Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
555 lines
20 KiB
555 lines
20 KiB
/* Copyright (c) 2016, Google Inc. |
|
* |
|
* Permission to use, copy, modify, and/or distribute this software for any |
|
* purpose with or without fee is hereby granted, provided that the above |
|
* copyright notice and this permission notice appear in all copies. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
|
|
|
#include <limits.h> |
|
#include <stdio.h> |
|
|
|
#include <vector> |
|
|
|
#include <gtest/gtest.h> |
|
|
|
#include <openssl/asn1.h> |
|
#include <openssl/asn1t.h> |
|
#include <openssl/bytestring.h> |
|
#include <openssl/err.h> |
|
#include <openssl/mem.h> |
|
#include <openssl/obj.h> |
|
#include <openssl/span.h> |
|
#include <openssl/x509v3.h> |
|
|
|
#include "../test/test_util.h" |
|
|
|
|
|
// kTag128 is an ASN.1 structure with a universal tag with number 128. |
|
static const uint8_t kTag128[] = { |
|
0x1f, 0x81, 0x00, 0x01, 0x00, |
|
}; |
|
|
|
// kTag258 is an ASN.1 structure with a universal tag with number 258. |
|
static const uint8_t kTag258[] = { |
|
0x1f, 0x82, 0x02, 0x01, 0x00, |
|
}; |
|
|
|
static_assert(V_ASN1_NEG_INTEGER == 258, |
|
"V_ASN1_NEG_INTEGER changed. Update kTag258 to collide with it."); |
|
|
|
// kTagOverflow is an ASN.1 structure with a universal tag with number 2^35-1, |
|
// which will not fit in an int. |
|
static const uint8_t kTagOverflow[] = { |
|
0x1f, 0xff, 0xff, 0xff, 0xff, 0x7f, 0x01, 0x00, |
|
}; |
|
|
|
TEST(ASN1Test, LargeTags) { |
|
const uint8_t *p = kTag258; |
|
bssl::UniquePtr<ASN1_TYPE> obj(d2i_ASN1_TYPE(NULL, &p, sizeof(kTag258))); |
|
EXPECT_FALSE(obj) << "Parsed value with illegal tag" << obj->type; |
|
ERR_clear_error(); |
|
|
|
p = kTagOverflow; |
|
obj.reset(d2i_ASN1_TYPE(NULL, &p, sizeof(kTagOverflow))); |
|
EXPECT_FALSE(obj) << "Parsed value with tag overflow" << obj->type; |
|
ERR_clear_error(); |
|
|
|
p = kTag128; |
|
obj.reset(d2i_ASN1_TYPE(NULL, &p, sizeof(kTag128))); |
|
ASSERT_TRUE(obj); |
|
EXPECT_EQ(128, obj->type); |
|
const uint8_t kZero = 0; |
|
EXPECT_EQ(Bytes(&kZero, 1), Bytes(obj->value.asn1_string->data, |
|
obj->value.asn1_string->length)); |
|
} |
|
|
|
TEST(ASN1Test, IntegerSetting) { |
|
bssl::UniquePtr<ASN1_INTEGER> by_bn(ASN1_INTEGER_new()); |
|
bssl::UniquePtr<ASN1_INTEGER> by_long(ASN1_INTEGER_new()); |
|
bssl::UniquePtr<ASN1_INTEGER> by_uint64(ASN1_INTEGER_new()); |
|
bssl::UniquePtr<BIGNUM> bn(BN_new()); |
|
|
|
const std::vector<int64_t> kValues = { |
|
LONG_MIN, -2, -1, 0, 1, 2, 0xff, 0x100, 0xffff, 0x10000, LONG_MAX, |
|
}; |
|
for (const auto &i : kValues) { |
|
SCOPED_TRACE(i); |
|
|
|
ASSERT_EQ(1, ASN1_INTEGER_set(by_long.get(), i)); |
|
const uint64_t abs = i < 0 ? (0 - (uint64_t) i) : i; |
|
ASSERT_TRUE(BN_set_u64(bn.get(), abs)); |
|
BN_set_negative(bn.get(), i < 0); |
|
ASSERT_TRUE(BN_to_ASN1_INTEGER(bn.get(), by_bn.get())); |
|
|
|
EXPECT_EQ(0, ASN1_INTEGER_cmp(by_bn.get(), by_long.get())); |
|
|
|
if (i >= 0) { |
|
ASSERT_EQ(1, ASN1_INTEGER_set_uint64(by_uint64.get(), i)); |
|
EXPECT_EQ(0, ASN1_INTEGER_cmp(by_bn.get(), by_uint64.get())); |
|
} |
|
} |
|
} |
|
|
|
template <typename T> |
|
void TestSerialize(T obj, int (*i2d_func)(T a, uint8_t **pp), |
|
bssl::Span<const uint8_t> expected) { |
|
// Test the allocating version first. It is easiest to debug. |
|
uint8_t *ptr = nullptr; |
|
int len = i2d_func(obj, &ptr); |
|
ASSERT_GT(len, 0); |
|
EXPECT_EQ(Bytes(expected), Bytes(ptr, len)); |
|
OPENSSL_free(ptr); |
|
|
|
len = i2d_func(obj, nullptr); |
|
ASSERT_GT(len, 0); |
|
EXPECT_EQ(len, static_cast<int>(expected.size())); |
|
|
|
std::vector<uint8_t> buf(len); |
|
ptr = buf.data(); |
|
len = i2d_func(obj, &ptr); |
|
ASSERT_EQ(len, static_cast<int>(expected.size())); |
|
EXPECT_EQ(ptr, buf.data() + buf.size()); |
|
EXPECT_EQ(Bytes(expected), Bytes(buf)); |
|
} |
|
|
|
TEST(ASN1Test, SerializeObject) { |
|
static const uint8_t kDER[] = {0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, |
|
0xf7, 0x0d, 0x01, 0x01, 0x01}; |
|
const ASN1_OBJECT *obj = OBJ_nid2obj(NID_rsaEncryption); |
|
TestSerialize(obj, i2d_ASN1_OBJECT, kDER); |
|
} |
|
|
|
TEST(ASN1Test, SerializeBoolean) { |
|
static const uint8_t kTrue[] = {0x01, 0x01, 0xff}; |
|
TestSerialize(0xff, i2d_ASN1_BOOLEAN, kTrue); |
|
// Other constants are also correctly encoded as TRUE. |
|
TestSerialize(1, i2d_ASN1_BOOLEAN, kTrue); |
|
TestSerialize(0x100, i2d_ASN1_BOOLEAN, kTrue); |
|
|
|
static const uint8_t kFalse[] = {0x01, 0x01, 0x00}; |
|
TestSerialize(0x00, i2d_ASN1_BOOLEAN, kFalse); |
|
} |
|
|
|
// The templates go through a different codepath, so test them separately. |
|
TEST(ASN1Test, SerializeEmbeddedBoolean) { |
|
bssl::UniquePtr<BASIC_CONSTRAINTS> val(BASIC_CONSTRAINTS_new()); |
|
ASSERT_TRUE(val); |
|
|
|
// BasicConstraints defaults to FALSE, so the encoding should be empty. |
|
static const uint8_t kLeaf[] = {0x30, 0x00}; |
|
val->ca = 0; |
|
TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kLeaf); |
|
|
|
// TRUE should always be encoded as 0xff, independent of what value the caller |
|
// placed in the |ASN1_BOOLEAN|. |
|
static const uint8_t kCA[] = {0x30, 0x03, 0x01, 0x01, 0xff}; |
|
val->ca = 0xff; |
|
TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kCA); |
|
val->ca = 1; |
|
TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kCA); |
|
val->ca = 0x100; |
|
TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kCA); |
|
} |
|
|
|
TEST(ASN1Test, ASN1Type) { |
|
const struct { |
|
int type; |
|
std::vector<uint8_t> der; |
|
} kTests[] = { |
|
// BOOLEAN { TRUE } |
|
{V_ASN1_BOOLEAN, {0x01, 0x01, 0xff}}, |
|
// BOOLEAN { FALSE } |
|
{V_ASN1_BOOLEAN, {0x01, 0x01, 0x00}}, |
|
// OCTET_STRING { "a" } |
|
{V_ASN1_OCTET_STRING, {0x04, 0x01, 0x61}}, |
|
// BIT_STRING { `01` `00` } |
|
{V_ASN1_BIT_STRING, {0x03, 0x02, 0x01, 0x00}}, |
|
// INTEGER { -1 } |
|
{V_ASN1_INTEGER, {0x02, 0x01, 0xff}}, |
|
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.2 } |
|
{V_ASN1_OBJECT, |
|
{0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, |
|
0x09, 0x02}}, |
|
// NULL {} |
|
{V_ASN1_NULL, {0x05, 0x00}}, |
|
// SEQUENCE {} |
|
{V_ASN1_SEQUENCE, {0x30, 0x00}}, |
|
// SET {} |
|
{V_ASN1_SET, {0x31, 0x00}}, |
|
// [0] { UTF8String { "a" } } |
|
{V_ASN1_OTHER, {0xa0, 0x03, 0x0c, 0x01, 0x61}}, |
|
}; |
|
for (const auto &t : kTests) { |
|
SCOPED_TRACE(Bytes(t.der)); |
|
|
|
// The input should successfully parse. |
|
const uint8_t *ptr = t.der.data(); |
|
bssl::UniquePtr<ASN1_TYPE> val(d2i_ASN1_TYPE(nullptr, &ptr, t.der.size())); |
|
ASSERT_TRUE(val); |
|
|
|
EXPECT_EQ(ASN1_TYPE_get(val.get()), t.type); |
|
EXPECT_EQ(val->type, t.type); |
|
TestSerialize(val.get(), i2d_ASN1_TYPE, t.der); |
|
} |
|
} |
|
|
|
// Test that reading |value.ptr| from a FALSE |ASN1_TYPE| behaves correctly. The |
|
// type historically supported this, so maintain the invariant in case external |
|
// code relies on it. |
|
TEST(ASN1Test, UnusedBooleanBits) { |
|
// OCTET_STRING { "a" } |
|
static const uint8_t kDER[] = {0x04, 0x01, 0x61}; |
|
const uint8_t *ptr = kDER; |
|
bssl::UniquePtr<ASN1_TYPE> val(d2i_ASN1_TYPE(nullptr, &ptr, sizeof(kDER))); |
|
ASSERT_TRUE(val); |
|
EXPECT_EQ(V_ASN1_OCTET_STRING, val->type); |
|
EXPECT_TRUE(val->value.ptr); |
|
|
|
// Set |val| to a BOOLEAN containing FALSE. |
|
ASN1_TYPE_set(val.get(), V_ASN1_BOOLEAN, NULL); |
|
EXPECT_EQ(V_ASN1_BOOLEAN, val->type); |
|
EXPECT_FALSE(val->value.ptr); |
|
} |
|
|
|
TEST(ASN1Test, ASN1ObjectReuse) { |
|
// 1.2.840.113554.4.1.72585.2, an arbitrary unknown OID. |
|
static const uint8_t kOID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, |
|
0x04, 0x01, 0x84, 0xb7, 0x09, 0x02}; |
|
ASN1_OBJECT *obj = ASN1_OBJECT_create(NID_undef, kOID, sizeof(kOID), |
|
"short name", "long name"); |
|
ASSERT_TRUE(obj); |
|
|
|
// OBJECT_IDENTIFIER { 1.3.101.112 } |
|
static const uint8_t kDER[] = {0x06, 0x03, 0x2b, 0x65, 0x70}; |
|
const uint8_t *ptr = kDER; |
|
EXPECT_TRUE(d2i_ASN1_OBJECT(&obj, &ptr, sizeof(kDER))); |
|
EXPECT_EQ(NID_ED25519, OBJ_obj2nid(obj)); |
|
ASN1_OBJECT_free(obj); |
|
|
|
// Repeat the test, this time overriding a static |ASN1_OBJECT|. |
|
obj = OBJ_nid2obj(NID_rsaEncryption); |
|
ptr = kDER; |
|
EXPECT_TRUE(d2i_ASN1_OBJECT(&obj, &ptr, sizeof(kDER))); |
|
EXPECT_EQ(NID_ED25519, OBJ_obj2nid(obj)); |
|
ASN1_OBJECT_free(obj); |
|
} |
|
|
|
TEST(ASN1Test, BitString) { |
|
const size_t kNotWholeBytes = static_cast<size_t>(-1); |
|
const struct { |
|
std::vector<uint8_t> in; |
|
size_t num_bytes; |
|
} kValidInputs[] = { |
|
// Empty bit string |
|
{{0x03, 0x01, 0x00}, 0}, |
|
// 0b1 |
|
{{0x03, 0x02, 0x07, 0x80}, kNotWholeBytes}, |
|
// 0b1010 |
|
{{0x03, 0x02, 0x04, 0xa0}, kNotWholeBytes}, |
|
// 0b1010101 |
|
{{0x03, 0x02, 0x01, 0xaa}, kNotWholeBytes}, |
|
// 0b10101010 |
|
{{0x03, 0x02, 0x00, 0xaa}, 1}, |
|
// Bits 0 and 63 are set |
|
{{0x03, 0x09, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, 8}, |
|
// 64 zero bits |
|
{{0x03, 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 8}, |
|
}; |
|
for (const auto &test : kValidInputs) { |
|
SCOPED_TRACE(Bytes(test.in)); |
|
// The input should parse and round-trip correctly. |
|
const uint8_t *ptr = test.in.data(); |
|
bssl::UniquePtr<ASN1_BIT_STRING> val( |
|
d2i_ASN1_BIT_STRING(nullptr, &ptr, test.in.size())); |
|
ASSERT_TRUE(val); |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, test.in); |
|
|
|
// Check the byte count. |
|
size_t num_bytes; |
|
if (test.num_bytes == kNotWholeBytes) { |
|
EXPECT_FALSE(ASN1_BIT_STRING_num_bytes(val.get(), &num_bytes)); |
|
} else { |
|
ASSERT_TRUE(ASN1_BIT_STRING_num_bytes(val.get(), &num_bytes)); |
|
EXPECT_EQ(num_bytes, test.num_bytes); |
|
} |
|
} |
|
|
|
const std::vector<uint8_t> kInvalidInputs[] = { |
|
// Wrong tag |
|
{0x04, 0x01, 0x00}, |
|
// Missing leading byte |
|
{0x03, 0x00}, |
|
// Leading byte too high |
|
{0x03, 0x02, 0x08, 0x00}, |
|
{0x03, 0x02, 0xff, 0x00}, |
|
// TODO(https://crbug.com/boringssl/354): Reject these inputs. |
|
// Empty bit strings must have a zero leading byte. |
|
// {0x03, 0x01, 0x01}, |
|
// Unused bits must all be zero. |
|
// {0x03, 0x02, 0x06, 0xc1 /* 0b11000001 */}, |
|
}; |
|
for (const auto &test : kInvalidInputs) { |
|
SCOPED_TRACE(Bytes(test)); |
|
const uint8_t *ptr = test.data(); |
|
bssl::UniquePtr<ASN1_BIT_STRING> val( |
|
d2i_ASN1_BIT_STRING(nullptr, &ptr, test.size())); |
|
EXPECT_FALSE(val); |
|
} |
|
} |
|
|
|
TEST(ASN1Test, SetBit) { |
|
bssl::UniquePtr<ASN1_BIT_STRING> val(ASN1_BIT_STRING_new()); |
|
ASSERT_TRUE(val); |
|
static const uint8_t kBitStringEmpty[] = {0x03, 0x01, 0x00}; |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringEmpty); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 100)); |
|
|
|
// Set a few bits via |ASN1_BIT_STRING_set_bit|. |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 0, 1)); |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 1, 1)); |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 2, 0)); |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 3, 1)); |
|
static const uint8_t kBitString1101[] = {0x03, 0x02, 0x04, 0xd0}; |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1101); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 1)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 2)); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 3)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 4)); |
|
|
|
// Bits that were set may be cleared. |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 1, 0)); |
|
static const uint8_t kBitString1001[] = {0x03, 0x02, 0x04, 0x90}; |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1001); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 1)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 2)); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 3)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 4)); |
|
|
|
// Clearing trailing bits truncates the string. |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 3, 0)); |
|
static const uint8_t kBitString1[] = {0x03, 0x02, 0x07, 0x80}; |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 1)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 2)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 3)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 4)); |
|
|
|
// Bits may be set beyond the end of the string. |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 63, 1)); |
|
static const uint8_t kBitStringLong[] = {0x03, 0x09, 0x00, 0x80, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x01}; |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringLong); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62)); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 63)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64)); |
|
|
|
// The string can be truncated back down again. |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 63, 0)); |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 63)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64)); |
|
|
|
// |ASN1_BIT_STRING_set_bit| also truncates when starting from a parsed |
|
// string. |
|
const uint8_t *ptr = kBitStringLong; |
|
val.reset(d2i_ASN1_BIT_STRING(nullptr, &ptr, sizeof(kBitStringLong))); |
|
ASSERT_TRUE(val); |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringLong); |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 63, 0)); |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 63)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64)); |
|
|
|
// A parsed bit string preserves trailing zero bits. |
|
static const uint8_t kBitString10010[] = {0x03, 0x02, 0x03, 0x90}; |
|
ptr = kBitString10010; |
|
val.reset(d2i_ASN1_BIT_STRING(nullptr, &ptr, sizeof(kBitString10010))); |
|
ASSERT_TRUE(val); |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString10010); |
|
// But |ASN1_BIT_STRING_set_bit| will truncate it even if otherwise a no-op. |
|
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 0, 1)); |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1001); |
|
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 63)); |
|
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64)); |
|
|
|
// By default, a BIT STRING implicitly truncates trailing zeros. |
|
val.reset(ASN1_BIT_STRING_new()); |
|
ASSERT_TRUE(val); |
|
static const uint8_t kZeros[64] = {0}; |
|
ASSERT_TRUE(ASN1_STRING_set(val.get(), kZeros, sizeof(kZeros))); |
|
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringEmpty); |
|
} |
|
|
|
TEST(ASN1Test, StringToUTF8) { |
|
static const struct { |
|
std::vector<uint8_t> in; |
|
int type; |
|
const char *expected; |
|
} kTests[] = { |
|
// Non-minimal, two-byte UTF-8. |
|
{{0xc0, 0x81}, V_ASN1_UTF8STRING, nullptr}, |
|
// Non-minimal, three-byte UTF-8. |
|
{{0xe0, 0x80, 0x81}, V_ASN1_UTF8STRING, nullptr}, |
|
// Non-minimal, four-byte UTF-8. |
|
{{0xf0, 0x80, 0x80, 0x81}, V_ASN1_UTF8STRING, nullptr}, |
|
// Truncated, four-byte UTF-8. |
|
{{0xf0, 0x80, 0x80}, V_ASN1_UTF8STRING, nullptr}, |
|
// Low-surrogate value. |
|
{{0xed, 0xa0, 0x80}, V_ASN1_UTF8STRING, nullptr}, |
|
// High-surrogate value. |
|
{{0xed, 0xb0, 0x81}, V_ASN1_UTF8STRING, nullptr}, |
|
// Initial BOMs should be rejected from UCS-2 and UCS-4. |
|
{{0xfe, 0xff, 0, 88}, V_ASN1_BMPSTRING, nullptr}, |
|
{{0, 0, 0xfe, 0xff, 0, 0, 0, 88}, V_ASN1_UNIVERSALSTRING, nullptr}, |
|
// Otherwise, BOMs should pass through. |
|
{{0, 88, 0xfe, 0xff}, V_ASN1_BMPSTRING, "X\xef\xbb\xbf"}, |
|
{{0, 0, 0, 88, 0, 0, 0xfe, 0xff}, V_ASN1_UNIVERSALSTRING, |
|
"X\xef\xbb\xbf"}, |
|
// The maximum code-point should pass though. |
|
{{0, 16, 0xff, 0xfd}, V_ASN1_UNIVERSALSTRING, "\xf4\x8f\xbf\xbd"}, |
|
// Values outside the Unicode space should not. |
|
{{0, 17, 0, 0}, V_ASN1_UNIVERSALSTRING, nullptr}, |
|
// Non-characters should be rejected. |
|
{{0, 1, 0xff, 0xff}, V_ASN1_UNIVERSALSTRING, nullptr}, |
|
{{0, 1, 0xff, 0xfe}, V_ASN1_UNIVERSALSTRING, nullptr}, |
|
{{0, 0, 0xfd, 0xd5}, V_ASN1_UNIVERSALSTRING, nullptr}, |
|
// BMPString is UCS-2, not UTF-16, so surrogate pairs are invalid. |
|
{{0xd8, 0, 0xdc, 1}, V_ASN1_BMPSTRING, nullptr}, |
|
}; |
|
|
|
for (const auto &test : kTests) { |
|
SCOPED_TRACE(Bytes(test.in)); |
|
SCOPED_TRACE(test.type); |
|
bssl::UniquePtr<ASN1_STRING> s(ASN1_STRING_type_new(test.type)); |
|
ASSERT_TRUE(s); |
|
ASSERT_TRUE(ASN1_STRING_set(s.get(), test.in.data(), test.in.size())); |
|
|
|
uint8_t *utf8; |
|
const int utf8_len = ASN1_STRING_to_UTF8(&utf8, s.get()); |
|
EXPECT_EQ(utf8_len < 0, test.expected == nullptr); |
|
if (utf8_len >= 0) { |
|
if (test.expected != nullptr) { |
|
EXPECT_EQ(Bytes(test.expected), Bytes(utf8, utf8_len)); |
|
} |
|
OPENSSL_free(utf8); |
|
} else { |
|
ERR_clear_error(); |
|
} |
|
} |
|
} |
|
|
|
// The ASN.1 macros do not work on Windows shared library builds, where usage of |
|
// |OPENSSL_EXPORT| is a bit stricter. |
|
#if !defined(OPENSSL_WINDOWS) || !defined(BORINGSSL_SHARED_LIBRARY) |
|
|
|
typedef struct asn1_linked_list_st { |
|
struct asn1_linked_list_st *next; |
|
} ASN1_LINKED_LIST; |
|
|
|
DECLARE_ASN1_ITEM(ASN1_LINKED_LIST) |
|
DECLARE_ASN1_FUNCTIONS(ASN1_LINKED_LIST) |
|
|
|
ASN1_SEQUENCE(ASN1_LINKED_LIST) = { |
|
ASN1_OPT(ASN1_LINKED_LIST, next, ASN1_LINKED_LIST), |
|
} ASN1_SEQUENCE_END(ASN1_LINKED_LIST) |
|
|
|
IMPLEMENT_ASN1_FUNCTIONS(ASN1_LINKED_LIST) |
|
|
|
static bool MakeLinkedList(bssl::UniquePtr<uint8_t> *out, size_t *out_len, |
|
size_t count) { |
|
bssl::ScopedCBB cbb; |
|
std::vector<CBB> cbbs(count); |
|
if (!CBB_init(cbb.get(), 2 * count) || |
|
!CBB_add_asn1(cbb.get(), &cbbs[0], CBS_ASN1_SEQUENCE)) { |
|
return false; |
|
} |
|
for (size_t i = 1; i < count; i++) { |
|
if (!CBB_add_asn1(&cbbs[i - 1], &cbbs[i], CBS_ASN1_SEQUENCE)) { |
|
return false; |
|
} |
|
} |
|
uint8_t *ptr; |
|
if (!CBB_finish(cbb.get(), &ptr, out_len)) { |
|
return false; |
|
} |
|
out->reset(ptr); |
|
return true; |
|
} |
|
|
|
TEST(ASN1Test, Recursive) { |
|
bssl::UniquePtr<uint8_t> data; |
|
size_t len; |
|
|
|
// Sanity-check that MakeLinkedList can be parsed. |
|
ASSERT_TRUE(MakeLinkedList(&data, &len, 5)); |
|
const uint8_t *ptr = data.get(); |
|
ASN1_LINKED_LIST *list = d2i_ASN1_LINKED_LIST(nullptr, &ptr, len); |
|
EXPECT_TRUE(list); |
|
ASN1_LINKED_LIST_free(list); |
|
|
|
// Excessively deep structures are rejected. |
|
ASSERT_TRUE(MakeLinkedList(&data, &len, 100)); |
|
ptr = data.get(); |
|
list = d2i_ASN1_LINKED_LIST(nullptr, &ptr, len); |
|
EXPECT_FALSE(list); |
|
// Note checking the error queue here does not work. The error "stack trace" |
|
// is too deep, so the |ASN1_R_NESTED_TOO_DEEP| entry drops off the queue. |
|
ASN1_LINKED_LIST_free(list); |
|
} |
|
|
|
struct IMPLICIT_CHOICE { |
|
ASN1_STRING *string; |
|
}; |
|
|
|
// clang-format off |
|
DECLARE_ASN1_FUNCTIONS(IMPLICIT_CHOICE) |
|
|
|
ASN1_SEQUENCE(IMPLICIT_CHOICE) = { |
|
ASN1_IMP(IMPLICIT_CHOICE, string, DIRECTORYSTRING, 0) |
|
} ASN1_SEQUENCE_END(IMPLICIT_CHOICE) |
|
|
|
IMPLEMENT_ASN1_FUNCTIONS(IMPLICIT_CHOICE) |
|
// clang-format on |
|
|
|
// Test that the ASN.1 templates reject types with implicitly-tagged CHOICE |
|
// types. |
|
TEST(ASN1Test, ImplicitChoice) { |
|
// Serializing a type with an implicitly tagged CHOICE should fail. |
|
std::unique_ptr<IMPLICIT_CHOICE, decltype(&IMPLICIT_CHOICE_free)> obj( |
|
IMPLICIT_CHOICE_new(), IMPLICIT_CHOICE_free); |
|
EXPECT_EQ(-1, i2d_IMPLICIT_CHOICE(obj.get(), nullptr)); |
|
|
|
// An implicitly-tagged CHOICE is an error. Depending on the implementation, |
|
// it may be misinterpreted as without the tag, or as clobbering the CHOICE |
|
// tag. Test both inputs and ensure they fail. |
|
|
|
// SEQUENCE { UTF8String {} } |
|
static const uint8_t kInput1[] = {0x30, 0x02, 0x0c, 0x00}; |
|
const uint8_t *ptr = kInput1; |
|
EXPECT_EQ(nullptr, d2i_IMPLICIT_CHOICE(nullptr, &ptr, sizeof(kInput1))); |
|
|
|
// SEQUENCE { [0 PRIMITIVE] {} } |
|
static const uint8_t kInput2[] = {0x30, 0x02, 0x80, 0x00}; |
|
ptr = kInput2; |
|
EXPECT_EQ(nullptr, d2i_IMPLICIT_CHOICE(nullptr, &ptr, sizeof(kInput2))); |
|
} |
|
|
|
#endif // !WINDOWS || !SHARED_LIBRARY
|
|
|