Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
530 lines
17 KiB
530 lines
17 KiB
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
|
* project 1999. |
|
*/ |
|
/* ==================================================================== |
|
* Copyright (c) 1999 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* licensing@OpenSSL.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). */ |
|
|
|
#include <openssl/pkcs8.h> |
|
|
|
#include <assert.h> |
|
#include <limits.h> |
|
#include <string.h> |
|
|
|
#include <openssl/bytestring.h> |
|
#include <openssl/cipher.h> |
|
#include <openssl/digest.h> |
|
#include <openssl/err.h> |
|
#include <openssl/mem.h> |
|
#include <openssl/nid.h> |
|
#include <openssl/rand.h> |
|
|
|
#include "internal.h" |
|
#include "../bytestring/internal.h" |
|
#include "../internal.h" |
|
|
|
|
|
static int pkcs12_encode_password(const char *in, size_t in_len, uint8_t **out, |
|
size_t *out_len) { |
|
CBB cbb; |
|
if (!CBB_init(&cbb, in_len * 2)) { |
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); |
|
return 0; |
|
} |
|
|
|
// Convert the password to BMPString, or UCS-2. See |
|
// https://tools.ietf.org/html/rfc7292#appendix-B.1. |
|
CBS cbs; |
|
CBS_init(&cbs, (const uint8_t *)in, in_len); |
|
while (CBS_len(&cbs) != 0) { |
|
uint32_t c; |
|
if (!cbs_get_utf8(&cbs, &c) || |
|
!cbb_add_ucs2_be(&cbb, c)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS); |
|
goto err; |
|
} |
|
} |
|
|
|
// Terminate the result with a UCS-2 NUL. |
|
if (!cbb_add_ucs2_be(&cbb, 0) || |
|
!CBB_finish(&cbb, out, out_len)) { |
|
goto err; |
|
} |
|
|
|
return 1; |
|
|
|
err: |
|
CBB_cleanup(&cbb); |
|
return 0; |
|
} |
|
|
|
int pkcs12_key_gen(const char *pass, size_t pass_len, const uint8_t *salt, |
|
size_t salt_len, uint8_t id, unsigned iterations, |
|
size_t out_len, uint8_t *out, const EVP_MD *md) { |
|
// See https://tools.ietf.org/html/rfc7292#appendix-B. Quoted parts of the |
|
// specification have errata applied and other typos fixed. |
|
|
|
if (iterations < 1) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); |
|
return 0; |
|
} |
|
|
|
int ret = 0; |
|
EVP_MD_CTX ctx; |
|
EVP_MD_CTX_init(&ctx); |
|
uint8_t *pass_raw = NULL, *I = NULL; |
|
size_t pass_raw_len = 0, I_len = 0; |
|
// If |pass| is NULL, we use the empty string rather than {0, 0} as the raw |
|
// password. |
|
if (pass != NULL && |
|
!pkcs12_encode_password(pass, pass_len, &pass_raw, &pass_raw_len)) { |
|
goto err; |
|
} |
|
|
|
// In the spec, |block_size| is called "v", but measured in bits. |
|
size_t block_size = EVP_MD_block_size(md); |
|
|
|
// 1. Construct a string, D (the "diversifier"), by concatenating v/8 copies |
|
// of ID. |
|
uint8_t D[EVP_MAX_MD_BLOCK_SIZE]; |
|
OPENSSL_memset(D, id, block_size); |
|
|
|
// 2. Concatenate copies of the salt together to create a string S of length |
|
// v(ceiling(s/v)) bits (the final copy of the salt may be truncated to |
|
// create S). Note that if the salt is the empty string, then so is S. |
|
// |
|
// 3. Concatenate copies of the password together to create a string P of |
|
// length v(ceiling(p/v)) bits (the final copy of the password may be |
|
// truncated to create P). Note that if the password is the empty string, |
|
// then so is P. |
|
// |
|
// 4. Set I=S||P to be the concatenation of S and P. |
|
if (salt_len + block_size - 1 < salt_len || |
|
pass_raw_len + block_size - 1 < pass_raw_len) { |
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); |
|
goto err; |
|
} |
|
size_t S_len = block_size * ((salt_len + block_size - 1) / block_size); |
|
size_t P_len = block_size * ((pass_raw_len + block_size - 1) / block_size); |
|
I_len = S_len + P_len; |
|
if (I_len < S_len) { |
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); |
|
goto err; |
|
} |
|
|
|
I = OPENSSL_malloc(I_len); |
|
if (I_len != 0 && I == NULL) { |
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); |
|
goto err; |
|
} |
|
|
|
for (size_t i = 0; i < S_len; i++) { |
|
I[i] = salt[i % salt_len]; |
|
} |
|
for (size_t i = 0; i < P_len; i++) { |
|
I[i + S_len] = pass_raw[i % pass_raw_len]; |
|
} |
|
|
|
while (out_len != 0) { |
|
// A. Set A_i=H^r(D||I). (i.e., the r-th hash of D||I, |
|
// H(H(H(... H(D||I)))) |
|
uint8_t A[EVP_MAX_MD_SIZE]; |
|
unsigned A_len; |
|
if (!EVP_DigestInit_ex(&ctx, md, NULL) || |
|
!EVP_DigestUpdate(&ctx, D, block_size) || |
|
!EVP_DigestUpdate(&ctx, I, I_len) || |
|
!EVP_DigestFinal_ex(&ctx, A, &A_len)) { |
|
goto err; |
|
} |
|
for (unsigned iter = 1; iter < iterations; iter++) { |
|
if (!EVP_DigestInit_ex(&ctx, md, NULL) || |
|
!EVP_DigestUpdate(&ctx, A, A_len) || |
|
!EVP_DigestFinal_ex(&ctx, A, &A_len)) { |
|
goto err; |
|
} |
|
} |
|
|
|
size_t todo = out_len < A_len ? out_len : A_len; |
|
OPENSSL_memcpy(out, A, todo); |
|
out += todo; |
|
out_len -= todo; |
|
if (out_len == 0) { |
|
break; |
|
} |
|
|
|
// B. Concatenate copies of A_i to create a string B of length v bits (the |
|
// final copy of A_i may be truncated to create B). |
|
uint8_t B[EVP_MAX_MD_BLOCK_SIZE]; |
|
for (size_t i = 0; i < block_size; i++) { |
|
B[i] = A[i % A_len]; |
|
} |
|
|
|
// C. Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit blocks, |
|
// where k=ceiling(s/v)+ceiling(p/v), modify I by setting I_j=(I_j+B+1) mod |
|
// 2^v for each j. |
|
assert(I_len % block_size == 0); |
|
for (size_t i = 0; i < I_len; i += block_size) { |
|
unsigned carry = 1; |
|
for (size_t j = block_size - 1; j < block_size; j--) { |
|
carry += I[i + j] + B[j]; |
|
I[i + j] = (uint8_t)carry; |
|
carry >>= 8; |
|
} |
|
} |
|
} |
|
|
|
ret = 1; |
|
|
|
err: |
|
OPENSSL_free(I); |
|
OPENSSL_free(pass_raw); |
|
EVP_MD_CTX_cleanup(&ctx); |
|
return ret; |
|
} |
|
|
|
static int pkcs12_pbe_cipher_init(const struct pbe_suite *suite, |
|
EVP_CIPHER_CTX *ctx, unsigned iterations, |
|
const char *pass, size_t pass_len, |
|
const uint8_t *salt, size_t salt_len, |
|
int is_encrypt) { |
|
const EVP_CIPHER *cipher = suite->cipher_func(); |
|
const EVP_MD *md = suite->md_func(); |
|
|
|
uint8_t key[EVP_MAX_KEY_LENGTH]; |
|
uint8_t iv[EVP_MAX_IV_LENGTH]; |
|
if (!pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_KEY_ID, iterations, |
|
EVP_CIPHER_key_length(cipher), key, md) || |
|
!pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_IV_ID, iterations, |
|
EVP_CIPHER_iv_length(cipher), iv, md)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEY_GEN_ERROR); |
|
return 0; |
|
} |
|
|
|
int ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, is_encrypt); |
|
OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); |
|
OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH); |
|
return ret; |
|
} |
|
|
|
static int pkcs12_pbe_decrypt_init(const struct pbe_suite *suite, |
|
EVP_CIPHER_CTX *ctx, const char *pass, |
|
size_t pass_len, CBS *param) { |
|
CBS pbe_param, salt; |
|
uint64_t iterations; |
|
if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) || |
|
!CBS_get_asn1(&pbe_param, &salt, CBS_ASN1_OCTETSTRING) || |
|
!CBS_get_asn1_uint64(&pbe_param, &iterations) || |
|
CBS_len(&pbe_param) != 0 || |
|
CBS_len(param) != 0) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
|
return 0; |
|
} |
|
|
|
if (!pkcs12_iterations_acceptable(iterations)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); |
|
return 0; |
|
} |
|
|
|
return pkcs12_pbe_cipher_init(suite, ctx, (unsigned)iterations, pass, |
|
pass_len, CBS_data(&salt), CBS_len(&salt), |
|
0 /* decrypt */); |
|
} |
|
|
|
static const struct pbe_suite kBuiltinPBE[] = { |
|
{ |
|
NID_pbe_WithSHA1And40BitRC2_CBC, |
|
// 1.2.840.113549.1.12.1.6 |
|
{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x06}, |
|
10, |
|
EVP_rc2_40_cbc, |
|
EVP_sha1, |
|
pkcs12_pbe_decrypt_init, |
|
}, |
|
{ |
|
NID_pbe_WithSHA1And128BitRC4, |
|
// 1.2.840.113549.1.12.1.1 |
|
{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x01}, |
|
10, |
|
EVP_rc4, |
|
EVP_sha1, |
|
pkcs12_pbe_decrypt_init, |
|
}, |
|
{ |
|
NID_pbe_WithSHA1And3_Key_TripleDES_CBC, |
|
// 1.2.840.113549.1.12.1.3 |
|
{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x03}, |
|
10, |
|
EVP_des_ede3_cbc, |
|
EVP_sha1, |
|
pkcs12_pbe_decrypt_init, |
|
}, |
|
{ |
|
NID_pbes2, |
|
// 1.2.840.113549.1.5.13 |
|
{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x05, 0x0d}, |
|
9, |
|
NULL, |
|
NULL, |
|
PKCS5_pbe2_decrypt_init, |
|
}, |
|
}; |
|
|
|
static const struct pbe_suite *get_pkcs12_pbe_suite(int pbe_nid) { |
|
for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) { |
|
if (kBuiltinPBE[i].pbe_nid == pbe_nid && |
|
// If |cipher_func| or |md_func| are missing, this is a PBES2 scheme. |
|
kBuiltinPBE[i].cipher_func != NULL && |
|
kBuiltinPBE[i].md_func != NULL) { |
|
return &kBuiltinPBE[i]; |
|
} |
|
} |
|
|
|
return NULL; |
|
} |
|
|
|
int pkcs12_pbe_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx, int alg, |
|
unsigned iterations, const char *pass, |
|
size_t pass_len, const uint8_t *salt, |
|
size_t salt_len) { |
|
const struct pbe_suite *suite = get_pkcs12_pbe_suite(alg); |
|
if (suite == NULL) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM); |
|
return 0; |
|
} |
|
|
|
// See RFC 2898, appendix A.3. |
|
CBB algorithm, oid, param, salt_cbb; |
|
if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) || |
|
!CBB_add_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) || |
|
!CBB_add_bytes(&oid, suite->oid, suite->oid_len) || |
|
!CBB_add_asn1(&algorithm, ¶m, CBS_ASN1_SEQUENCE) || |
|
!CBB_add_asn1(¶m, &salt_cbb, CBS_ASN1_OCTETSTRING) || |
|
!CBB_add_bytes(&salt_cbb, salt, salt_len) || |
|
!CBB_add_asn1_uint64(¶m, iterations) || |
|
!CBB_flush(out)) { |
|
return 0; |
|
} |
|
|
|
return pkcs12_pbe_cipher_init(suite, ctx, iterations, pass, pass_len, salt, |
|
salt_len, 1 /* encrypt */); |
|
} |
|
|
|
int pkcs8_pbe_decrypt(uint8_t **out, size_t *out_len, CBS *algorithm, |
|
const char *pass, size_t pass_len, const uint8_t *in, |
|
size_t in_len) { |
|
int ret = 0; |
|
uint8_t *buf = NULL;; |
|
EVP_CIPHER_CTX ctx; |
|
EVP_CIPHER_CTX_init(&ctx); |
|
|
|
CBS obj; |
|
if (!CBS_get_asn1(algorithm, &obj, CBS_ASN1_OBJECT)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
|
goto err; |
|
} |
|
|
|
const struct pbe_suite *suite = NULL; |
|
for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) { |
|
if (CBS_mem_equal(&obj, kBuiltinPBE[i].oid, kBuiltinPBE[i].oid_len)) { |
|
suite = &kBuiltinPBE[i]; |
|
break; |
|
} |
|
} |
|
if (suite == NULL) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM); |
|
goto err; |
|
} |
|
|
|
if (!suite->decrypt_init(suite, &ctx, pass, pass_len, algorithm)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEYGEN_FAILURE); |
|
goto err; |
|
} |
|
|
|
buf = OPENSSL_malloc(in_len); |
|
if (buf == NULL) { |
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); |
|
goto err; |
|
} |
|
|
|
if (in_len > INT_MAX) { |
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); |
|
goto err; |
|
} |
|
|
|
int n1, n2; |
|
if (!EVP_DecryptUpdate(&ctx, buf, &n1, in, (int)in_len) || |
|
!EVP_DecryptFinal_ex(&ctx, buf + n1, &n2)) { |
|
goto err; |
|
} |
|
|
|
*out = buf; |
|
*out_len = n1 + n2; |
|
ret = 1; |
|
buf = NULL; |
|
|
|
err: |
|
OPENSSL_free(buf); |
|
EVP_CIPHER_CTX_cleanup(&ctx); |
|
return ret; |
|
} |
|
|
|
EVP_PKEY *PKCS8_parse_encrypted_private_key(CBS *cbs, const char *pass, |
|
size_t pass_len) { |
|
// See RFC 5208, section 6. |
|
CBS epki, algorithm, ciphertext; |
|
if (!CBS_get_asn1(cbs, &epki, CBS_ASN1_SEQUENCE) || |
|
!CBS_get_asn1(&epki, &algorithm, CBS_ASN1_SEQUENCE) || |
|
!CBS_get_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) || |
|
CBS_len(&epki) != 0) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
|
return 0; |
|
} |
|
|
|
uint8_t *out; |
|
size_t out_len; |
|
if (!pkcs8_pbe_decrypt(&out, &out_len, &algorithm, pass, pass_len, |
|
CBS_data(&ciphertext), CBS_len(&ciphertext))) { |
|
return 0; |
|
} |
|
|
|
CBS pki; |
|
CBS_init(&pki, out, out_len); |
|
EVP_PKEY *ret = EVP_parse_private_key(&pki); |
|
OPENSSL_free(out); |
|
return ret; |
|
} |
|
|
|
int PKCS8_marshal_encrypted_private_key(CBB *out, int pbe_nid, |
|
const EVP_CIPHER *cipher, |
|
const char *pass, size_t pass_len, |
|
const uint8_t *salt, size_t salt_len, |
|
int iterations, const EVP_PKEY *pkey) { |
|
int ret = 0; |
|
uint8_t *plaintext = NULL, *salt_buf = NULL; |
|
size_t plaintext_len = 0; |
|
EVP_CIPHER_CTX ctx; |
|
EVP_CIPHER_CTX_init(&ctx); |
|
|
|
// Generate a random salt if necessary. |
|
if (salt == NULL) { |
|
if (salt_len == 0) { |
|
salt_len = PKCS5_SALT_LEN; |
|
} |
|
|
|
salt_buf = OPENSSL_malloc(salt_len); |
|
if (salt_buf == NULL || |
|
!RAND_bytes(salt_buf, salt_len)) { |
|
goto err; |
|
} |
|
|
|
salt = salt_buf; |
|
} |
|
|
|
if (iterations <= 0) { |
|
iterations = PKCS5_DEFAULT_ITERATIONS; |
|
} |
|
|
|
// Serialize the input key. |
|
CBB plaintext_cbb; |
|
if (!CBB_init(&plaintext_cbb, 128) || |
|
!EVP_marshal_private_key(&plaintext_cbb, pkey) || |
|
!CBB_finish(&plaintext_cbb, &plaintext, &plaintext_len)) { |
|
CBB_cleanup(&plaintext_cbb); |
|
goto err; |
|
} |
|
|
|
CBB epki; |
|
if (!CBB_add_asn1(out, &epki, CBS_ASN1_SEQUENCE)) { |
|
goto err; |
|
} |
|
|
|
// TODO(davidben): OpenSSL has since extended |pbe_nid| to control either the |
|
// PBES1 scheme or the PBES2 PRF. E.g. passing |NID_hmacWithSHA256| will |
|
// select PBES2 with HMAC-SHA256 as the PRF. Implement this if anything uses |
|
// it. See 5693a30813a031d3921a016a870420e7eb93ec90 in OpenSSL. |
|
int alg_ok; |
|
if (pbe_nid == -1) { |
|
alg_ok = PKCS5_pbe2_encrypt_init(&epki, &ctx, cipher, (unsigned)iterations, |
|
pass, pass_len, salt, salt_len); |
|
} else { |
|
alg_ok = pkcs12_pbe_encrypt_init(&epki, &ctx, pbe_nid, (unsigned)iterations, |
|
pass, pass_len, salt, salt_len); |
|
} |
|
if (!alg_ok) { |
|
goto err; |
|
} |
|
|
|
size_t max_out = plaintext_len + EVP_CIPHER_CTX_block_size(&ctx); |
|
if (max_out < plaintext_len) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG); |
|
goto err; |
|
} |
|
|
|
CBB ciphertext; |
|
uint8_t *ptr; |
|
int n1, n2; |
|
if (!CBB_add_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) || |
|
!CBB_reserve(&ciphertext, &ptr, max_out) || |
|
!EVP_CipherUpdate(&ctx, ptr, &n1, plaintext, plaintext_len) || |
|
!EVP_CipherFinal_ex(&ctx, ptr + n1, &n2) || |
|
!CBB_did_write(&ciphertext, n1 + n2) || |
|
!CBB_flush(out)) { |
|
goto err; |
|
} |
|
|
|
ret = 1; |
|
|
|
err: |
|
OPENSSL_free(plaintext); |
|
OPENSSL_free(salt_buf); |
|
EVP_CIPHER_CTX_cleanup(&ctx); |
|
return ret; |
|
}
|
|
|