Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1401 lines
45 KiB
1401 lines
45 KiB
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
|
* project 1999. |
|
*/ |
|
/* ==================================================================== |
|
* Copyright (c) 1999 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* licensing@OpenSSL.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). */ |
|
|
|
#include <openssl/pkcs8.h> |
|
|
|
#include <limits.h> |
|
|
|
#include <openssl/asn1t.h> |
|
#include <openssl/asn1.h> |
|
#include <openssl/bio.h> |
|
#include <openssl/buf.h> |
|
#include <openssl/bytestring.h> |
|
#include <openssl/err.h> |
|
#include <openssl/evp.h> |
|
#include <openssl/digest.h> |
|
#include <openssl/hmac.h> |
|
#include <openssl/mem.h> |
|
#include <openssl/rand.h> |
|
#include <openssl/x509.h> |
|
|
|
#include "internal.h" |
|
#include "../bytestring/internal.h" |
|
#include "../internal.h" |
|
|
|
|
|
int pkcs12_iterations_acceptable(uint64_t iterations) { |
|
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
|
static const uint64_t kIterationsLimit = 2048; |
|
#else |
|
// Windows imposes a limit of 600K. Mozilla say: “so them increasing |
|
// maximum to something like 100M or 1G (to have few decades of breathing |
|
// room) would be very welcome”[1]. So here we set the limit to 100M. |
|
// |
|
// [1] https://bugzilla.mozilla.org/show_bug.cgi?id=1436873#c14 |
|
static const uint64_t kIterationsLimit = 100 * 1000000; |
|
#endif |
|
|
|
return 0 < iterations && iterations <= kIterationsLimit; |
|
} |
|
|
|
// Minor tweak to operation: zero private key data |
|
static int pkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, |
|
void *exarg) { |
|
// Since the structure must still be valid use ASN1_OP_FREE_PRE |
|
if (operation == ASN1_OP_FREE_PRE) { |
|
PKCS8_PRIV_KEY_INFO *key = (PKCS8_PRIV_KEY_INFO *)*pval; |
|
if (key->pkey) { |
|
OPENSSL_cleanse(key->pkey->data, key->pkey->length); |
|
} |
|
} |
|
return 1; |
|
} |
|
|
|
ASN1_SEQUENCE_cb(PKCS8_PRIV_KEY_INFO, pkey_cb) = { |
|
ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, version, ASN1_INTEGER), |
|
ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkeyalg, X509_ALGOR), |
|
ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkey, ASN1_OCTET_STRING), |
|
ASN1_IMP_SET_OF_OPT(PKCS8_PRIV_KEY_INFO, attributes, X509_ATTRIBUTE, 0) |
|
} ASN1_SEQUENCE_END_cb(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO) |
|
|
|
IMPLEMENT_ASN1_FUNCTIONS(PKCS8_PRIV_KEY_INFO) |
|
|
|
int PKCS8_pkey_set0(PKCS8_PRIV_KEY_INFO *priv, ASN1_OBJECT *aobj, int version, |
|
int ptype, void *pval, uint8_t *penc, int penclen) { |
|
if (version >= 0 && |
|
!ASN1_INTEGER_set(priv->version, version)) { |
|
return 0; |
|
} |
|
|
|
if (!X509_ALGOR_set0(priv->pkeyalg, aobj, ptype, pval)) { |
|
return 0; |
|
} |
|
|
|
if (penc != NULL) { |
|
ASN1_STRING_set0(priv->pkey, penc, penclen); |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
int PKCS8_pkey_get0(ASN1_OBJECT **ppkalg, const uint8_t **pk, int *ppklen, |
|
X509_ALGOR **pa, PKCS8_PRIV_KEY_INFO *p8) { |
|
if (ppkalg) { |
|
*ppkalg = p8->pkeyalg->algorithm; |
|
} |
|
if (pk) { |
|
*pk = ASN1_STRING_data(p8->pkey); |
|
*ppklen = ASN1_STRING_length(p8->pkey); |
|
} |
|
if (pa) { |
|
*pa = p8->pkeyalg; |
|
} |
|
return 1; |
|
} |
|
|
|
EVP_PKEY *EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO *p8) { |
|
uint8_t *der = NULL; |
|
int der_len = i2d_PKCS8_PRIV_KEY_INFO(p8, &der); |
|
if (der_len < 0) { |
|
return NULL; |
|
} |
|
|
|
CBS cbs; |
|
CBS_init(&cbs, der, (size_t)der_len); |
|
EVP_PKEY *ret = EVP_parse_private_key(&cbs); |
|
if (ret == NULL || CBS_len(&cbs) != 0) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
|
EVP_PKEY_free(ret); |
|
OPENSSL_free(der); |
|
return NULL; |
|
} |
|
|
|
OPENSSL_free(der); |
|
return ret; |
|
} |
|
|
|
PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey) { |
|
CBB cbb; |
|
uint8_t *der = NULL; |
|
size_t der_len; |
|
if (!CBB_init(&cbb, 0) || |
|
!EVP_marshal_private_key(&cbb, pkey) || |
|
!CBB_finish(&cbb, &der, &der_len) || |
|
der_len > LONG_MAX) { |
|
CBB_cleanup(&cbb); |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ENCODE_ERROR); |
|
goto err; |
|
} |
|
|
|
const uint8_t *p = der; |
|
PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, (long)der_len); |
|
if (p8 == NULL || p != der + der_len) { |
|
PKCS8_PRIV_KEY_INFO_free(p8); |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
|
goto err; |
|
} |
|
|
|
OPENSSL_free(der); |
|
return p8; |
|
|
|
err: |
|
OPENSSL_free(der); |
|
return NULL; |
|
} |
|
|
|
PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass, |
|
int pass_len_in) { |
|
size_t pass_len; |
|
if (pass_len_in == -1 && pass != NULL) { |
|
pass_len = strlen(pass); |
|
} else { |
|
pass_len = (size_t)pass_len_in; |
|
} |
|
|
|
PKCS8_PRIV_KEY_INFO *ret = NULL; |
|
EVP_PKEY *pkey = NULL; |
|
uint8_t *in = NULL; |
|
|
|
// Convert the legacy ASN.1 object to a byte string. |
|
int in_len = i2d_X509_SIG(pkcs8, &in); |
|
if (in_len < 0) { |
|
goto err; |
|
} |
|
|
|
CBS cbs; |
|
CBS_init(&cbs, in, in_len); |
|
pkey = PKCS8_parse_encrypted_private_key(&cbs, pass, pass_len); |
|
if (pkey == NULL || CBS_len(&cbs) != 0) { |
|
goto err; |
|
} |
|
|
|
ret = EVP_PKEY2PKCS8(pkey); |
|
|
|
err: |
|
OPENSSL_free(in); |
|
EVP_PKEY_free(pkey); |
|
return ret; |
|
} |
|
|
|
X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass, |
|
int pass_len_in, const uint8_t *salt, size_t salt_len, |
|
int iterations, PKCS8_PRIV_KEY_INFO *p8inf) { |
|
size_t pass_len; |
|
if (pass_len_in == -1 && pass != NULL) { |
|
pass_len = strlen(pass); |
|
} else { |
|
pass_len = (size_t)pass_len_in; |
|
} |
|
|
|
// Parse out the private key. |
|
EVP_PKEY *pkey = EVP_PKCS82PKEY(p8inf); |
|
if (pkey == NULL) { |
|
return NULL; |
|
} |
|
|
|
X509_SIG *ret = NULL; |
|
uint8_t *der = NULL; |
|
size_t der_len; |
|
CBB cbb; |
|
if (!CBB_init(&cbb, 128) || |
|
!PKCS8_marshal_encrypted_private_key(&cbb, pbe_nid, cipher, pass, |
|
pass_len, salt, salt_len, iterations, |
|
pkey) || |
|
!CBB_finish(&cbb, &der, &der_len)) { |
|
CBB_cleanup(&cbb); |
|
goto err; |
|
} |
|
|
|
// Convert back to legacy ASN.1 objects. |
|
const uint8_t *ptr = der; |
|
ret = d2i_X509_SIG(NULL, &ptr, der_len); |
|
if (ret == NULL || ptr != der + der_len) { |
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_INTERNAL_ERROR); |
|
X509_SIG_free(ret); |
|
ret = NULL; |
|
} |
|
|
|
err: |
|
OPENSSL_free(der); |
|
EVP_PKEY_free(pkey); |
|
return ret; |
|
} |
|
|
|
struct pkcs12_context { |
|
EVP_PKEY **out_key; |
|
STACK_OF(X509) *out_certs; |
|
const char *password; |
|
size_t password_len; |
|
}; |
|
|
|
// PKCS12_handle_sequence parses a BER-encoded SEQUENCE of elements in a PKCS#12 |
|
// structure. |
|
static int PKCS12_handle_sequence( |
|
CBS *sequence, struct pkcs12_context *ctx, |
|
int (*handle_element)(CBS *cbs, struct pkcs12_context *ctx)) { |
|
uint8_t *storage = NULL; |
|
CBS in; |
|
int ret = 0; |
|
|
|
// Although a BER->DER conversion is done at the beginning of |PKCS12_parse|, |
|
// the ASN.1 data gets wrapped in OCTETSTRINGs and/or encrypted and the |
|
// conversion cannot see through those wrappings. So each time we step |
|
// through one we need to convert to DER again. |
|
if (!CBS_asn1_ber_to_der(sequence, &in, &storage)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
return 0; |
|
} |
|
|
|
CBS child; |
|
if (!CBS_get_asn1(&in, &child, CBS_ASN1_SEQUENCE) || |
|
CBS_len(&in) != 0) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
goto err; |
|
} |
|
|
|
while (CBS_len(&child) > 0) { |
|
CBS element; |
|
if (!CBS_get_asn1(&child, &element, CBS_ASN1_SEQUENCE)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
goto err; |
|
} |
|
|
|
if (!handle_element(&element, ctx)) { |
|
goto err; |
|
} |
|
} |
|
|
|
ret = 1; |
|
|
|
err: |
|
OPENSSL_free(storage); |
|
return ret; |
|
} |
|
|
|
// 1.2.840.113549.1.12.10.1.1 |
|
static const uint8_t kKeyBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, |
|
0x01, 0x0c, 0x0a, 0x01, 0x01}; |
|
|
|
// 1.2.840.113549.1.12.10.1.2 |
|
static const uint8_t kPKCS8ShroudedKeyBag[] = { |
|
0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x0a, 0x01, 0x02}; |
|
|
|
// 1.2.840.113549.1.12.10.1.3 |
|
static const uint8_t kCertBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, |
|
0x01, 0x0c, 0x0a, 0x01, 0x03}; |
|
|
|
// 1.2.840.113549.1.9.20 |
|
static const uint8_t kFriendlyName[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
|
0x0d, 0x01, 0x09, 0x14}; |
|
|
|
// 1.2.840.113549.1.9.21 |
|
static const uint8_t kLocalKeyID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
|
0x0d, 0x01, 0x09, 0x15}; |
|
|
|
// 1.2.840.113549.1.9.22.1 |
|
static const uint8_t kX509Certificate[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
|
0x0d, 0x01, 0x09, 0x16, 0x01}; |
|
|
|
// parse_bag_attributes parses the bagAttributes field of a SafeBag structure. |
|
// It sets |*out_friendly_name| to a newly-allocated copy of the friendly name, |
|
// encoded as a UTF-8 string, or NULL if there is none. It returns one on |
|
// success and zero on error. |
|
static int parse_bag_attributes(CBS *attrs, uint8_t **out_friendly_name, |
|
size_t *out_friendly_name_len) { |
|
*out_friendly_name = NULL; |
|
*out_friendly_name_len = 0; |
|
|
|
// See https://tools.ietf.org/html/rfc7292#section-4.2. |
|
while (CBS_len(attrs) != 0) { |
|
CBS attr, oid, values; |
|
if (!CBS_get_asn1(attrs, &attr, CBS_ASN1_SEQUENCE) || |
|
!CBS_get_asn1(&attr, &oid, CBS_ASN1_OBJECT) || |
|
!CBS_get_asn1(&attr, &values, CBS_ASN1_SET) || |
|
CBS_len(&attr) != 0) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
goto err; |
|
} |
|
if (CBS_mem_equal(&oid, kFriendlyName, sizeof(kFriendlyName))) { |
|
// See https://tools.ietf.org/html/rfc2985, section 5.5.1. |
|
CBS value; |
|
if (*out_friendly_name != NULL || |
|
!CBS_get_asn1(&values, &value, CBS_ASN1_BMPSTRING) || |
|
CBS_len(&values) != 0 || |
|
CBS_len(&value) == 0) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
goto err; |
|
} |
|
// Convert the friendly name to UTF-8. |
|
CBB cbb; |
|
if (!CBB_init(&cbb, CBS_len(&value))) { |
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); |
|
goto err; |
|
} |
|
while (CBS_len(&value) != 0) { |
|
uint32_t c; |
|
if (!cbs_get_ucs2_be(&value, &c) || |
|
!cbb_add_utf8(&cbb, c)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS); |
|
CBB_cleanup(&cbb); |
|
goto err; |
|
} |
|
} |
|
if (!CBB_finish(&cbb, out_friendly_name, out_friendly_name_len)) { |
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); |
|
CBB_cleanup(&cbb); |
|
goto err; |
|
} |
|
} |
|
} |
|
|
|
return 1; |
|
|
|
err: |
|
OPENSSL_free(*out_friendly_name); |
|
*out_friendly_name = NULL; |
|
*out_friendly_name_len = 0; |
|
return 0; |
|
} |
|
|
|
// PKCS12_handle_safe_bag parses a single SafeBag element in a PKCS#12 |
|
// structure. |
|
static int PKCS12_handle_safe_bag(CBS *safe_bag, struct pkcs12_context *ctx) { |
|
CBS bag_id, wrapped_value, bag_attrs; |
|
if (!CBS_get_asn1(safe_bag, &bag_id, CBS_ASN1_OBJECT) || |
|
!CBS_get_asn1(safe_bag, &wrapped_value, |
|
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
return 0; |
|
} |
|
if (CBS_len(safe_bag) == 0) { |
|
CBS_init(&bag_attrs, NULL, 0); |
|
} else if (!CBS_get_asn1(safe_bag, &bag_attrs, CBS_ASN1_SET) || |
|
CBS_len(safe_bag) != 0) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
return 0; |
|
} |
|
|
|
const int is_key_bag = CBS_mem_equal(&bag_id, kKeyBag, sizeof(kKeyBag)); |
|
const int is_shrouded_key_bag = CBS_mem_equal(&bag_id, kPKCS8ShroudedKeyBag, |
|
sizeof(kPKCS8ShroudedKeyBag)); |
|
if (is_key_bag || is_shrouded_key_bag) { |
|
// See RFC 7292, section 4.2.1 and 4.2.2. |
|
if (*ctx->out_key) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MULTIPLE_PRIVATE_KEYS_IN_PKCS12); |
|
return 0; |
|
} |
|
|
|
EVP_PKEY *pkey = |
|
is_key_bag ? EVP_parse_private_key(&wrapped_value) |
|
: PKCS8_parse_encrypted_private_key( |
|
&wrapped_value, ctx->password, ctx->password_len); |
|
if (pkey == NULL) { |
|
return 0; |
|
} |
|
|
|
if (CBS_len(&wrapped_value) != 0) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
EVP_PKEY_free(pkey); |
|
return 0; |
|
} |
|
|
|
*ctx->out_key = pkey; |
|
return 1; |
|
} |
|
|
|
if (CBS_mem_equal(&bag_id, kCertBag, sizeof(kCertBag))) { |
|
// See RFC 7292, section 4.2.3. |
|
CBS cert_bag, cert_type, wrapped_cert, cert; |
|
if (!CBS_get_asn1(&wrapped_value, &cert_bag, CBS_ASN1_SEQUENCE) || |
|
!CBS_get_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) || |
|
!CBS_get_asn1(&cert_bag, &wrapped_cert, |
|
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || |
|
!CBS_get_asn1(&wrapped_cert, &cert, CBS_ASN1_OCTETSTRING)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
return 0; |
|
} |
|
|
|
// Skip unknown certificate types. |
|
if (!CBS_mem_equal(&cert_type, kX509Certificate, |
|
sizeof(kX509Certificate))) { |
|
return 1; |
|
} |
|
|
|
if (CBS_len(&cert) > LONG_MAX) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
return 0; |
|
} |
|
|
|
const uint8_t *inp = CBS_data(&cert); |
|
X509 *x509 = d2i_X509(NULL, &inp, (long)CBS_len(&cert)); |
|
if (!x509) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
return 0; |
|
} |
|
|
|
if (inp != CBS_data(&cert) + CBS_len(&cert)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
X509_free(x509); |
|
return 0; |
|
} |
|
|
|
uint8_t *friendly_name; |
|
size_t friendly_name_len; |
|
if (!parse_bag_attributes(&bag_attrs, &friendly_name, &friendly_name_len)) { |
|
X509_free(x509); |
|
return 0; |
|
} |
|
int ok = friendly_name_len == 0 || |
|
X509_alias_set1(x509, friendly_name, friendly_name_len); |
|
OPENSSL_free(friendly_name); |
|
if (!ok || |
|
0 == sk_X509_push(ctx->out_certs, x509)) { |
|
X509_free(x509); |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
// Unknown element type - ignore it. |
|
return 1; |
|
} |
|
|
|
// 1.2.840.113549.1.7.1 |
|
static const uint8_t kPKCS7Data[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
|
0x0d, 0x01, 0x07, 0x01}; |
|
|
|
// 1.2.840.113549.1.7.6 |
|
static const uint8_t kPKCS7EncryptedData[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
|
0x0d, 0x01, 0x07, 0x06}; |
|
|
|
// PKCS12_handle_content_info parses a single PKCS#7 ContentInfo element in a |
|
// PKCS#12 structure. |
|
static int PKCS12_handle_content_info(CBS *content_info, |
|
struct pkcs12_context *ctx) { |
|
CBS content_type, wrapped_contents, contents; |
|
int ret = 0; |
|
uint8_t *storage = NULL; |
|
|
|
if (!CBS_get_asn1(content_info, &content_type, CBS_ASN1_OBJECT) || |
|
!CBS_get_asn1(content_info, &wrapped_contents, |
|
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || |
|
CBS_len(content_info) != 0) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
goto err; |
|
} |
|
|
|
if (CBS_mem_equal(&content_type, kPKCS7EncryptedData, |
|
sizeof(kPKCS7EncryptedData))) { |
|
// See https://tools.ietf.org/html/rfc2315#section-13. |
|
// |
|
// PKCS#7 encrypted data inside a PKCS#12 structure is generally an |
|
// encrypted certificate bag and it's generally encrypted with 40-bit |
|
// RC2-CBC. |
|
CBS version_bytes, eci, contents_type, ai, encrypted_contents; |
|
uint8_t *out; |
|
size_t out_len; |
|
|
|
if (!CBS_get_asn1(&wrapped_contents, &contents, CBS_ASN1_SEQUENCE) || |
|
!CBS_get_asn1(&contents, &version_bytes, CBS_ASN1_INTEGER) || |
|
// EncryptedContentInfo, see |
|
// https://tools.ietf.org/html/rfc2315#section-10.1 |
|
!CBS_get_asn1(&contents, &eci, CBS_ASN1_SEQUENCE) || |
|
!CBS_get_asn1(&eci, &contents_type, CBS_ASN1_OBJECT) || |
|
// AlgorithmIdentifier, see |
|
// https://tools.ietf.org/html/rfc5280#section-4.1.1.2 |
|
!CBS_get_asn1(&eci, &ai, CBS_ASN1_SEQUENCE) || |
|
!CBS_get_asn1_implicit_string( |
|
&eci, &encrypted_contents, &storage, |
|
CBS_ASN1_CONTEXT_SPECIFIC | 0, CBS_ASN1_OCTETSTRING)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
goto err; |
|
} |
|
|
|
if (!CBS_mem_equal(&contents_type, kPKCS7Data, sizeof(kPKCS7Data))) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
goto err; |
|
} |
|
|
|
if (!pkcs8_pbe_decrypt(&out, &out_len, &ai, ctx->password, |
|
ctx->password_len, CBS_data(&encrypted_contents), |
|
CBS_len(&encrypted_contents))) { |
|
goto err; |
|
} |
|
|
|
CBS safe_contents; |
|
CBS_init(&safe_contents, out, out_len); |
|
ret = PKCS12_handle_sequence(&safe_contents, ctx, PKCS12_handle_safe_bag); |
|
OPENSSL_free(out); |
|
} else if (CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) { |
|
CBS octet_string_contents; |
|
|
|
if (!CBS_get_asn1(&wrapped_contents, &octet_string_contents, |
|
CBS_ASN1_OCTETSTRING)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
goto err; |
|
} |
|
|
|
ret = PKCS12_handle_sequence(&octet_string_contents, ctx, |
|
PKCS12_handle_safe_bag); |
|
} else { |
|
// Unknown element type - ignore it. |
|
ret = 1; |
|
} |
|
|
|
err: |
|
OPENSSL_free(storage); |
|
return ret; |
|
} |
|
|
|
static int pkcs12_check_mac(int *out_mac_ok, const char *password, |
|
size_t password_len, const CBS *salt, |
|
unsigned iterations, const EVP_MD *md, |
|
const CBS *authsafes, const CBS *expected_mac) { |
|
int ret = 0; |
|
uint8_t hmac_key[EVP_MAX_MD_SIZE]; |
|
if (!pkcs12_key_gen(password, password_len, CBS_data(salt), CBS_len(salt), |
|
PKCS12_MAC_ID, iterations, EVP_MD_size(md), hmac_key, |
|
md)) { |
|
goto err; |
|
} |
|
|
|
uint8_t hmac[EVP_MAX_MD_SIZE]; |
|
unsigned hmac_len; |
|
if (NULL == HMAC(md, hmac_key, EVP_MD_size(md), CBS_data(authsafes), |
|
CBS_len(authsafes), hmac, &hmac_len)) { |
|
goto err; |
|
} |
|
|
|
*out_mac_ok = CBS_mem_equal(expected_mac, hmac, hmac_len); |
|
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
|
*out_mac_ok = 1; |
|
#endif |
|
ret = 1; |
|
|
|
err: |
|
OPENSSL_cleanse(hmac_key, sizeof(hmac_key)); |
|
return ret; |
|
} |
|
|
|
|
|
int PKCS12_get_key_and_certs(EVP_PKEY **out_key, STACK_OF(X509) *out_certs, |
|
CBS *ber_in, const char *password) { |
|
uint8_t *storage = NULL; |
|
CBS in, pfx, mac_data, authsafe, content_type, wrapped_authsafes, authsafes; |
|
uint64_t version; |
|
int ret = 0; |
|
struct pkcs12_context ctx; |
|
const size_t original_out_certs_len = sk_X509_num(out_certs); |
|
|
|
// The input may be in BER format. |
|
if (!CBS_asn1_ber_to_der(ber_in, &in, &storage)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
return 0; |
|
} |
|
|
|
*out_key = NULL; |
|
OPENSSL_memset(&ctx, 0, sizeof(ctx)); |
|
|
|
// See ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf, section |
|
// four. |
|
if (!CBS_get_asn1(&in, &pfx, CBS_ASN1_SEQUENCE) || |
|
CBS_len(&in) != 0 || |
|
!CBS_get_asn1_uint64(&pfx, &version)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
goto err; |
|
} |
|
|
|
if (version < 3) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_VERSION); |
|
goto err; |
|
} |
|
|
|
if (!CBS_get_asn1(&pfx, &authsafe, CBS_ASN1_SEQUENCE)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
goto err; |
|
} |
|
|
|
if (CBS_len(&pfx) == 0) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MISSING_MAC); |
|
goto err; |
|
} |
|
|
|
if (!CBS_get_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
goto err; |
|
} |
|
|
|
// authsafe is a PKCS#7 ContentInfo. See |
|
// https://tools.ietf.org/html/rfc2315#section-7. |
|
if (!CBS_get_asn1(&authsafe, &content_type, CBS_ASN1_OBJECT) || |
|
!CBS_get_asn1(&authsafe, &wrapped_authsafes, |
|
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
goto err; |
|
} |
|
|
|
// The content type can either be data or signedData. The latter indicates |
|
// that it's signed by a public key, which isn't supported. |
|
if (!CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_PKCS12_PUBLIC_KEY_INTEGRITY_NOT_SUPPORTED); |
|
goto err; |
|
} |
|
|
|
if (!CBS_get_asn1(&wrapped_authsafes, &authsafes, CBS_ASN1_OCTETSTRING)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
goto err; |
|
} |
|
|
|
ctx.out_key = out_key; |
|
ctx.out_certs = out_certs; |
|
ctx.password = password; |
|
ctx.password_len = password != NULL ? strlen(password) : 0; |
|
|
|
// Verify the MAC. |
|
{ |
|
CBS mac, salt, expected_mac; |
|
if (!CBS_get_asn1(&mac_data, &mac, CBS_ASN1_SEQUENCE)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
goto err; |
|
} |
|
|
|
const EVP_MD *md = EVP_parse_digest_algorithm(&mac); |
|
if (md == NULL) { |
|
goto err; |
|
} |
|
|
|
if (!CBS_get_asn1(&mac, &expected_mac, CBS_ASN1_OCTETSTRING) || |
|
!CBS_get_asn1(&mac_data, &salt, CBS_ASN1_OCTETSTRING)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
goto err; |
|
} |
|
|
|
// The iteration count is optional and the default is one. |
|
uint64_t iterations = 1; |
|
if (CBS_len(&mac_data) > 0) { |
|
if (!CBS_get_asn1_uint64(&mac_data, &iterations) || |
|
!pkcs12_iterations_acceptable(iterations)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
|
goto err; |
|
} |
|
} |
|
|
|
int mac_ok; |
|
if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt, |
|
iterations, md, &authsafes, &expected_mac)) { |
|
goto err; |
|
} |
|
if (!mac_ok && ctx.password_len == 0) { |
|
// PKCS#12 encodes passwords as NUL-terminated UCS-2, so the empty |
|
// password is encoded as {0, 0}. Some implementations use the empty byte |
|
// array for "no password". OpenSSL considers a non-NULL password as {0, |
|
// 0} and a NULL password as {}. It then, in high-level PKCS#12 parsing |
|
// code, tries both options. We match this behavior. |
|
ctx.password = ctx.password != NULL ? NULL : ""; |
|
if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt, |
|
iterations, md, &authsafes, &expected_mac)) { |
|
goto err; |
|
} |
|
} |
|
if (!mac_ok) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INCORRECT_PASSWORD); |
|
goto err; |
|
} |
|
} |
|
|
|
// authsafes contains a series of PKCS#7 ContentInfos. |
|
if (!PKCS12_handle_sequence(&authsafes, &ctx, PKCS12_handle_content_info)) { |
|
goto err; |
|
} |
|
|
|
ret = 1; |
|
|
|
err: |
|
OPENSSL_free(storage); |
|
if (!ret) { |
|
EVP_PKEY_free(*out_key); |
|
*out_key = NULL; |
|
while (sk_X509_num(out_certs) > original_out_certs_len) { |
|
X509 *x509 = sk_X509_pop(out_certs); |
|
X509_free(x509); |
|
} |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
void PKCS12_PBE_add(void) {} |
|
|
|
struct pkcs12_st { |
|
uint8_t *ber_bytes; |
|
size_t ber_len; |
|
}; |
|
|
|
PKCS12 *d2i_PKCS12(PKCS12 **out_p12, const uint8_t **ber_bytes, |
|
size_t ber_len) { |
|
PKCS12 *p12; |
|
|
|
p12 = OPENSSL_malloc(sizeof(PKCS12)); |
|
if (!p12) { |
|
return NULL; |
|
} |
|
|
|
p12->ber_bytes = OPENSSL_malloc(ber_len); |
|
if (!p12->ber_bytes) { |
|
OPENSSL_free(p12); |
|
return NULL; |
|
} |
|
|
|
OPENSSL_memcpy(p12->ber_bytes, *ber_bytes, ber_len); |
|
p12->ber_len = ber_len; |
|
*ber_bytes += ber_len; |
|
|
|
if (out_p12) { |
|
PKCS12_free(*out_p12); |
|
|
|
*out_p12 = p12; |
|
} |
|
|
|
return p12; |
|
} |
|
|
|
PKCS12* d2i_PKCS12_bio(BIO *bio, PKCS12 **out_p12) { |
|
size_t used = 0; |
|
BUF_MEM *buf; |
|
const uint8_t *dummy; |
|
static const size_t kMaxSize = 256 * 1024; |
|
PKCS12 *ret = NULL; |
|
|
|
buf = BUF_MEM_new(); |
|
if (buf == NULL) { |
|
return NULL; |
|
} |
|
if (BUF_MEM_grow(buf, 8192) == 0) { |
|
goto out; |
|
} |
|
|
|
for (;;) { |
|
int n = BIO_read(bio, &buf->data[used], buf->length - used); |
|
if (n < 0) { |
|
if (used == 0) { |
|
goto out; |
|
} |
|
// Workaround a bug in node.js. It uses a memory BIO for this in the wrong |
|
// mode. |
|
n = 0; |
|
} |
|
|
|
if (n == 0) { |
|
break; |
|
} |
|
used += n; |
|
|
|
if (used < buf->length) { |
|
continue; |
|
} |
|
|
|
if (buf->length > kMaxSize || |
|
BUF_MEM_grow(buf, buf->length * 2) == 0) { |
|
goto out; |
|
} |
|
} |
|
|
|
dummy = (uint8_t*) buf->data; |
|
ret = d2i_PKCS12(out_p12, &dummy, used); |
|
|
|
out: |
|
BUF_MEM_free(buf); |
|
return ret; |
|
} |
|
|
|
PKCS12* d2i_PKCS12_fp(FILE *fp, PKCS12 **out_p12) { |
|
BIO *bio; |
|
PKCS12 *ret; |
|
|
|
bio = BIO_new_fp(fp, 0 /* don't take ownership */); |
|
if (!bio) { |
|
return NULL; |
|
} |
|
|
|
ret = d2i_PKCS12_bio(bio, out_p12); |
|
BIO_free(bio); |
|
return ret; |
|
} |
|
|
|
int i2d_PKCS12(const PKCS12 *p12, uint8_t **out) { |
|
if (p12->ber_len > INT_MAX) { |
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); |
|
return -1; |
|
} |
|
|
|
if (out == NULL) { |
|
return (int)p12->ber_len; |
|
} |
|
|
|
if (*out == NULL) { |
|
*out = OPENSSL_malloc(p12->ber_len); |
|
if (*out == NULL) { |
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); |
|
return -1; |
|
} |
|
OPENSSL_memcpy(*out, p12->ber_bytes, p12->ber_len); |
|
} else { |
|
OPENSSL_memcpy(*out, p12->ber_bytes, p12->ber_len); |
|
*out += p12->ber_len; |
|
} |
|
return (int)p12->ber_len; |
|
} |
|
|
|
int i2d_PKCS12_bio(BIO *bio, const PKCS12 *p12) { |
|
return BIO_write_all(bio, p12->ber_bytes, p12->ber_len); |
|
} |
|
|
|
int i2d_PKCS12_fp(FILE *fp, const PKCS12 *p12) { |
|
BIO *bio = BIO_new_fp(fp, 0 /* don't take ownership */); |
|
if (bio == NULL) { |
|
return 0; |
|
} |
|
|
|
int ret = i2d_PKCS12_bio(bio, p12); |
|
BIO_free(bio); |
|
return ret; |
|
} |
|
|
|
int PKCS12_parse(const PKCS12 *p12, const char *password, EVP_PKEY **out_pkey, |
|
X509 **out_cert, STACK_OF(X509) **out_ca_certs) { |
|
CBS ber_bytes; |
|
STACK_OF(X509) *ca_certs = NULL; |
|
char ca_certs_alloced = 0; |
|
|
|
if (out_ca_certs != NULL && *out_ca_certs != NULL) { |
|
ca_certs = *out_ca_certs; |
|
} |
|
|
|
if (!ca_certs) { |
|
ca_certs = sk_X509_new_null(); |
|
if (ca_certs == NULL) { |
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); |
|
return 0; |
|
} |
|
ca_certs_alloced = 1; |
|
} |
|
|
|
CBS_init(&ber_bytes, p12->ber_bytes, p12->ber_len); |
|
if (!PKCS12_get_key_and_certs(out_pkey, ca_certs, &ber_bytes, password)) { |
|
if (ca_certs_alloced) { |
|
sk_X509_free(ca_certs); |
|
} |
|
return 0; |
|
} |
|
|
|
// OpenSSL selects the last certificate which matches the private key as |
|
// |out_cert|. |
|
*out_cert = NULL; |
|
size_t num_certs = sk_X509_num(ca_certs); |
|
if (*out_pkey != NULL && num_certs > 0) { |
|
for (size_t i = num_certs - 1; i < num_certs; i--) { |
|
X509 *cert = sk_X509_value(ca_certs, i); |
|
if (X509_check_private_key(cert, *out_pkey)) { |
|
*out_cert = cert; |
|
sk_X509_delete(ca_certs, i); |
|
break; |
|
} |
|
ERR_clear_error(); |
|
} |
|
} |
|
|
|
if (out_ca_certs) { |
|
*out_ca_certs = ca_certs; |
|
} else { |
|
sk_X509_pop_free(ca_certs, X509_free); |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
int PKCS12_verify_mac(const PKCS12 *p12, const char *password, |
|
int password_len) { |
|
if (password == NULL) { |
|
if (password_len != 0) { |
|
return 0; |
|
} |
|
} else if (password_len != -1 && |
|
(password[password_len] != 0 || |
|
OPENSSL_memchr(password, 0, password_len) != NULL)) { |
|
return 0; |
|
} |
|
|
|
EVP_PKEY *pkey = NULL; |
|
X509 *cert = NULL; |
|
if (!PKCS12_parse(p12, password, &pkey, &cert, NULL)) { |
|
ERR_clear_error(); |
|
return 0; |
|
} |
|
|
|
EVP_PKEY_free(pkey); |
|
X509_free(cert); |
|
|
|
return 1; |
|
} |
|
|
|
// add_bag_attributes adds the bagAttributes field of a SafeBag structure, |
|
// containing the specified friendlyName and localKeyId attributes. |
|
static int add_bag_attributes(CBB *bag, const char *name, size_t name_len, |
|
const uint8_t *key_id, size_t key_id_len) { |
|
if (name == NULL && key_id_len == 0) { |
|
return 1; // Omit the OPTIONAL SET. |
|
} |
|
// See https://tools.ietf.org/html/rfc7292#section-4.2. |
|
CBB attrs, attr, oid, values, value; |
|
if (!CBB_add_asn1(bag, &attrs, CBS_ASN1_SET)) { |
|
return 0; |
|
} |
|
if (name_len != 0) { |
|
// See https://tools.ietf.org/html/rfc2985, section 5.5.1. |
|
if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) || |
|
!CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) || |
|
!CBB_add_bytes(&oid, kFriendlyName, sizeof(kFriendlyName)) || |
|
!CBB_add_asn1(&attr, &values, CBS_ASN1_SET) || |
|
!CBB_add_asn1(&values, &value, CBS_ASN1_BMPSTRING)) { |
|
return 0; |
|
} |
|
// Convert the friendly name to a BMPString. |
|
CBS name_cbs; |
|
CBS_init(&name_cbs, (const uint8_t *)name, name_len); |
|
while (CBS_len(&name_cbs) != 0) { |
|
uint32_t c; |
|
if (!cbs_get_utf8(&name_cbs, &c) || |
|
!cbb_add_ucs2_be(&value, c)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS); |
|
return 0; |
|
} |
|
} |
|
} |
|
if (key_id_len != 0) { |
|
// See https://tools.ietf.org/html/rfc2985, section 5.5.2. |
|
if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) || |
|
!CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) || |
|
!CBB_add_bytes(&oid, kLocalKeyID, sizeof(kLocalKeyID)) || |
|
!CBB_add_asn1(&attr, &values, CBS_ASN1_SET) || |
|
!CBB_add_asn1(&values, &value, CBS_ASN1_OCTETSTRING) || |
|
!CBB_add_bytes(&value, key_id, key_id_len)) { |
|
return 0; |
|
} |
|
} |
|
return CBB_flush_asn1_set_of(&attrs) && |
|
CBB_flush(bag); |
|
} |
|
|
|
static int add_cert_bag(CBB *cbb, X509 *cert, const char *name, |
|
const uint8_t *key_id, size_t key_id_len) { |
|
CBB bag, bag_oid, bag_contents, cert_bag, cert_type, wrapped_cert, cert_value; |
|
if (// See https://tools.ietf.org/html/rfc7292#section-4.2. |
|
!CBB_add_asn1(cbb, &bag, CBS_ASN1_SEQUENCE) || |
|
!CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT) || |
|
!CBB_add_bytes(&bag_oid, kCertBag, sizeof(kCertBag)) || |
|
!CBB_add_asn1(&bag, &bag_contents, |
|
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
|
// See https://tools.ietf.org/html/rfc7292#section-4.2.3. |
|
!CBB_add_asn1(&bag_contents, &cert_bag, CBS_ASN1_SEQUENCE) || |
|
!CBB_add_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) || |
|
!CBB_add_bytes(&cert_type, kX509Certificate, sizeof(kX509Certificate)) || |
|
!CBB_add_asn1(&cert_bag, &wrapped_cert, |
|
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
|
!CBB_add_asn1(&wrapped_cert, &cert_value, CBS_ASN1_OCTETSTRING)) { |
|
return 0; |
|
} |
|
uint8_t *buf; |
|
int len = i2d_X509(cert, NULL); |
|
|
|
int int_name_len = 0; |
|
const char *cert_name = (const char *)X509_alias_get0(cert, &int_name_len); |
|
size_t name_len = int_name_len; |
|
if (name) { |
|
if (name_len != 0) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_AMBIGUOUS_FRIENDLY_NAME); |
|
return 0; |
|
} |
|
name_len = strlen(name); |
|
} else { |
|
name = cert_name; |
|
} |
|
|
|
if (len < 0 || |
|
!CBB_add_space(&cert_value, &buf, (size_t)len) || |
|
i2d_X509(cert, &buf) < 0 || |
|
!add_bag_attributes(&bag, name, name_len, key_id, key_id_len) || |
|
!CBB_flush(cbb)) { |
|
return 0; |
|
} |
|
return 1; |
|
} |
|
|
|
static int add_cert_safe_contents(CBB *cbb, X509 *cert, |
|
const STACK_OF(X509) *chain, const char *name, |
|
const uint8_t *key_id, size_t key_id_len) { |
|
CBB safe_contents; |
|
if (!CBB_add_asn1(cbb, &safe_contents, CBS_ASN1_SEQUENCE) || |
|
(cert != NULL && |
|
!add_cert_bag(&safe_contents, cert, name, key_id, key_id_len))) { |
|
return 0; |
|
} |
|
|
|
for (size_t i = 0; i < sk_X509_num(chain); i++) { |
|
// Only the leaf certificate gets attributes. |
|
if (!add_cert_bag(&safe_contents, sk_X509_value(chain, i), NULL, NULL, 0)) { |
|
return 0; |
|
} |
|
} |
|
|
|
return CBB_flush(cbb); |
|
} |
|
|
|
static int add_encrypted_data(CBB *out, int pbe_nid, const char *password, |
|
size_t password_len, unsigned iterations, |
|
const uint8_t *in, size_t in_len) { |
|
uint8_t salt[PKCS5_SALT_LEN]; |
|
if (!RAND_bytes(salt, sizeof(salt))) { |
|
return 0; |
|
} |
|
|
|
int ret = 0; |
|
EVP_CIPHER_CTX ctx; |
|
EVP_CIPHER_CTX_init(&ctx); |
|
CBB content_info, type, wrapper, encrypted_data, encrypted_content_info, |
|
inner_type, encrypted_content; |
|
if (// Add the ContentInfo wrapping. |
|
!CBB_add_asn1(out, &content_info, CBS_ASN1_SEQUENCE) || |
|
!CBB_add_asn1(&content_info, &type, CBS_ASN1_OBJECT) || |
|
!CBB_add_bytes(&type, kPKCS7EncryptedData, sizeof(kPKCS7EncryptedData)) || |
|
!CBB_add_asn1(&content_info, &wrapper, |
|
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
|
// See https://tools.ietf.org/html/rfc2315#section-13. |
|
!CBB_add_asn1(&wrapper, &encrypted_data, CBS_ASN1_SEQUENCE) || |
|
!CBB_add_asn1_uint64(&encrypted_data, 0 /* version */) || |
|
// See https://tools.ietf.org/html/rfc2315#section-10.1. |
|
!CBB_add_asn1(&encrypted_data, &encrypted_content_info, |
|
CBS_ASN1_SEQUENCE) || |
|
!CBB_add_asn1(&encrypted_content_info, &inner_type, CBS_ASN1_OBJECT) || |
|
!CBB_add_bytes(&inner_type, kPKCS7Data, sizeof(kPKCS7Data)) || |
|
// Set up encryption and fill in contentEncryptionAlgorithm. |
|
!pkcs12_pbe_encrypt_init(&encrypted_content_info, &ctx, pbe_nid, |
|
iterations, password, password_len, salt, |
|
sizeof(salt)) || |
|
// Note this tag is primitive. It is an implicitly-tagged OCTET_STRING, so |
|
// it inherits the inner tag's constructed bit. |
|
!CBB_add_asn1(&encrypted_content_info, &encrypted_content, |
|
CBS_ASN1_CONTEXT_SPECIFIC | 0)) { |
|
goto err; |
|
} |
|
|
|
size_t max_out = in_len + EVP_CIPHER_CTX_block_size(&ctx); |
|
if (max_out < in_len) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG); |
|
goto err; |
|
} |
|
|
|
uint8_t *ptr; |
|
int n1, n2; |
|
if (!CBB_reserve(&encrypted_content, &ptr, max_out) || |
|
!EVP_CipherUpdate(&ctx, ptr, &n1, in, in_len) || |
|
!EVP_CipherFinal_ex(&ctx, ptr + n1, &n2) || |
|
!CBB_did_write(&encrypted_content, n1 + n2) || |
|
!CBB_flush(out)) { |
|
goto err; |
|
} |
|
|
|
ret = 1; |
|
|
|
err: |
|
EVP_CIPHER_CTX_cleanup(&ctx); |
|
return ret; |
|
} |
|
|
|
PKCS12 *PKCS12_create(const char *password, const char *name, |
|
const EVP_PKEY *pkey, X509 *cert, |
|
const STACK_OF(X509)* chain, int key_nid, int cert_nid, |
|
int iterations, int mac_iterations, int key_type) { |
|
if (key_nid == 0) { |
|
key_nid = NID_pbe_WithSHA1And3_Key_TripleDES_CBC; |
|
} |
|
if (cert_nid == 0) { |
|
cert_nid = NID_pbe_WithSHA1And40BitRC2_CBC; |
|
} |
|
if (iterations == 0) { |
|
iterations = PKCS12_DEFAULT_ITER; |
|
} |
|
if (mac_iterations == 0) { |
|
mac_iterations = 1; |
|
} |
|
if (// In OpenSSL, this specifies a non-standard Microsoft key usage extension |
|
// which we do not currently support. |
|
key_type != 0 || |
|
// In OpenSSL, -1 here means to omit the MAC, which we do not |
|
// currently support. Omitting it is also invalid for a password-based |
|
// PKCS#12 file. |
|
mac_iterations < 0 || |
|
// Don't encode empty objects. |
|
(pkey == NULL && cert == NULL && sk_X509_num(chain) == 0)) { |
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_OPTIONS); |
|
return 0; |
|
} |
|
|
|
// PKCS#12 is a very confusing recursive data format, built out of another |
|
// recursive data format. Section 5.1 of RFC 7292 describes the encoding |
|
// algorithm, but there is no clear overview. A quick summary: |
|
// |
|
// PKCS#7 defines a ContentInfo structure, which is a overgeneralized typed |
|
// combinator structure for applying cryptography. We care about two types. A |
|
// data ContentInfo contains an OCTET STRING and is a leaf node of the |
|
// combinator tree. An encrypted-data ContentInfo contains encryption |
|
// parameters (key derivation and encryption) and wraps another ContentInfo, |
|
// usually data. |
|
// |
|
// A PKCS#12 file is a PFX structure (section 4), which contains a single data |
|
// ContentInfo and a MAC over it. This root ContentInfo is the |
|
// AuthenticatedSafe and its payload is a SEQUENCE of other ContentInfos, so |
|
// that different parts of the PKCS#12 file can by differently protected. |
|
// |
|
// Each ContentInfo in the AuthenticatedSafe, after undoing all the PKCS#7 |
|
// combinators, has SafeContents payload. A SafeContents is a SEQUENCE of |
|
// SafeBag. SafeBag is PKCS#12's typed structure, with subtypes such as KeyBag |
|
// and CertBag. Confusingly, there is a SafeContents bag type which itself |
|
// recursively contains more SafeBags, but we do not implement this. Bags also |
|
// can have attributes. |
|
// |
|
// The grouping of SafeBags into intermediate ContentInfos does not appear to |
|
// be significant, except that all SafeBags sharing a ContentInfo have the |
|
// same level of protection. Additionally, while keys may be encrypted by |
|
// placing a KeyBag in an encrypted-data ContentInfo, PKCS#12 also defines a |
|
// key-specific encryption container, PKCS8ShroudedKeyBag, which is used |
|
// instead. |
|
|
|
// Note that |password| may be NULL to specify no password, rather than the |
|
// empty string. They are encoded differently in PKCS#12. (One is the empty |
|
// byte array and the other is NUL-terminated UCS-2.) |
|
size_t password_len = password != NULL ? strlen(password) : 0; |
|
|
|
uint8_t key_id[EVP_MAX_MD_SIZE]; |
|
unsigned key_id_len = 0; |
|
if (cert != NULL && pkey != NULL) { |
|
if (!X509_check_private_key(cert, pkey) || |
|
// Matching OpenSSL, use the SHA-1 hash of the certificate as the local |
|
// key ID. Some PKCS#12 consumers require one to connect the private key |
|
// and certificate. |
|
!X509_digest(cert, EVP_sha1(), key_id, &key_id_len)) { |
|
return 0; |
|
} |
|
} |
|
|
|
// See https://tools.ietf.org/html/rfc7292#section-4. |
|
PKCS12 *ret = NULL; |
|
CBB cbb, pfx, auth_safe, auth_safe_oid, auth_safe_wrapper, auth_safe_data, |
|
content_infos; |
|
uint8_t mac_key[EVP_MAX_MD_SIZE]; |
|
if (!CBB_init(&cbb, 0) || |
|
!CBB_add_asn1(&cbb, &pfx, CBS_ASN1_SEQUENCE) || |
|
!CBB_add_asn1_uint64(&pfx, 3) || |
|
// auth_safe is a data ContentInfo. |
|
!CBB_add_asn1(&pfx, &auth_safe, CBS_ASN1_SEQUENCE) || |
|
!CBB_add_asn1(&auth_safe, &auth_safe_oid, CBS_ASN1_OBJECT) || |
|
!CBB_add_bytes(&auth_safe_oid, kPKCS7Data, sizeof(kPKCS7Data)) || |
|
!CBB_add_asn1(&auth_safe, &auth_safe_wrapper, |
|
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
|
!CBB_add_asn1(&auth_safe_wrapper, &auth_safe_data, |
|
CBS_ASN1_OCTETSTRING) || |
|
// See https://tools.ietf.org/html/rfc7292#section-4.1. |auth_safe|'s |
|
// contains a SEQUENCE of ContentInfos. |
|
!CBB_add_asn1(&auth_safe_data, &content_infos, CBS_ASN1_SEQUENCE)) { |
|
goto err; |
|
} |
|
|
|
// If there are any certificates, place them in CertBags wrapped in a single |
|
// encrypted ContentInfo. |
|
if (cert != NULL || sk_X509_num(chain) > 0) { |
|
if (cert_nid < 0) { |
|
// Place the certificates in an unencrypted ContentInfo. This could be |
|
// more compactly-encoded by reusing the same ContentInfo as the key, but |
|
// OpenSSL does not do this. We keep them separate for consistency. (Keys, |
|
// even when encrypted, are always placed in unencrypted ContentInfos. |
|
// PKCS#12 defines bag-level encryption for keys.) |
|
CBB content_info, oid, wrapper, data; |
|
if (!CBB_add_asn1(&content_infos, &content_info, CBS_ASN1_SEQUENCE) || |
|
!CBB_add_asn1(&content_info, &oid, CBS_ASN1_OBJECT) || |
|
!CBB_add_bytes(&oid, kPKCS7Data, sizeof(kPKCS7Data)) || |
|
!CBB_add_asn1(&content_info, &wrapper, |
|
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
|
!CBB_add_asn1(&wrapper, &data, CBS_ASN1_OCTETSTRING) || |
|
!add_cert_safe_contents(&data, cert, chain, name, key_id, |
|
key_id_len) || |
|
!CBB_flush(&content_infos)) { |
|
goto err; |
|
} |
|
} else { |
|
CBB plaintext_cbb; |
|
int ok = CBB_init(&plaintext_cbb, 0) && |
|
add_cert_safe_contents(&plaintext_cbb, cert, chain, name, key_id, |
|
key_id_len) && |
|
add_encrypted_data( |
|
&content_infos, cert_nid, password, password_len, iterations, |
|
CBB_data(&plaintext_cbb), CBB_len(&plaintext_cbb)); |
|
CBB_cleanup(&plaintext_cbb); |
|
if (!ok) { |
|
goto err; |
|
} |
|
} |
|
} |
|
|
|
// If there is a key, place it in a single KeyBag or PKCS8ShroudedKeyBag |
|
// wrapped in an unencrypted ContentInfo. (One could also place it in a KeyBag |
|
// inside an encrypted ContentInfo, but OpenSSL does not do this and some |
|
// PKCS#12 consumers do not support KeyBags.) |
|
if (pkey != NULL) { |
|
CBB content_info, oid, wrapper, data, safe_contents, bag, bag_oid, |
|
bag_contents; |
|
if (// Add another data ContentInfo. |
|
!CBB_add_asn1(&content_infos, &content_info, CBS_ASN1_SEQUENCE) || |
|
!CBB_add_asn1(&content_info, &oid, CBS_ASN1_OBJECT) || |
|
!CBB_add_bytes(&oid, kPKCS7Data, sizeof(kPKCS7Data)) || |
|
!CBB_add_asn1(&content_info, &wrapper, |
|
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
|
!CBB_add_asn1(&wrapper, &data, CBS_ASN1_OCTETSTRING) || |
|
!CBB_add_asn1(&data, &safe_contents, CBS_ASN1_SEQUENCE) || |
|
// Add a SafeBag containing a PKCS8ShroudedKeyBag. |
|
!CBB_add_asn1(&safe_contents, &bag, CBS_ASN1_SEQUENCE) || |
|
!CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT)) { |
|
goto err; |
|
} |
|
if (key_nid < 0) { |
|
if (!CBB_add_bytes(&bag_oid, kKeyBag, sizeof(kKeyBag)) || |
|
!CBB_add_asn1(&bag, &bag_contents, |
|
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
|
!EVP_marshal_private_key(&bag_contents, pkey)) { |
|
goto err; |
|
} |
|
} else { |
|
if (!CBB_add_bytes(&bag_oid, kPKCS8ShroudedKeyBag, |
|
sizeof(kPKCS8ShroudedKeyBag)) || |
|
!CBB_add_asn1(&bag, &bag_contents, |
|
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
|
!PKCS8_marshal_encrypted_private_key( |
|
&bag_contents, key_nid, NULL, password, password_len, |
|
NULL /* generate a random salt */, |
|
0 /* use default salt length */, iterations, pkey)) { |
|
goto err; |
|
} |
|
} |
|
size_t name_len = 0; |
|
if (name) { |
|
name_len = strlen(name); |
|
} |
|
if (!add_bag_attributes(&bag, name, name_len, key_id, key_id_len) || |
|
!CBB_flush(&content_infos)) { |
|
goto err; |
|
} |
|
} |
|
|
|
// Compute the MAC. Match OpenSSL in using SHA-1 as the hash function. The MAC |
|
// covers |auth_safe_data|. |
|
const EVP_MD *mac_md = EVP_sha1(); |
|
uint8_t mac_salt[PKCS5_SALT_LEN]; |
|
uint8_t mac[EVP_MAX_MD_SIZE]; |
|
unsigned mac_len; |
|
if (!CBB_flush(&auth_safe_data) || |
|
!RAND_bytes(mac_salt, sizeof(mac_salt)) || |
|
!pkcs12_key_gen(password, password_len, mac_salt, sizeof(mac_salt), |
|
PKCS12_MAC_ID, mac_iterations, EVP_MD_size(mac_md), |
|
mac_key, mac_md) || |
|
!HMAC(mac_md, mac_key, EVP_MD_size(mac_md), CBB_data(&auth_safe_data), |
|
CBB_len(&auth_safe_data), mac, &mac_len)) { |
|
goto err; |
|
} |
|
|
|
CBB mac_data, digest_info, mac_cbb, mac_salt_cbb; |
|
if (!CBB_add_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE) || |
|
!CBB_add_asn1(&mac_data, &digest_info, CBS_ASN1_SEQUENCE) || |
|
!EVP_marshal_digest_algorithm(&digest_info, mac_md) || |
|
!CBB_add_asn1(&digest_info, &mac_cbb, CBS_ASN1_OCTETSTRING) || |
|
!CBB_add_bytes(&mac_cbb, mac, mac_len) || |
|
!CBB_add_asn1(&mac_data, &mac_salt_cbb, CBS_ASN1_OCTETSTRING) || |
|
!CBB_add_bytes(&mac_salt_cbb, mac_salt, sizeof(mac_salt)) || |
|
// The iteration count has a DEFAULT of 1, but RFC 7292 says "The default |
|
// is for historical reasons and its use is deprecated." Thus we |
|
// explicitly encode the iteration count, though it is not valid DER. |
|
!CBB_add_asn1_uint64(&mac_data, mac_iterations)) { |
|
goto err; |
|
} |
|
|
|
ret = OPENSSL_malloc(sizeof(PKCS12)); |
|
if (ret == NULL || |
|
!CBB_finish(&cbb, &ret->ber_bytes, &ret->ber_len)) { |
|
OPENSSL_free(ret); |
|
ret = NULL; |
|
goto err; |
|
} |
|
|
|
err: |
|
OPENSSL_cleanse(mac_key, sizeof(mac_key)); |
|
CBB_cleanup(&cbb); |
|
return ret; |
|
} |
|
|
|
void PKCS12_free(PKCS12 *p12) { |
|
if (p12 == NULL) { |
|
return; |
|
} |
|
OPENSSL_free(p12->ber_bytes); |
|
OPENSSL_free(p12); |
|
}
|
|
|