Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
601 lines
21 KiB
601 lines
21 KiB
/* Copyright (c) 2014, Google Inc. |
|
* |
|
* Permission to use, copy, modify, and/or distribute this software for any |
|
* purpose with or without fee is hereby granted, provided that the above |
|
* copyright notice and this permission notice appear in all copies. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
|
|
|
#include <assert.h> |
|
#include <limits.h> |
|
#include <string.h> |
|
|
|
#include <openssl/aead.h> |
|
#include <openssl/cipher.h> |
|
#include <openssl/err.h> |
|
#include <openssl/hmac.h> |
|
#include <openssl/md5.h> |
|
#include <openssl/mem.h> |
|
#include <openssl/sha.h> |
|
#include <openssl/type_check.h> |
|
|
|
#include "../fipsmodule/cipher/internal.h" |
|
#include "../internal.h" |
|
#include "internal.h" |
|
|
|
|
|
typedef struct { |
|
EVP_CIPHER_CTX cipher_ctx; |
|
HMAC_CTX hmac_ctx; |
|
// mac_key is the portion of the key used for the MAC. It is retained |
|
// separately for the constant-time CBC code. |
|
uint8_t mac_key[EVP_MAX_MD_SIZE]; |
|
uint8_t mac_key_len; |
|
// implicit_iv is one iff this is a pre-TLS-1.1 CBC cipher without an explicit |
|
// IV. |
|
char implicit_iv; |
|
} AEAD_TLS_CTX; |
|
|
|
OPENSSL_STATIC_ASSERT(EVP_MAX_MD_SIZE < 256, |
|
"mac_key_len does not fit in uint8_t"); |
|
|
|
OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= |
|
sizeof(AEAD_TLS_CTX), |
|
"AEAD state is too small"); |
|
#if defined(__GNUC__) || defined(__clang__) |
|
OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >= |
|
alignof(AEAD_TLS_CTX), |
|
"AEAD state has insufficient alignment"); |
|
#endif |
|
|
|
static void aead_tls_cleanup(EVP_AEAD_CTX *ctx) { |
|
AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; |
|
EVP_CIPHER_CTX_cleanup(&tls_ctx->cipher_ctx); |
|
HMAC_CTX_cleanup(&tls_ctx->hmac_ctx); |
|
} |
|
|
|
static int aead_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, |
|
size_t tag_len, enum evp_aead_direction_t dir, |
|
const EVP_CIPHER *cipher, const EVP_MD *md, |
|
char implicit_iv) { |
|
if (tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH && |
|
tag_len != EVP_MD_size(md)) { |
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_TAG_SIZE); |
|
return 0; |
|
} |
|
|
|
if (key_len != EVP_AEAD_key_length(ctx->aead)) { |
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); |
|
return 0; |
|
} |
|
|
|
size_t mac_key_len = EVP_MD_size(md); |
|
size_t enc_key_len = EVP_CIPHER_key_length(cipher); |
|
assert(mac_key_len + enc_key_len + |
|
(implicit_iv ? EVP_CIPHER_iv_length(cipher) : 0) == key_len); |
|
|
|
AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; |
|
EVP_CIPHER_CTX_init(&tls_ctx->cipher_ctx); |
|
HMAC_CTX_init(&tls_ctx->hmac_ctx); |
|
assert(mac_key_len <= EVP_MAX_MD_SIZE); |
|
OPENSSL_memcpy(tls_ctx->mac_key, key, mac_key_len); |
|
tls_ctx->mac_key_len = (uint8_t)mac_key_len; |
|
tls_ctx->implicit_iv = implicit_iv; |
|
|
|
if (!EVP_CipherInit_ex(&tls_ctx->cipher_ctx, cipher, NULL, &key[mac_key_len], |
|
implicit_iv ? &key[mac_key_len + enc_key_len] : NULL, |
|
dir == evp_aead_seal) || |
|
!HMAC_Init_ex(&tls_ctx->hmac_ctx, key, mac_key_len, md, NULL)) { |
|
aead_tls_cleanup(ctx); |
|
return 0; |
|
} |
|
EVP_CIPHER_CTX_set_padding(&tls_ctx->cipher_ctx, 0); |
|
|
|
return 1; |
|
} |
|
|
|
static size_t aead_tls_tag_len(const EVP_AEAD_CTX *ctx, const size_t in_len, |
|
const size_t extra_in_len) { |
|
assert(extra_in_len == 0); |
|
const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; |
|
|
|
const size_t hmac_len = HMAC_size(&tls_ctx->hmac_ctx); |
|
if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE) { |
|
// The NULL cipher. |
|
return hmac_len; |
|
} |
|
|
|
const size_t block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx); |
|
// An overflow of |in_len + hmac_len| doesn't affect the result mod |
|
// |block_size|, provided that |block_size| is a smaller power of two. |
|
assert(block_size != 0 && (block_size & (block_size - 1)) == 0); |
|
const size_t pad_len = block_size - (in_len + hmac_len) % block_size; |
|
return hmac_len + pad_len; |
|
} |
|
|
|
static int aead_tls_seal_scatter(const EVP_AEAD_CTX *ctx, uint8_t *out, |
|
uint8_t *out_tag, size_t *out_tag_len, |
|
const size_t max_out_tag_len, |
|
const uint8_t *nonce, const size_t nonce_len, |
|
const uint8_t *in, const size_t in_len, |
|
const uint8_t *extra_in, |
|
const size_t extra_in_len, const uint8_t *ad, |
|
const size_t ad_len) { |
|
AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; |
|
|
|
if (!tls_ctx->cipher_ctx.encrypt) { |
|
// Unlike a normal AEAD, a TLS AEAD may only be used in one direction. |
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION); |
|
return 0; |
|
} |
|
|
|
if (in_len > INT_MAX) { |
|
// EVP_CIPHER takes int as input. |
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
|
return 0; |
|
} |
|
|
|
if (max_out_tag_len < aead_tls_tag_len(ctx, in_len, extra_in_len)) { |
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
|
return 0; |
|
} |
|
|
|
if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { |
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
|
return 0; |
|
} |
|
|
|
if (ad_len != 13 - 2 /* length bytes */) { |
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE); |
|
return 0; |
|
} |
|
|
|
// To allow for CBC mode which changes cipher length, |ad| doesn't include the |
|
// length for legacy ciphers. |
|
uint8_t ad_extra[2]; |
|
ad_extra[0] = (uint8_t)(in_len >> 8); |
|
ad_extra[1] = (uint8_t)(in_len & 0xff); |
|
|
|
// Compute the MAC. This must be first in case the operation is being done |
|
// in-place. |
|
uint8_t mac[EVP_MAX_MD_SIZE]; |
|
unsigned mac_len; |
|
if (!HMAC_Init_ex(&tls_ctx->hmac_ctx, NULL, 0, NULL, NULL) || |
|
!HMAC_Update(&tls_ctx->hmac_ctx, ad, ad_len) || |
|
!HMAC_Update(&tls_ctx->hmac_ctx, ad_extra, sizeof(ad_extra)) || |
|
!HMAC_Update(&tls_ctx->hmac_ctx, in, in_len) || |
|
!HMAC_Final(&tls_ctx->hmac_ctx, mac, &mac_len)) { |
|
return 0; |
|
} |
|
|
|
// Configure the explicit IV. |
|
if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && |
|
!tls_ctx->implicit_iv && |
|
!EVP_EncryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) { |
|
return 0; |
|
} |
|
|
|
// Encrypt the input. |
|
int len; |
|
if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) { |
|
return 0; |
|
} |
|
|
|
unsigned block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx); |
|
|
|
// Feed the MAC into the cipher in two steps. First complete the final partial |
|
// block from encrypting the input and split the result between |out| and |
|
// |out_tag|. Then feed the rest. |
|
|
|
const size_t early_mac_len = (block_size - (in_len % block_size)) % block_size; |
|
if (early_mac_len != 0) { |
|
assert(len + block_size - early_mac_len == in_len); |
|
uint8_t buf[EVP_MAX_BLOCK_LENGTH]; |
|
int buf_len; |
|
if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, buf, &buf_len, mac, |
|
(int)early_mac_len)) { |
|
return 0; |
|
} |
|
assert(buf_len == (int)block_size); |
|
OPENSSL_memcpy(out + len, buf, block_size - early_mac_len); |
|
OPENSSL_memcpy(out_tag, buf + block_size - early_mac_len, early_mac_len); |
|
} |
|
size_t tag_len = early_mac_len; |
|
|
|
if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out_tag + tag_len, &len, |
|
mac + tag_len, mac_len - tag_len)) { |
|
return 0; |
|
} |
|
tag_len += len; |
|
|
|
if (block_size > 1) { |
|
assert(block_size <= 256); |
|
assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE); |
|
|
|
// Compute padding and feed that into the cipher. |
|
uint8_t padding[256]; |
|
unsigned padding_len = block_size - ((in_len + mac_len) % block_size); |
|
OPENSSL_memset(padding, padding_len - 1, padding_len); |
|
if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out_tag + tag_len, &len, |
|
padding, (int)padding_len)) { |
|
return 0; |
|
} |
|
tag_len += len; |
|
} |
|
|
|
if (!EVP_EncryptFinal_ex(&tls_ctx->cipher_ctx, out_tag + tag_len, &len)) { |
|
return 0; |
|
} |
|
assert(len == 0); // Padding is explicit. |
|
assert(tag_len == aead_tls_tag_len(ctx, in_len, extra_in_len)); |
|
|
|
*out_tag_len = tag_len; |
|
return 1; |
|
} |
|
|
|
static int aead_tls_open(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len, |
|
size_t max_out_len, const uint8_t *nonce, |
|
size_t nonce_len, const uint8_t *in, size_t in_len, |
|
const uint8_t *ad, size_t ad_len) { |
|
AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; |
|
|
|
if (tls_ctx->cipher_ctx.encrypt) { |
|
// Unlike a normal AEAD, a TLS AEAD may only be used in one direction. |
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION); |
|
return 0; |
|
} |
|
|
|
if (in_len < HMAC_size(&tls_ctx->hmac_ctx)) { |
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
|
return 0; |
|
} |
|
|
|
if (max_out_len < in_len) { |
|
// This requires that the caller provide space for the MAC, even though it |
|
// will always be removed on return. |
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
|
return 0; |
|
} |
|
|
|
if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { |
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
|
return 0; |
|
} |
|
|
|
if (ad_len != 13 - 2 /* length bytes */) { |
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE); |
|
return 0; |
|
} |
|
|
|
if (in_len > INT_MAX) { |
|
// EVP_CIPHER takes int as input. |
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
|
return 0; |
|
} |
|
|
|
// Configure the explicit IV. |
|
if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && |
|
!tls_ctx->implicit_iv && |
|
!EVP_DecryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) { |
|
return 0; |
|
} |
|
|
|
// Decrypt to get the plaintext + MAC + padding. |
|
size_t total = 0; |
|
int len; |
|
if (!EVP_DecryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) { |
|
return 0; |
|
} |
|
total += len; |
|
if (!EVP_DecryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) { |
|
return 0; |
|
} |
|
total += len; |
|
assert(total == in_len); |
|
|
|
CONSTTIME_SECRET(out, total); |
|
|
|
// Remove CBC padding. Code from here on is timing-sensitive with respect to |
|
// |padding_ok| and |data_plus_mac_len| for CBC ciphers. |
|
size_t data_plus_mac_len; |
|
crypto_word_t padding_ok; |
|
if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE) { |
|
if (!EVP_tls_cbc_remove_padding( |
|
&padding_ok, &data_plus_mac_len, out, total, |
|
EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx), |
|
HMAC_size(&tls_ctx->hmac_ctx))) { |
|
// Publicly invalid. This can be rejected in non-constant time. |
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
|
return 0; |
|
} |
|
} else { |
|
padding_ok = CONSTTIME_TRUE_W; |
|
data_plus_mac_len = total; |
|
// |data_plus_mac_len| = |total| = |in_len| at this point. |in_len| has |
|
// already been checked against the MAC size at the top of the function. |
|
assert(data_plus_mac_len >= HMAC_size(&tls_ctx->hmac_ctx)); |
|
} |
|
size_t data_len = data_plus_mac_len - HMAC_size(&tls_ctx->hmac_ctx); |
|
|
|
// At this point, if the padding is valid, the first |data_plus_mac_len| bytes |
|
// after |out| are the plaintext and MAC. Otherwise, |data_plus_mac_len| is |
|
// still large enough to extract a MAC, but it will be irrelevant. |
|
|
|
// To allow for CBC mode which changes cipher length, |ad| doesn't include the |
|
// length for legacy ciphers. |
|
uint8_t ad_fixed[13]; |
|
OPENSSL_memcpy(ad_fixed, ad, 11); |
|
ad_fixed[11] = (uint8_t)(data_len >> 8); |
|
ad_fixed[12] = (uint8_t)(data_len & 0xff); |
|
ad_len += 2; |
|
|
|
// Compute the MAC and extract the one in the record. |
|
uint8_t mac[EVP_MAX_MD_SIZE]; |
|
size_t mac_len; |
|
uint8_t record_mac_tmp[EVP_MAX_MD_SIZE]; |
|
uint8_t *record_mac; |
|
if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && |
|
EVP_tls_cbc_record_digest_supported(tls_ctx->hmac_ctx.md)) { |
|
if (!EVP_tls_cbc_digest_record(tls_ctx->hmac_ctx.md, mac, &mac_len, |
|
ad_fixed, out, data_len, total, |
|
tls_ctx->mac_key, tls_ctx->mac_key_len)) { |
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
|
return 0; |
|
} |
|
assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx)); |
|
|
|
record_mac = record_mac_tmp; |
|
EVP_tls_cbc_copy_mac(record_mac, mac_len, out, data_plus_mac_len, total); |
|
} else { |
|
// We should support the constant-time path for all CBC-mode ciphers |
|
// implemented. |
|
assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE); |
|
|
|
unsigned mac_len_u; |
|
if (!HMAC_Init_ex(&tls_ctx->hmac_ctx, NULL, 0, NULL, NULL) || |
|
!HMAC_Update(&tls_ctx->hmac_ctx, ad_fixed, ad_len) || |
|
!HMAC_Update(&tls_ctx->hmac_ctx, out, data_len) || |
|
!HMAC_Final(&tls_ctx->hmac_ctx, mac, &mac_len_u)) { |
|
return 0; |
|
} |
|
mac_len = mac_len_u; |
|
|
|
assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx)); |
|
record_mac = &out[data_len]; |
|
} |
|
|
|
// Perform the MAC check and the padding check in constant-time. It should be |
|
// safe to simply perform the padding check first, but it would not be under a |
|
// different choice of MAC location on padding failure. See |
|
// EVP_tls_cbc_remove_padding. |
|
crypto_word_t good = |
|
constant_time_eq_int(CRYPTO_memcmp(record_mac, mac, mac_len), 0); |
|
good &= padding_ok; |
|
CONSTTIME_DECLASSIFY(&good, sizeof(good)); |
|
if (!good) { |
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
|
return 0; |
|
} |
|
|
|
CONSTTIME_DECLASSIFY(&data_len, sizeof(data_len)); |
|
CONSTTIME_DECLASSIFY(out, data_len); |
|
|
|
// End of timing-sensitive code. |
|
|
|
*out_len = data_len; |
|
return 1; |
|
} |
|
|
|
static int aead_aes_128_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
|
size_t key_len, size_t tag_len, |
|
enum evp_aead_direction_t dir) { |
|
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(), |
|
EVP_sha1(), 0); |
|
} |
|
|
|
static int aead_aes_128_cbc_sha1_tls_implicit_iv_init( |
|
EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, |
|
enum evp_aead_direction_t dir) { |
|
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(), |
|
EVP_sha1(), 1); |
|
} |
|
|
|
static int aead_aes_256_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
|
size_t key_len, size_t tag_len, |
|
enum evp_aead_direction_t dir) { |
|
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(), |
|
EVP_sha1(), 0); |
|
} |
|
|
|
static int aead_aes_256_cbc_sha1_tls_implicit_iv_init( |
|
EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, |
|
enum evp_aead_direction_t dir) { |
|
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(), |
|
EVP_sha1(), 1); |
|
} |
|
|
|
static int aead_des_ede3_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, |
|
const uint8_t *key, size_t key_len, |
|
size_t tag_len, |
|
enum evp_aead_direction_t dir) { |
|
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(), |
|
EVP_sha1(), 0); |
|
} |
|
|
|
static int aead_des_ede3_cbc_sha1_tls_implicit_iv_init( |
|
EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, |
|
enum evp_aead_direction_t dir) { |
|
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(), |
|
EVP_sha1(), 1); |
|
} |
|
|
|
static int aead_tls_get_iv(const EVP_AEAD_CTX *ctx, const uint8_t **out_iv, |
|
size_t *out_iv_len) { |
|
const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; |
|
const size_t iv_len = EVP_CIPHER_CTX_iv_length(&tls_ctx->cipher_ctx); |
|
if (iv_len <= 1) { |
|
return 0; |
|
} |
|
|
|
*out_iv = tls_ctx->cipher_ctx.iv; |
|
*out_iv_len = iv_len; |
|
return 1; |
|
} |
|
|
|
static int aead_null_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
|
size_t key_len, size_t tag_len, |
|
enum evp_aead_direction_t dir) { |
|
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_enc_null(), |
|
EVP_sha1(), 1 /* implicit iv */); |
|
} |
|
|
|
static const EVP_AEAD aead_aes_128_cbc_sha1_tls = { |
|
SHA_DIGEST_LENGTH + 16, // key len (SHA1 + AES128) |
|
16, // nonce len (IV) |
|
16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1) |
|
SHA_DIGEST_LENGTH, // max tag length |
|
0, // seal_scatter_supports_extra_in |
|
|
|
NULL, // init |
|
aead_aes_128_cbc_sha1_tls_init, |
|
aead_tls_cleanup, |
|
aead_tls_open, |
|
aead_tls_seal_scatter, |
|
NULL, // open_gather |
|
NULL, // get_iv |
|
aead_tls_tag_len, |
|
}; |
|
|
|
static const EVP_AEAD aead_aes_128_cbc_sha1_tls_implicit_iv = { |
|
SHA_DIGEST_LENGTH + 16 + 16, // key len (SHA1 + AES128 + IV) |
|
0, // nonce len |
|
16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1) |
|
SHA_DIGEST_LENGTH, // max tag length |
|
0, // seal_scatter_supports_extra_in |
|
|
|
NULL, // init |
|
aead_aes_128_cbc_sha1_tls_implicit_iv_init, |
|
aead_tls_cleanup, |
|
aead_tls_open, |
|
aead_tls_seal_scatter, |
|
NULL, // open_gather |
|
aead_tls_get_iv, // get_iv |
|
aead_tls_tag_len, |
|
}; |
|
|
|
static const EVP_AEAD aead_aes_256_cbc_sha1_tls = { |
|
SHA_DIGEST_LENGTH + 32, // key len (SHA1 + AES256) |
|
16, // nonce len (IV) |
|
16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1) |
|
SHA_DIGEST_LENGTH, // max tag length |
|
0, // seal_scatter_supports_extra_in |
|
|
|
NULL, // init |
|
aead_aes_256_cbc_sha1_tls_init, |
|
aead_tls_cleanup, |
|
aead_tls_open, |
|
aead_tls_seal_scatter, |
|
NULL, // open_gather |
|
NULL, // get_iv |
|
aead_tls_tag_len, |
|
}; |
|
|
|
static const EVP_AEAD aead_aes_256_cbc_sha1_tls_implicit_iv = { |
|
SHA_DIGEST_LENGTH + 32 + 16, // key len (SHA1 + AES256 + IV) |
|
0, // nonce len |
|
16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1) |
|
SHA_DIGEST_LENGTH, // max tag length |
|
0, // seal_scatter_supports_extra_in |
|
|
|
NULL, // init |
|
aead_aes_256_cbc_sha1_tls_implicit_iv_init, |
|
aead_tls_cleanup, |
|
aead_tls_open, |
|
aead_tls_seal_scatter, |
|
NULL, // open_gather |
|
aead_tls_get_iv, // get_iv |
|
aead_tls_tag_len, |
|
}; |
|
|
|
static const EVP_AEAD aead_des_ede3_cbc_sha1_tls = { |
|
SHA_DIGEST_LENGTH + 24, // key len (SHA1 + 3DES) |
|
8, // nonce len (IV) |
|
8 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1) |
|
SHA_DIGEST_LENGTH, // max tag length |
|
0, // seal_scatter_supports_extra_in |
|
|
|
NULL, // init |
|
aead_des_ede3_cbc_sha1_tls_init, |
|
aead_tls_cleanup, |
|
aead_tls_open, |
|
aead_tls_seal_scatter, |
|
NULL, // open_gather |
|
NULL, // get_iv |
|
aead_tls_tag_len, |
|
}; |
|
|
|
static const EVP_AEAD aead_des_ede3_cbc_sha1_tls_implicit_iv = { |
|
SHA_DIGEST_LENGTH + 24 + 8, // key len (SHA1 + 3DES + IV) |
|
0, // nonce len |
|
8 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1) |
|
SHA_DIGEST_LENGTH, // max tag length |
|
0, // seal_scatter_supports_extra_in |
|
|
|
NULL, // init |
|
aead_des_ede3_cbc_sha1_tls_implicit_iv_init, |
|
aead_tls_cleanup, |
|
aead_tls_open, |
|
aead_tls_seal_scatter, |
|
NULL, // open_gather |
|
aead_tls_get_iv, // get_iv |
|
aead_tls_tag_len, |
|
}; |
|
|
|
static const EVP_AEAD aead_null_sha1_tls = { |
|
SHA_DIGEST_LENGTH, // key len |
|
0, // nonce len |
|
SHA_DIGEST_LENGTH, // overhead (SHA1) |
|
SHA_DIGEST_LENGTH, // max tag length |
|
0, // seal_scatter_supports_extra_in |
|
|
|
NULL, // init |
|
aead_null_sha1_tls_init, |
|
aead_tls_cleanup, |
|
aead_tls_open, |
|
aead_tls_seal_scatter, |
|
NULL, // open_gather |
|
NULL, // get_iv |
|
aead_tls_tag_len, |
|
}; |
|
|
|
const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void) { |
|
return &aead_aes_128_cbc_sha1_tls; |
|
} |
|
|
|
const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void) { |
|
return &aead_aes_128_cbc_sha1_tls_implicit_iv; |
|
} |
|
|
|
const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void) { |
|
return &aead_aes_256_cbc_sha1_tls; |
|
} |
|
|
|
const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void) { |
|
return &aead_aes_256_cbc_sha1_tls_implicit_iv; |
|
} |
|
|
|
const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void) { |
|
return &aead_des_ede3_cbc_sha1_tls; |
|
} |
|
|
|
const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void) { |
|
return &aead_des_ede3_cbc_sha1_tls_implicit_iv; |
|
} |
|
|
|
const EVP_AEAD *EVP_aead_null_sha1_tls(void) { return &aead_null_sha1_tls; }
|
|
|