Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
318 lines
9.7 KiB
318 lines
9.7 KiB
/* ==================================================================== |
|
* Copyright (c) 2010 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* licensing@OpenSSL.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== */ |
|
|
|
#include <openssl/cmac.h> |
|
|
|
#include <assert.h> |
|
#include <string.h> |
|
|
|
#include <openssl/aes.h> |
|
#include <openssl/cipher.h> |
|
#include <openssl/mem.h> |
|
|
|
#include "../../internal.h" |
|
#include "../service_indicator/internal.h" |
|
|
|
|
|
struct cmac_ctx_st { |
|
EVP_CIPHER_CTX cipher_ctx; |
|
// k1 and k2 are the CMAC subkeys. See |
|
// https://tools.ietf.org/html/rfc4493#section-2.3 |
|
uint8_t k1[AES_BLOCK_SIZE]; |
|
uint8_t k2[AES_BLOCK_SIZE]; |
|
// Last (possibly partial) scratch |
|
uint8_t block[AES_BLOCK_SIZE]; |
|
// block_used contains the number of valid bytes in |block|. |
|
unsigned block_used; |
|
}; |
|
|
|
static void CMAC_CTX_init(CMAC_CTX *ctx) { |
|
EVP_CIPHER_CTX_init(&ctx->cipher_ctx); |
|
} |
|
|
|
static void CMAC_CTX_cleanup(CMAC_CTX *ctx) { |
|
EVP_CIPHER_CTX_cleanup(&ctx->cipher_ctx); |
|
OPENSSL_cleanse(ctx->k1, sizeof(ctx->k1)); |
|
OPENSSL_cleanse(ctx->k2, sizeof(ctx->k2)); |
|
OPENSSL_cleanse(ctx->block, sizeof(ctx->block)); |
|
} |
|
|
|
int AES_CMAC(uint8_t out[16], const uint8_t *key, size_t key_len, |
|
const uint8_t *in, size_t in_len) { |
|
const EVP_CIPHER *cipher; |
|
switch (key_len) { |
|
// WARNING: this code assumes that all supported key sizes are FIPS |
|
// Approved. |
|
case 16: |
|
cipher = EVP_aes_128_cbc(); |
|
break; |
|
case 32: |
|
cipher = EVP_aes_256_cbc(); |
|
break; |
|
default: |
|
return 0; |
|
} |
|
|
|
size_t scratch_out_len; |
|
CMAC_CTX ctx; |
|
CMAC_CTX_init(&ctx); |
|
|
|
// We have to verify that all the CMAC services actually succeed before |
|
// updating the indicator state, so we lock the state here. |
|
FIPS_service_indicator_lock_state(); |
|
const int ok = CMAC_Init(&ctx, key, key_len, cipher, NULL /* engine */) && |
|
CMAC_Update(&ctx, in, in_len) && |
|
CMAC_Final(&ctx, out, &scratch_out_len); |
|
FIPS_service_indicator_unlock_state(); |
|
|
|
if (ok) { |
|
FIPS_service_indicator_update_state(); |
|
} |
|
CMAC_CTX_cleanup(&ctx); |
|
return ok; |
|
} |
|
|
|
CMAC_CTX *CMAC_CTX_new(void) { |
|
CMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx)); |
|
if (ctx != NULL) { |
|
CMAC_CTX_init(ctx); |
|
} |
|
return ctx; |
|
} |
|
|
|
void CMAC_CTX_free(CMAC_CTX *ctx) { |
|
if (ctx == NULL) { |
|
return; |
|
} |
|
|
|
CMAC_CTX_cleanup(ctx); |
|
OPENSSL_free(ctx); |
|
} |
|
|
|
int CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in) { |
|
if (!EVP_CIPHER_CTX_copy(&out->cipher_ctx, &in->cipher_ctx)) { |
|
return 0; |
|
} |
|
OPENSSL_memcpy(out->k1, in->k1, AES_BLOCK_SIZE); |
|
OPENSSL_memcpy(out->k2, in->k2, AES_BLOCK_SIZE); |
|
OPENSSL_memcpy(out->block, in->block, AES_BLOCK_SIZE); |
|
out->block_used = in->block_used; |
|
return 1; |
|
} |
|
|
|
// binary_field_mul_x_128 treats the 128 bits at |in| as an element of GF(2¹²⁸) |
|
// with a hard-coded reduction polynomial and sets |out| as x times the input. |
|
// |
|
// See https://tools.ietf.org/html/rfc4493#section-2.3 |
|
static void binary_field_mul_x_128(uint8_t out[16], const uint8_t in[16]) { |
|
unsigned i; |
|
|
|
// Shift |in| to left, including carry. |
|
for (i = 0; i < 15; i++) { |
|
out[i] = (in[i] << 1) | (in[i+1] >> 7); |
|
} |
|
|
|
// If MSB set fixup with R. |
|
const uint8_t carry = in[0] >> 7; |
|
out[i] = (in[i] << 1) ^ ((0 - carry) & 0x87); |
|
} |
|
|
|
// binary_field_mul_x_64 behaves like |binary_field_mul_x_128| but acts on an |
|
// element of GF(2⁶⁴). |
|
// |
|
// See https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf |
|
static void binary_field_mul_x_64(uint8_t out[8], const uint8_t in[8]) { |
|
unsigned i; |
|
|
|
// Shift |in| to left, including carry. |
|
for (i = 0; i < 7; i++) { |
|
out[i] = (in[i] << 1) | (in[i+1] >> 7); |
|
} |
|
|
|
// If MSB set fixup with R. |
|
const uint8_t carry = in[0] >> 7; |
|
out[i] = (in[i] << 1) ^ ((0 - carry) & 0x1b); |
|
} |
|
|
|
static const uint8_t kZeroIV[AES_BLOCK_SIZE] = {0}; |
|
|
|
int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t key_len, |
|
const EVP_CIPHER *cipher, ENGINE *engine) { |
|
int ret = 0; |
|
uint8_t scratch[AES_BLOCK_SIZE]; |
|
|
|
// We have to avoid the underlying AES-CBC |EVP_CIPHER| services updating the |
|
// indicator state, so we lock the state here. |
|
FIPS_service_indicator_lock_state(); |
|
|
|
size_t block_size = EVP_CIPHER_block_size(cipher); |
|
if ((block_size != AES_BLOCK_SIZE && block_size != 8 /* 3-DES */) || |
|
EVP_CIPHER_key_length(cipher) != key_len || |
|
!EVP_EncryptInit_ex(&ctx->cipher_ctx, cipher, NULL, key, kZeroIV) || |
|
!EVP_Cipher(&ctx->cipher_ctx, scratch, kZeroIV, block_size) || |
|
// Reset context again ready for first data. |
|
!EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV)) { |
|
goto out; |
|
} |
|
|
|
if (block_size == AES_BLOCK_SIZE) { |
|
binary_field_mul_x_128(ctx->k1, scratch); |
|
binary_field_mul_x_128(ctx->k2, ctx->k1); |
|
} else { |
|
binary_field_mul_x_64(ctx->k1, scratch); |
|
binary_field_mul_x_64(ctx->k2, ctx->k1); |
|
} |
|
ctx->block_used = 0; |
|
ret = 1; |
|
|
|
out: |
|
FIPS_service_indicator_unlock_state(); |
|
return ret; |
|
} |
|
|
|
int CMAC_Reset(CMAC_CTX *ctx) { |
|
ctx->block_used = 0; |
|
return EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV); |
|
} |
|
|
|
int CMAC_Update(CMAC_CTX *ctx, const uint8_t *in, size_t in_len) { |
|
int ret = 0; |
|
|
|
// We have to avoid the underlying AES-CBC |EVP_Cipher| services updating the |
|
// indicator state, so we lock the state here. |
|
FIPS_service_indicator_lock_state(); |
|
|
|
size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx); |
|
assert(block_size <= AES_BLOCK_SIZE); |
|
uint8_t scratch[AES_BLOCK_SIZE]; |
|
|
|
if (ctx->block_used > 0) { |
|
size_t todo = block_size - ctx->block_used; |
|
if (in_len < todo) { |
|
todo = in_len; |
|
} |
|
|
|
OPENSSL_memcpy(ctx->block + ctx->block_used, in, todo); |
|
in += todo; |
|
in_len -= todo; |
|
ctx->block_used += todo; |
|
|
|
// If |in_len| is zero then either |ctx->block_used| is less than |
|
// |block_size|, in which case we can stop here, or |ctx->block_used| is |
|
// exactly |block_size| but there's no more data to process. In the latter |
|
// case we don't want to process this block now because it might be the last |
|
// block and that block is treated specially. |
|
if (in_len == 0) { |
|
ret = 1; |
|
goto out; |
|
} |
|
|
|
assert(ctx->block_used == block_size); |
|
|
|
if (!EVP_Cipher(&ctx->cipher_ctx, scratch, ctx->block, block_size)) { |
|
goto out; |
|
} |
|
} |
|
|
|
// Encrypt all but one of the remaining blocks. |
|
while (in_len > block_size) { |
|
if (!EVP_Cipher(&ctx->cipher_ctx, scratch, in, block_size)) { |
|
goto out; |
|
} |
|
in += block_size; |
|
in_len -= block_size; |
|
} |
|
|
|
OPENSSL_memcpy(ctx->block, in, in_len); |
|
ctx->block_used = in_len; |
|
ret = 1; |
|
|
|
out: |
|
FIPS_service_indicator_unlock_state(); |
|
return ret; |
|
} |
|
|
|
int CMAC_Final(CMAC_CTX *ctx, uint8_t *out, size_t *out_len) { |
|
int ret = 0; |
|
size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx); |
|
assert(block_size <= AES_BLOCK_SIZE); |
|
|
|
// We have to avoid the underlying AES-CBC |EVP_Cipher| services updating the |
|
// indicator state, so we lock the state here. |
|
FIPS_service_indicator_lock_state(); |
|
|
|
*out_len = block_size; |
|
if (out == NULL) { |
|
ret = 1; |
|
goto out; |
|
} |
|
|
|
const uint8_t *mask = ctx->k1; |
|
|
|
if (ctx->block_used != block_size) { |
|
// If the last block is incomplete, terminate it with a single 'one' bit |
|
// followed by zeros. |
|
ctx->block[ctx->block_used] = 0x80; |
|
OPENSSL_memset(ctx->block + ctx->block_used + 1, 0, |
|
block_size - (ctx->block_used + 1)); |
|
|
|
mask = ctx->k2; |
|
} |
|
|
|
for (unsigned i = 0; i < block_size; i++) { |
|
out[i] = ctx->block[i] ^ mask[i]; |
|
} |
|
ret = EVP_Cipher(&ctx->cipher_ctx, out, out, block_size); |
|
|
|
out: |
|
FIPS_service_indicator_unlock_state(); |
|
if (ret) { |
|
FIPS_service_indicator_update_state(); |
|
} |
|
return ret; |
|
}
|
|
|