASH(AAD) |
|
GCM_MUL(ctx, Xi); |
|
ctx->ares = 0; |
|
} |
|
|
|
unsigned n = ctx->mres; |
|
if (n) { |
|
while (n && len) { |
|
uint8_t c = *(in++); |
|
*(out++) = c ^ ctx->EKi.c[n]; |
|
ctx->Xi.c[n] ^= c; |
|
--len; |
|
n = (n + 1) % 16; |
|
} |
|
if (n == 0) { |
|
GCM_MUL(ctx, Xi); |
|
} else { |
|
ctx->mres = n; |
|
return 1; |
|
} |
|
} |
|
|
|
#if defined(AESNI_GCM) |
|
// Check |len| to work around a C language bug. See https://crbug.com/1019588. |
|
if (ctx->gcm_key.use_aesni_gcm_crypt && len > 0) { |
|
// |aesni_gcm_decrypt| may not process all the input given to it. It may |
|
// not process *any* of its input if it is deemed too small. |
|
size_t bulk = aesni_gcm_decrypt(in, out, len, key, ctx->Yi.c, ctx->Xi.u); |
|
in += bulk; |
|
out += bulk; |
|
len -= bulk; |
|
} |
|
#endif |
|
|
|
uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
|
while (len >= GHASH_CHUNK) { |
|
GHASH(ctx, in, GHASH_CHUNK); |
|
(*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); |
|
ctr += GHASH_CHUNK / 16; |
|
ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
|
out += GHASH_CHUNK; |
|
in += GHASH_CHUNK; |
|
len -= GHASH_CHUNK; |
|
} |
|
size_t len_blocks = len & kSizeTWithoutLower4Bits; |
|
if (len_blocks != 0) { |
|
size_t j = len_blocks / 16; |
|
|
|
GHASH(ctx, in, len_blocks); |
|
(*stream)(in, out, j, key, ctx->Yi.c); |
|
ctr += (unsigned int)j; |
|
ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
|
out += len_blocks; |
|
in += len_blocks; |
|
len -= len_blocks; |
|
} |
|
if (len) { |
|
(*ctx->gcm_key.block)(ctx->Yi.c, ctx->EKi.c, key); |
|
++ctr; |
|
ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
|
while (len--) { |
|
uint8_t c = in[n]; |
|
ctx->Xi.c[n] ^= c; |
|
out[n] = c ^ ctx->EKi.c[n]; |
|
++n; |
|
} |
|
} |
|
|
|
ctx->mres = n; |
|
return 1; |
|
} |
|
|
|
int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag, size_t len) { |
|
#ifdef GCM_FUNCREF |
|
void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
|
ctx->gcm_key.gmult; |
|
#endif |
|
|
|
if (ctx->mres || ctx->ares) { |
|
GCM_MUL(ctx, Xi); |
|
} |
|
|
|
ctx->Xi.u[0] ^= CRYPTO_bswap8(ctx->len.u[0] << 3); |
|
ctx->Xi.u[1] ^= CRYPTO_bswap8(ctx->len.u[1] << 3); |
|
GCM_MUL(ctx, Xi); |
|
|
|
ctx->Xi.u[0] ^= ctx->EK0.u[0]; |
|
ctx->Xi.u[1] ^= ctx->EK0.u[1]; |
|
|
|
if (tag && len <= sizeof(ctx->Xi)) { |
|
return CRYPTO_memcmp(ctx->Xi.c, tag, len) == 0; |
|
} else { |
|
return 0; |
|
} |
|
} |
|
|
|
void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) { |
|
CRYPTO_gcm128_finish(ctx, NULL, 0); |
|
OPENSSL_memcpy(tag, ctx->Xi.c, |
|
len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c)); |
|
} |
|
|
|
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
|
int crypto_gcm_clmul_enabled(void) { |
|
#if defined(GHASH_ASM_X86) || defined(GHASH_ASM_X86_64) |
|
return CRYPTO_is_FXSR_capable() && CRYPTO_is_PCLMUL_capable(); |
|
#else |
|
return 0; |
|
#endif |
|
} |
|
#endif
|
|
|