Mirror of BoringSSL (grpc依赖) https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1443 lines
50 KiB

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
#define OPENSSL_HEADER_CRYPTO_INTERNAL_H
#include <openssl/arm_arch.h>
#include <openssl/crypto.h>
#include <openssl/ex_data.h>
#include <openssl/stack.h>
#include <openssl/thread.h>
#include <assert.h>
#include <string.h>
#if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
#include <valgrind/memcheck.h>
#endif
#if defined(BORINGSSL_FIPS_BREAK_TESTS)
#include <stdlib.h>
#endif
#if !defined(__cplusplus)
#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L
#include <stdalign.h>
#elif defined(_MSC_VER) && !defined(__clang__)
#define alignas(x) __declspec(align(x))
#define alignof __alignof
#else
// With the exception of MSVC, we require C11 to build the library. C11 is a
// prerequisite for improved refcounting performance. All our supported C
// compilers have long implemented C11 and made it default. The most likely
// cause of pre-C11 modes is stale -std=c99 or -std=gnu99 flags in build
// configuration. Such flags can be removed.
//
// TODO(davidben): In MSVC 2019 16.8 or higher (_MSC_VER >= 1928),
// |__STDC_VERSION__| will be 201112 when passed /std:c11 and unset otherwise.
// C11 alignas and alignof are only implemented in C11 mode. Can we mandate C11
// mode for those versions?
#error "BoringSSL must be built in C11 mode or higher."
#endif
#endif
#if defined(OPENSSL_THREADS) && \
(!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
#include <pthread.h>
#define OPENSSL_PTHREADS
#endif
#if defined(OPENSSL_THREADS) && !defined(OPENSSL_PTHREADS) && \
defined(OPENSSL_WINDOWS)
#define OPENSSL_WINDOWS_THREADS
#endif
// Determine the atomics implementation to use with C.
#if !defined(__cplusplus)
#if !defined(OPENSSL_C11_ATOMIC) && defined(OPENSSL_THREADS) && \
!defined(__STDC_NO_ATOMICS__) && defined(__STDC_VERSION__) && \
__STDC_VERSION__ >= 201112L
#define OPENSSL_C11_ATOMIC
#endif
#if defined(OPENSSL_C11_ATOMIC)
#include <stdatomic.h>
#endif
// Older MSVC does not support C11 atomics, so we fallback to the Windows APIs.
// When both are available (e.g. clang-cl), we prefer the C11 ones. The Windows
// APIs don't allow some operations to be implemented as efficiently. This can
// be removed once we can rely on
// https://devblogs.microsoft.com/cppblog/c11-atomics-in-visual-studio-2022-version-17-5-preview-2/
#if !defined(OPENSSL_C11_ATOMIC) && defined(OPENSSL_THREADS) && \
defined(OPENSSL_WINDOWS)
#define OPENSSL_WINDOWS_ATOMIC
#endif
#endif // !__cplusplus
#if defined(OPENSSL_WINDOWS_THREADS) || defined(OPENSSL_WINDOWS_ATOMIC)
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <windows.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#endif
#if defined(__cplusplus)
extern "C" {
#endif
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
defined(OPENSSL_AARCH64)
// OPENSSL_cpuid_setup initializes the platform-specific feature cache.
void OPENSSL_cpuid_setup(void);
#endif
#if (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \
!defined(OPENSSL_STATIC_ARMCAP)
// OPENSSL_get_armcap_pointer_for_test returns a pointer to |OPENSSL_armcap_P|
// for unit tests. Any modifications to the value must be made after
// |CRYPTO_library_init| but before any other function call in BoringSSL.
OPENSSL_EXPORT uint32_t *OPENSSL_get_armcap_pointer_for_test(void);
#endif
// On non-MSVC 64-bit targets, we expect __uint128_t support. This includes
// clang-cl, which defines both __clang__ and _MSC_VER.
#if (!defined(_MSC_VER) || defined(__clang__)) && defined(OPENSSL_64_BIT)
#define BORINGSSL_HAS_UINT128
typedef __int128_t int128_t;
typedef __uint128_t uint128_t;
// __uint128_t division depends on intrinsics in the compiler runtime. Those
// intrinsics are missing in clang-cl (https://crbug.com/787617) and nanolibc.
// These may be bugs in the toolchain definition, but just disable it for now.
#if !defined(_MSC_VER) && !defined(OPENSSL_NANOLIBC)
#define BORINGSSL_CAN_DIVIDE_UINT128
#endif
#endif
#define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
// Have a generic fall-through for different versions of C/C++.
#if defined(__cplusplus) && __cplusplus >= 201703L
#define OPENSSL_FALLTHROUGH [[fallthrough]]
#elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__clang__)
#define OPENSSL_FALLTHROUGH [[clang::fallthrough]]
#elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__GNUC__) && \
__GNUC__ >= 7
#define OPENSSL_FALLTHROUGH [[gnu::fallthrough]]
#elif defined(__GNUC__) && __GNUC__ >= 7 // gcc 7
#define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
#elif defined(__clang__)
#if __has_attribute(fallthrough) && __clang_major__ >= 5
// Clang 3.5, at least, complains about "error: declaration does not declare
// anything", possibily because we put a semicolon after this macro in
// practice. Thus limit it to >= Clang 5, which does work.
#define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
#else // clang versions that do not support fallthrough.
#define OPENSSL_FALLTHROUGH
#endif
#else // C++11 on gcc 6, and all other cases
#define OPENSSL_FALLTHROUGH
#endif
// For convenience in testing 64-bit generic code, we allow disabling SSE2
// intrinsics via |OPENSSL_NO_SSE2_FOR_TESTING|. x86_64 always has SSE2
// available, so we would otherwise need to test such code on a non-x86_64
// platform.
#if defined(__SSE2__) && !defined(OPENSSL_NO_SSE2_FOR_TESTING)
#define OPENSSL_SSE2
#endif
#if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
// OPENSSL_reset_malloc_counter_for_testing, when malloc testing is enabled,
// resets the internal malloc counter, to simulate further malloc failures. This
// should be called in between independent tests, at a point where failure from
// a previous test will not impact subsequent ones.
OPENSSL_EXPORT void OPENSSL_reset_malloc_counter_for_testing(void);
#else
OPENSSL_INLINE void OPENSSL_reset_malloc_counter_for_testing(void) {}
#endif
// Pointer utility functions.
// buffers_alias returns one if |a| and |b| alias and zero otherwise.
static inline int buffers_alias(const void *a, size_t a_bytes,
const void *b, size_t b_bytes) {
// Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
// objects are undefined whereas pointer to integer conversions are merely
// implementation-defined. We assume the implementation defined it in a sane
// way.
uintptr_t a_u = (uintptr_t)a;
uintptr_t b_u = (uintptr_t)b;
return a_u + a_bytes > b_u && b_u + b_bytes > a_u;
}
// align_pointer returns |ptr|, advanced to |alignment|. |alignment| must be a
// power of two, and |ptr| must have at least |alignment - 1| bytes of scratch
// space.
static inline void *align_pointer(void *ptr, size_t alignment) {
// |alignment| must be a power of two.
assert(alignment != 0 && (alignment & (alignment - 1)) == 0);
// Instead of aligning |ptr| as a |uintptr_t| and casting back, compute the
// offset and advance in pointer space. C guarantees that casting from pointer
// to |uintptr_t| and back gives the same pointer, but general
// integer-to-pointer conversions are implementation-defined. GCC does define
// it in the useful way, but this makes fewer assumptions.
uintptr_t offset = (0u - (uintptr_t)ptr) & (alignment - 1);
ptr = (char *)ptr + offset;
assert(((uintptr_t)ptr & (alignment - 1)) == 0);
return ptr;
}
// Constant-time utility functions.
//
// The following methods return a bitmask of all ones (0xff...f) for true and 0
// for false. This is useful for choosing a value based on the result of a
// conditional in constant time. For example,
//
// if (a < b) {
// c = a;
// } else {
// c = b;
// }
//
// can be written as
//
// crypto_word_t lt = constant_time_lt_w(a, b);
// c = constant_time_select_w(lt, a, b);
// crypto_word_t is the type that most constant-time functions use. Ideally we
// would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
// pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
// bits. Since we want to be able to do constant-time operations on a
// |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
// word length.
#if defined(OPENSSL_64_BIT)
typedef uint64_t crypto_word_t;
#elif defined(OPENSSL_32_BIT)
typedef uint32_t crypto_word_t;
#else
#error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
#endif
#define CONSTTIME_TRUE_W ~((crypto_word_t)0)
#define CONSTTIME_FALSE_W ((crypto_word_t)0)
#define CONSTTIME_TRUE_8 ((uint8_t)0xff)
#define CONSTTIME_FALSE_8 ((uint8_t)0)
// value_barrier_w returns |a|, but prevents GCC and Clang from reasoning about
// the returned value. This is used to mitigate compilers undoing constant-time
// code, until we can express our requirements directly in the language.
//
// Note the compiler is aware that |value_barrier_w| has no side effects and
// always has the same output for a given input. This allows it to eliminate
// dead code, move computations across loops, and vectorize.
static inline crypto_word_t value_barrier_w(crypto_word_t a) {
#if defined(__GNUC__) || defined(__clang__)
__asm__("" : "+r"(a) : /* no inputs */);
#endif
return a;
}
// value_barrier_u32 behaves like |value_barrier_w| but takes a |uint32_t|.
static inline uint32_t value_barrier_u32(uint32_t a) {
#if defined(__GNUC__) || defined(__clang__)
__asm__("" : "+r"(a) : /* no inputs */);
#endif
return a;
}
// value_barrier_u64 behaves like |value_barrier_w| but takes a |uint64_t|.
static inline uint64_t value_barrier_u64(uint64_t a) {
#if defined(__GNUC__) || defined(__clang__)
__asm__("" : "+r"(a) : /* no inputs */);
#endif
return a;
}
// |value_barrier_u8| could be defined as above, but compilers other than
// clang seem to still materialize 0x00..00MM instead of reusing 0x??..??MM.
// constant_time_msb_w returns the given value with the MSB copied to all the
// other bits.
static inline crypto_word_t constant_time_msb_w(crypto_word_t a) {
return 0u - (a >> (sizeof(a) * 8 - 1));
}
// constant_time_lt_w returns 0xff..f if a < b and 0 otherwise.
static inline crypto_word_t constant_time_lt_w(crypto_word_t a,
crypto_word_t b) {
// Consider the two cases of the problem:
// msb(a) == msb(b): a < b iff the MSB of a - b is set.
// msb(a) != msb(b): a < b iff the MSB of b is set.
//
// If msb(a) == msb(b) then the following evaluates as:
// msb(a^((a^b)|((a-b)^a))) ==
// msb(a^((a-b) ^ a)) == (because msb(a^b) == 0)
// msb(a^a^(a-b)) == (rearranging)
// msb(a-b) (because ∀x. x^x == 0)
//
// Else, if msb(a) != msb(b) then the following evaluates as:
// msb(a^((a^b)|((a-b)^a))) ==
// msb(a^(𝟙 | ((a-b)^a))) == (because msb(a^b) == 1 and 𝟙
// represents a value s.t. msb(𝟙) = 1)
// msb(a^𝟙) == (because ORing with 1 results in 1)
// msb(b)
//
//
// Here is an SMT-LIB verification of this formula:
//
// (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
// (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
// )
//
// (declare-fun a () (_ BitVec 32))
// (declare-fun b () (_ BitVec 32))
//
// (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
// (check-sat)
// (get-model)
return constant_time_msb_w(a^((a^b)|((a-b)^a)));
}
// constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit
// mask.
static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) {
return (uint8_t)(constant_time_lt_w(a, b));
}
// constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise.
static inline crypto_word_t constant_time_ge_w(crypto_word_t a,
crypto_word_t b) {
return ~constant_time_lt_w(a, b);
}
// constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit
// mask.
static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) {
return (uint8_t)(constant_time_ge_w(a, b));
}
// constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise.
static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) {
// Here is an SMT-LIB verification of this formula:
//
// (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
// (bvand (bvnot a) (bvsub a #x00000001))
// )
//
// (declare-fun a () (_ BitVec 32))
//
// (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
// (check-sat)
// (get-model)
return constant_time_msb_w(~a & (a - 1));
}
// constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an
// 8-bit mask.
static inline uint8_t constant_time_is_zero_8(crypto_word_t a) {
return (uint8_t)(constant_time_is_zero_w(a));
}
// constant_time_eq_w returns 0xff..f if a == b and 0 otherwise.
static inline crypto_word_t constant_time_eq_w(crypto_word_t a,
crypto_word_t b) {
return constant_time_is_zero_w(a ^ b);
}
// constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit
// mask.
static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) {
return (uint8_t)(constant_time_eq_w(a, b));
}
// constant_time_eq_int acts like |constant_time_eq_w| but works on int
// values.
static inline crypto_word_t constant_time_eq_int(int a, int b) {
return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b));
}
// constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
// mask.
static inline uint8_t constant_time_eq_int_8(int a, int b) {
return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b));
}
// constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
// 1s or all 0s (as returned by the methods above), the select methods return
// either |a| (if |mask| is nonzero) or |b| (if |mask| is zero).
static inline crypto_word_t constant_time_select_w(crypto_word_t mask,
crypto_word_t a,
crypto_word_t b) {
// Clang recognizes this pattern as a select. While it usually transforms it
// to a cmov, it sometimes further transforms it into a branch, which we do
// not want.
//
// Hiding the value of the mask from the compiler evades this transformation.
mask = value_barrier_w(mask);
return (mask & a) | (~mask & b);
}
// constant_time_select_8 acts like |constant_time_select| but operates on
// 8-bit values.
static inline uint8_t constant_time_select_8(crypto_word_t mask, uint8_t a,
uint8_t b) {
// |mask| is a word instead of |uint8_t| to avoid materializing 0x000..0MM
// Making both |mask| and its value barrier |uint8_t| would allow the compiler
// to materialize 0x????..?MM instead, but only clang is that clever.
// However, vectorization of bitwise operations seems to work better on
// |uint8_t| than a mix of |uint64_t| and |uint8_t|, so |m| is cast to
// |uint8_t| after the value barrier but before the bitwise operations.
uint8_t m = value_barrier_w(mask);
return (m & a) | (~m & b);
}
// constant_time_select_int acts like |constant_time_select| but operates on
// ints.
static inline int constant_time_select_int(crypto_word_t mask, int a, int b) {
return (int)(constant_time_select_w(mask, (crypto_word_t)(a),
(crypto_word_t)(b)));
}
// constant_time_conditional_memcpy copies |n| bytes from |src| to |dst| if
// |mask| is 0xff..ff and does nothing if |mask| is 0. The |n|-byte memory
// ranges at |dst| and |src| must not overlap, as when calling |memcpy|.
static inline void constant_time_conditional_memcpy(void *dst, const void *src,
const size_t n,
const crypto_word_t mask) {
assert(!buffers_alias(dst, n, src, n));
uint8_t *out = (uint8_t *)dst;
const uint8_t *in = (const uint8_t *)src;
for (size_t i = 0; i < n; i++) {
out[i] = constant_time_select_8(mask, in[i], out[i]);
}
}
// constant_time_conditional_memxor xors |n| bytes from |src| to |dst| if
// |mask| is 0xff..ff and does nothing if |mask| is 0. The |n|-byte memory
// ranges at |dst| and |src| must not overlap, as when calling |memcpy|.
static inline void constant_time_conditional_memxor(void *dst, const void *src,
const size_t n,
const crypto_word_t mask) {
assert(!buffers_alias(dst, n, src, n));
uint8_t *out = (uint8_t *)dst;
const uint8_t *in = (const uint8_t *)src;
for (size_t i = 0; i < n; i++) {
out[i] ^= value_barrier_w(mask) & in[i];
}
}
#if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
// CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region
// of memory as secret. Secret data is tracked as it flows to registers and
// other parts of a memory. If secret data is used as a condition for a branch,
// or as a memory index, it will trigger warnings in valgrind.
#define CONSTTIME_SECRET(ptr, len) VALGRIND_MAKE_MEM_UNDEFINED(ptr, len)
// CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that
// region of memory as public. Public data is not subject to constant-time
// rules.
#define CONSTTIME_DECLASSIFY(ptr, len) VALGRIND_MAKE_MEM_DEFINED(ptr, len)
#else
#define CONSTTIME_SECRET(ptr, len)
#define CONSTTIME_DECLASSIFY(ptr, len)
#endif // BORINGSSL_CONSTANT_TIME_VALIDATION
static inline crypto_word_t constant_time_declassify_w(crypto_word_t v) {
// Return |v| through a value barrier to be safe. Valgrind-based constant-time
// validation is partly to check the compiler has not undone any constant-time
// work. Any place |BORINGSSL_CONSTANT_TIME_VALIDATION| influences
// optimizations, this validation is inaccurate.
//
// However, by sending pointers through valgrind, we likely inhibit escape
// analysis. On local variables, particularly booleans, we likely
// significantly impact optimizations.
//
// Thus, to be safe, stick a value barrier, in hopes of comparably inhibiting
// compiler analysis.
CONSTTIME_DECLASSIFY(&v, sizeof(v));
return value_barrier_w(v);
}
static inline int constant_time_declassify_int(int v) {
static_assert(sizeof(uint32_t) == sizeof(int),
"int is not the same size as uint32_t");
// See comment above.
CONSTTIME_DECLASSIFY(&v, sizeof(v));
return value_barrier_u32(v);
}
// Thread-safe initialisation.
#if !defined(OPENSSL_THREADS)
typedef uint32_t CRYPTO_once_t;
#define CRYPTO_ONCE_INIT 0
#elif defined(OPENSSL_WINDOWS_THREADS)
typedef INIT_ONCE CRYPTO_once_t;
#define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
#elif defined(OPENSSL_PTHREADS)
typedef pthread_once_t CRYPTO_once_t;
#define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
#else
#error "Unknown threading library"
#endif
// CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
// concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
// then they will block until |init| completes, but |init| will have only been
// called once.
//
// The |once| argument must be a |CRYPTO_once_t| that has been initialised with
// the value |CRYPTO_ONCE_INIT|.
OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
// Atomics.
//
// The following functions provide an API analogous to <stdatomic.h> from C11
// and abstract between a few variations on atomics we need to support.
#if defined(__cplusplus)
// In C++, we can't easily detect whether C will use |OPENSSL_C11_ATOMIC| or
// |OPENSSL_WINDOWS_ATOMIC|. Instead, we define a layout-compatible type without
// the corresponding functions. When we can rely on C11 atomics in MSVC, that
// will no longer be a concern.
typedef uint32_t CRYPTO_atomic_u32;
#elif defined(OPENSSL_C11_ATOMIC)
typedef _Atomic uint32_t CRYPTO_atomic_u32;
// This should be const, but the |OPENSSL_WINDOWS_ATOMIC| implementation is not
// const due to Windows limitations. When we can rely on C11 atomics, make this
// const-correct.
OPENSSL_INLINE uint32_t CRYPTO_atomic_load_u32(CRYPTO_atomic_u32 *val) {
return atomic_load(val);
}
OPENSSL_INLINE int CRYPTO_atomic_compare_exchange_weak_u32(
CRYPTO_atomic_u32 *val, uint32_t *expected, uint32_t desired) {
return atomic_compare_exchange_weak(val, expected, desired);
}
OPENSSL_INLINE void CRYPTO_atomic_store_u32(CRYPTO_atomic_u32 *val,
uint32_t desired) {
atomic_store(val, desired);
}
#elif defined(OPENSSL_WINDOWS_ATOMIC)
typedef LONG CRYPTO_atomic_u32;
OPENSSL_INLINE uint32_t CRYPTO_atomic_load_u32(volatile CRYPTO_atomic_u32 *val) {
// This is not ideal because it still writes to a cacheline. MSVC is not able
// to optimize this to a true atomic read, and Windows does not provide an
// InterlockedLoad function.
//
// The Windows documentation [1] does say "Simple reads and writes to
// properly-aligned 32-bit variables are atomic operations", but this is not
// phrased in terms of the C11 and C++11 memory models, and indeed a read or
// write seems to produce slightly different code on MSVC than a sequentially
// consistent std::atomic::load in C++. Moreover, it is unclear if non-MSVC
// compilers on Windows provide the same guarantees. Thus we avoid relying on
// this and instead still use an interlocked function. This is still
// preferable a global mutex, and eventually this code will be replaced by
// [2]. Additionally, on clang-cl, we'll use the |OPENSSL_C11_ATOMIC| path.
//
// [1] https://learn.microsoft.com/en-us/windows/win32/sync/interlocked-variable-access
// [2] https://devblogs.microsoft.com/cppblog/c11-atomics-in-visual-studio-2022-version-17-5-preview-2/
return (uint32_t)InterlockedCompareExchange(val, 0, 0);
}
OPENSSL_INLINE int CRYPTO_atomic_compare_exchange_weak_u32(
volatile CRYPTO_atomic_u32 *val, uint32_t *expected32, uint32_t desired) {
LONG expected = (LONG)*expected32;
LONG actual = InterlockedCompareExchange(val, (LONG)desired, expected);
*expected32 = (uint32_t)actual;
return actual == expected;
}
OPENSSL_INLINE void CRYPTO_atomic_store_u32(volatile CRYPTO_atomic_u32 *val,
uint32_t desired) {
InterlockedExchange(val, (LONG)desired);
}
#elif !defined(OPENSSL_THREADS)
typedef uint32_t CRYPTO_atomic_u32;
OPENSSL_INLINE uint32_t CRYPTO_atomic_load_u32(CRYPTO_atomic_u32 *val) {
return *val;
}
OPENSSL_INLINE int CRYPTO_atomic_compare_exchange_weak_u32(
CRYPTO_atomic_u32 *val, uint32_t *expected, uint32_t desired) {
if (*val != *expected) {
*expected = *val;
return 0;
}
*val = desired;
return 1;
}
OPENSSL_INLINE void CRYPTO_atomic_store_u32(CRYPTO_atomic_u32 *val,
uint32_t desired) {
*val = desired;
}
#else
// Require some atomics implementation. Contact BoringSSL maintainers if you
// have a platform with fails this check.
#error "Thread-compatible configurations require atomics"
#endif
// See the comment in the |__cplusplus| section above.
static_assert(sizeof(CRYPTO_atomic_u32) == sizeof(uint32_t),
"CRYPTO_atomic_u32 does not match uint32_t size");
static_assert(alignof(CRYPTO_atomic_u32) == alignof(uint32_t),
"CRYPTO_atomic_u32 does not match uint32_t alignment");
// Reference counting.
// CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates.
#define CRYPTO_REFCOUNT_MAX 0xffffffff
// CRYPTO_refcount_inc atomically increments the value at |*count| unless the
// value would overflow. It's safe for multiple threads to concurrently call
// this or |CRYPTO_refcount_dec_and_test_zero| on the same
// |CRYPTO_refcount_t|.
OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
// CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
// if it's zero, it crashes the address space.
// if it's the maximum value, it returns zero.
// otherwise, it atomically decrements it and returns one iff the resulting
// value is zero.
//
// It's safe for multiple threads to concurrently call this or
// |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|.
OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
// Locks.
#if !defined(OPENSSL_THREADS)
typedef struct crypto_mutex_st {
char padding; // Empty structs have different sizes in C and C++.
} CRYPTO_MUTEX;
#define CRYPTO_MUTEX_INIT { 0 }
#elif defined(OPENSSL_WINDOWS_THREADS)
typedef SRWLOCK CRYPTO_MUTEX;
#define CRYPTO_MUTEX_INIT SRWLOCK_INIT
#elif defined(OPENSSL_PTHREADS)
typedef pthread_rwlock_t CRYPTO_MUTEX;
#define CRYPTO_MUTEX_INIT PTHREAD_RWLOCK_INITIALIZER
#else
#error "Unknown threading library"
#endif
// CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
// |CRYPTO_MUTEX_INIT|.
OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
// CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
// read lock, but none may have a write lock.
OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
// CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
// of lock on it.
OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
// CRYPTO_MUTEX_unlock_read unlocks |lock| for reading.
OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);
// CRYPTO_MUTEX_unlock_write unlocks |lock| for writing.
OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);
// CRYPTO_MUTEX_cleanup releases all resources held by |lock|.
OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
#if defined(__cplusplus)
extern "C++" {
BSSL_NAMESPACE_BEGIN
namespace internal {
// MutexLockBase is a RAII helper for CRYPTO_MUTEX locking.
template <void (*LockFunc)(CRYPTO_MUTEX *), void (*ReleaseFunc)(CRYPTO_MUTEX *)>
class MutexLockBase {
public:
explicit MutexLockBase(CRYPTO_MUTEX *mu) : mu_(mu) {
assert(mu_ != nullptr);
LockFunc(mu_);
}
~MutexLockBase() { ReleaseFunc(mu_); }
MutexLockBase(const MutexLockBase<LockFunc, ReleaseFunc> &) = delete;
MutexLockBase &operator=(const MutexLockBase<LockFunc, ReleaseFunc> &) =
delete;
private:
CRYPTO_MUTEX *const mu_;
};
} // namespace internal
using MutexWriteLock =
internal::MutexLockBase<CRYPTO_MUTEX_lock_write, CRYPTO_MUTEX_unlock_write>;
using MutexReadLock =
internal::MutexLockBase<CRYPTO_MUTEX_lock_read, CRYPTO_MUTEX_unlock_read>;
BSSL_NAMESPACE_END
} // extern "C++"
#endif // defined(__cplusplus)
// Thread local storage.
// thread_local_data_t enumerates the types of thread-local data that can be
// stored.
typedef enum {
OPENSSL_THREAD_LOCAL_ERR = 0,
OPENSSL_THREAD_LOCAL_RAND,
OPENSSL_THREAD_LOCAL_FIPS_COUNTERS,
OPENSSL_THREAD_LOCAL_FIPS_SERVICE_INDICATOR_STATE,
OPENSSL_THREAD_LOCAL_TEST,
NUM_OPENSSL_THREAD_LOCALS,
} thread_local_data_t;
// thread_local_destructor_t is the type of a destructor function that will be
// called when a thread exits and its thread-local storage needs to be freed.
typedef void (*thread_local_destructor_t)(void *);
// CRYPTO_get_thread_local gets the pointer value that is stored for the
// current thread for the given index, or NULL if none has been set.
OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
// CRYPTO_set_thread_local sets a pointer value for the current thread at the
// given index. This function should only be called once per thread for a given
// |index|: rather than update the pointer value itself, update the data that
// is pointed to.
//
// The destructor function will be called when a thread exits to free this
// thread-local data. All calls to |CRYPTO_set_thread_local| with the same
// |index| should have the same |destructor| argument. The destructor may be
// called with a NULL argument if a thread that never set a thread-local
// pointer for |index|, exits. The destructor may be called concurrently with
// different arguments.
//
// This function returns one on success or zero on error. If it returns zero
// then |destructor| has been called with |value| already.
OPENSSL_EXPORT int CRYPTO_set_thread_local(
thread_local_data_t index, void *value,
thread_local_destructor_t destructor);
// ex_data
typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
// CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
// supports ex_data. It should defined as a static global within the module
// which defines that type.
typedef struct {
CRYPTO_MUTEX lock;
// funcs is a linked list of |CRYPTO_EX_DATA_FUNCS| structures. It may be
// traversed without serialization only up to |num_funcs|. last points to the
// final entry of |funcs|, or NULL if empty.
CRYPTO_EX_DATA_FUNCS *funcs, *last;
// num_funcs is the number of entries in |funcs|.
CRYPTO_atomic_u32 num_funcs;
// num_reserved is one if the ex_data index zero is reserved for legacy
// |TYPE_get_app_data| functions.
uint8_t num_reserved;
} CRYPTO_EX_DATA_CLASS;
#define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_MUTEX_INIT, NULL, NULL, 0, 0}
#define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
{CRYPTO_MUTEX_INIT, NULL, NULL, 0, 1}
// CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
// it to |*out_index|. Each class of object should provide a wrapper function
// that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
// zero otherwise.
OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
int *out_index, long argl,
void *argp,
CRYPTO_EX_free *free_func);
// CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
// of object should provide a wrapper function.
OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
// CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
// if no such index exists. Each class of object should provide a wrapper
// function.
OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
// CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|.
OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);
// CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
// object of the given class.
OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
void *obj, CRYPTO_EX_DATA *ad);
// Endianness conversions.
#if defined(__GNUC__) && __GNUC__ >= 2
static inline uint16_t CRYPTO_bswap2(uint16_t x) {
return __builtin_bswap16(x);
}
static inline uint32_t CRYPTO_bswap4(uint32_t x) {
return __builtin_bswap32(x);
}
static inline uint64_t CRYPTO_bswap8(uint64_t x) {
return __builtin_bswap64(x);
}
#elif defined(_MSC_VER)
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <stdlib.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#pragma intrinsic(_byteswap_uint64, _byteswap_ulong, _byteswap_ushort)
static inline uint16_t CRYPTO_bswap2(uint16_t x) {
return _byteswap_ushort(x);
}
static inline uint32_t CRYPTO_bswap4(uint32_t x) {
return _byteswap_ulong(x);
}
static inline uint64_t CRYPTO_bswap8(uint64_t x) {
return _byteswap_uint64(x);
}
#else
static inline uint16_t CRYPTO_bswap2(uint16_t x) {
return (x >> 8) | (x << 8);
}
static inline uint32_t CRYPTO_bswap4(uint32_t x) {
x = (x >> 16) | (x << 16);
x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
return x;
}
static inline uint64_t CRYPTO_bswap8(uint64_t x) {
return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32);
}
#endif
// Language bug workarounds.
//
// Most C standard library functions are undefined if passed NULL, even when the
// corresponding length is zero. This gives them (and, in turn, all functions
// which call them) surprising behavior on empty arrays. Some compilers will
// miscompile code due to this rule. See also
// https://www.imperialviolet.org/2016/06/26/nonnull.html
//
// These wrapper functions behave the same as the corresponding C standard
// functions, but behave as expected when passed NULL if the length is zero.
//
// Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|.
// C++ defines |memchr| as a const-correct overload.
#if defined(__cplusplus)
extern "C++" {
static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
if (n == 0) {
return NULL;
}
return memchr(s, c, n);
}
static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
if (n == 0) {
return NULL;
}
return memchr(s, c, n);
}
} // extern "C++"
#else // __cplusplus
static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
if (n == 0) {
return NULL;
}
return memchr(s, c, n);
}
#endif // __cplusplus
static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
if (n == 0) {
return 0;
}
return memcmp(s1, s2, n);
}
static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
if (n == 0) {
return dst;
}
return memcpy(dst, src, n);
}
static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
if (n == 0) {
return dst;
}
return memmove(dst, src, n);
}
static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
if (n == 0) {
return dst;
}
return memset(dst, c, n);
}
// Loads and stores.
//
// The following functions load and store sized integers with the specified
// endianness. They use |memcpy|, and so avoid alignment or strict aliasing
// requirements on the input and output pointers.
static inline uint32_t CRYPTO_load_u32_le(const void *in) {
uint32_t v;
OPENSSL_memcpy(&v, in, sizeof(v));
return v;
}
static inline void CRYPTO_store_u32_le(void *out, uint32_t v) {
OPENSSL_memcpy(out, &v, sizeof(v));
}
static inline uint32_t CRYPTO_load_u32_be(const void *in) {
uint32_t v;
OPENSSL_memcpy(&v, in, sizeof(v));
return CRYPTO_bswap4(v);
}
static inline void CRYPTO_store_u32_be(void *out, uint32_t v) {
v = CRYPTO_bswap4(v);
OPENSSL_memcpy(out, &v, sizeof(v));
}
static inline uint64_t CRYPTO_load_u64_le(const void *in) {
uint64_t v;
OPENSSL_memcpy(&v, in, sizeof(v));
return v;
}
static inline void CRYPTO_store_u64_le(void *out, uint64_t v) {
OPENSSL_memcpy(out, &v, sizeof(v));
}
static inline uint64_t CRYPTO_load_u64_be(const void *ptr) {
uint64_t ret;
OPENSSL_memcpy(&ret, ptr, sizeof(ret));
return CRYPTO_bswap8(ret);
}
static inline void CRYPTO_store_u64_be(void *out, uint64_t v) {
v = CRYPTO_bswap8(v);
OPENSSL_memcpy(out, &v, sizeof(v));
}
static inline crypto_word_t CRYPTO_load_word_le(const void *in) {
crypto_word_t v;
OPENSSL_memcpy(&v, in, sizeof(v));
return v;
}
static inline void CRYPTO_store_word_le(void *out, crypto_word_t v) {
OPENSSL_memcpy(out, &v, sizeof(v));
}
static inline crypto_word_t CRYPTO_load_word_be(const void *in) {
crypto_word_t v;
OPENSSL_memcpy(&v, in, sizeof(v));
#if defined(OPENSSL_64_BIT)
static_assert(sizeof(v) == 8, "crypto_word_t has unexpected size");
return CRYPTO_bswap8(v);
#else
static_assert(sizeof(v) == 4, "crypto_word_t has unexpected size");
return CRYPTO_bswap4(v);
#endif
}
// Bit rotation functions.
//
// Note these functions use |(-shift) & 31|, etc., because shifting by the bit
// width is undefined. Both Clang and GCC recognize this pattern as a rotation,
// but MSVC does not. Instead, we call MSVC's built-in functions.
static inline uint32_t CRYPTO_rotl_u32(uint32_t value, int shift) {
#if defined(_MSC_VER)
return _rotl(value, shift);
#else
return (value << shift) | (value >> ((-shift) & 31));
#endif
}
static inline uint32_t CRYPTO_rotr_u32(uint32_t value, int shift) {
#if defined(_MSC_VER)
return _rotr(value, shift);
#else
return (value >> shift) | (value << ((-shift) & 31));
#endif
}
static inline uint64_t CRYPTO_rotl_u64(uint64_t value, int shift) {
#if defined(_MSC_VER)
return _rotl64(value, shift);
#else
return (value << shift) | (value >> ((-shift) & 63));
#endif
}
static inline uint64_t CRYPTO_rotr_u64(uint64_t value, int shift) {
#if defined(_MSC_VER)
return _rotr64(value, shift);
#else
return (value >> shift) | (value << ((-shift) & 63));
#endif
}
// FIPS functions.
#if defined(BORINGSSL_FIPS)
// BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test
// fails. It prevents any further cryptographic operations by the current
// process.
void BORINGSSL_FIPS_abort(void) __attribute__((noreturn));
// boringssl_self_test_startup runs all startup self tests and returns one on
// success or zero on error. Startup self tests do not include lazy tests.
// Call |BORINGSSL_self_test| to run every self test.
int boringssl_self_test_startup(void);
// boringssl_ensure_rsa_self_test checks whether the RSA self-test has been run
// in this address space. If not, it runs it and crashes the address space if
// unsuccessful.
void boringssl_ensure_rsa_self_test(void);
// boringssl_ensure_ecc_self_test checks whether the ECDSA and ECDH self-test
// has been run in this address space. If not, it runs it and crashes the
// address space if unsuccessful.
void boringssl_ensure_ecc_self_test(void);
// boringssl_ensure_ffdh_self_test checks whether the FFDH self-test has been
// run in this address space. If not, it runs it and crashes the address space
// if unsuccessful.
void boringssl_ensure_ffdh_self_test(void);
#else
// Outside of FIPS mode, the lazy tests are no-ops.
OPENSSL_INLINE void boringssl_ensure_rsa_self_test(void) {}
OPENSSL_INLINE void boringssl_ensure_ecc_self_test(void) {}
OPENSSL_INLINE void boringssl_ensure_ffdh_self_test(void) {}
#endif // FIPS
// boringssl_self_test_sha256 performs a SHA-256 KAT.
int boringssl_self_test_sha256(void);
// boringssl_self_test_sha512 performs a SHA-512 KAT.
int boringssl_self_test_sha512(void);
// boringssl_self_test_hmac_sha256 performs an HMAC-SHA-256 KAT.
int boringssl_self_test_hmac_sha256(void);
#if defined(BORINGSSL_FIPS_COUNTERS)
void boringssl_fips_inc_counter(enum fips_counter_t counter);
#else
OPENSSL_INLINE void boringssl_fips_inc_counter(enum fips_counter_t counter) {}
#endif
#if defined(BORINGSSL_FIPS_BREAK_TESTS)
OPENSSL_INLINE int boringssl_fips_break_test(const char *test) {
const char *const value = getenv("BORINGSSL_FIPS_BREAK_TEST");
return value != NULL && strcmp(value, test) == 0;
}
#else
OPENSSL_INLINE int boringssl_fips_break_test(const char *test) {
return 0;
}
#endif // BORINGSSL_FIPS_BREAK_TESTS
// Runtime CPU feature support
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
// OPENSSL_ia32cap_P contains the Intel CPUID bits when running on an x86 or
// x86-64 system.
//
// Index 0:
// EDX for CPUID where EAX = 1
// Bit 20 is always zero
// Bit 28 is adjusted to reflect whether the data cache is shared between
// multiple logical cores
// Bit 30 is used to indicate an Intel CPU
// Index 1:
// ECX for CPUID where EAX = 1
// Bit 11 is used to indicate AMD XOP support, not SDBG
// Index 2:
// EBX for CPUID where EAX = 7
// Index 3:
// ECX for CPUID where EAX = 7
//
// Note: the CPUID bits are pre-adjusted for the OSXSAVE bit and the YMM and XMM
// bits in XCR0, so it is not necessary to check those.
extern uint32_t OPENSSL_ia32cap_P[4];
#if defined(BORINGSSL_FIPS) && !defined(BORINGSSL_SHARED_LIBRARY)
// The FIPS module, as a static library, requires an out-of-line version of
// |OPENSSL_ia32cap_get| so accesses can be rewritten by delocate. Mark the
// function const so multiple accesses can be optimized together.
const uint32_t *OPENSSL_ia32cap_get(void) __attribute__((const));
#else
OPENSSL_INLINE const uint32_t *OPENSSL_ia32cap_get(void) {
return OPENSSL_ia32cap_P;
}
#endif
// See Intel manual, volume 2A, table 3-11.
OPENSSL_INLINE int CRYPTO_is_FXSR_capable(void) {
#if defined(__FXSR__)
return 1;
#else
return (OPENSSL_ia32cap_get()[0] & (1 << 24)) != 0;
#endif
}
OPENSSL_INLINE int CRYPTO_is_intel_cpu(void) {
// The reserved bit 30 is used to indicate an Intel CPU.
return (OPENSSL_ia32cap_get()[0] & (1 << 30)) != 0;
}
// See Intel manual, volume 2A, table 3-10.
OPENSSL_INLINE int CRYPTO_is_PCLMUL_capable(void) {
#if defined(__PCLMUL__)
return 1;
#else
return (OPENSSL_ia32cap_get()[1] & (1 << 1)) != 0;
#endif
}
OPENSSL_INLINE int CRYPTO_is_SSSE3_capable(void) {
#if defined(__SSSE3__)
return 1;
#else
return (OPENSSL_ia32cap_get()[1] & (1 << 9)) != 0;
#endif
}
OPENSSL_INLINE int CRYPTO_is_SSE4_1_capable(void) {
#if defined(__SSE4_1__)
return 1;
#else
return (OPENSSL_ia32cap_P[1] & (1 << 19)) != 0;
#endif
}
OPENSSL_INLINE int CRYPTO_is_MOVBE_capable(void) {
#if defined(__MOVBE__)
return 1;
#else
return (OPENSSL_ia32cap_get()[1] & (1 << 22)) != 0;
#endif
}
OPENSSL_INLINE int CRYPTO_is_AESNI_capable(void) {
#if defined(__AES__)
return 1;
#else
return (OPENSSL_ia32cap_get()[1] & (1 << 25)) != 0;
#endif
}
OPENSSL_INLINE int CRYPTO_is_AVX_capable(void) {
#if defined(__AVX__)
return 1;
#else
return (OPENSSL_ia32cap_get()[1] & (1 << 28)) != 0;
#endif
}
OPENSSL_INLINE int CRYPTO_is_RDRAND_capable(void) {
// The GCC/Clang feature name and preprocessor symbol for RDRAND are "rdrnd"
// and |__RDRND__|, respectively.
#if defined(__RDRND__)
return 1;
#else
return (OPENSSL_ia32cap_get()[1] & (1u << 30)) != 0;
#endif
}
// See Intel manual, volume 2A, table 3-8.
OPENSSL_INLINE int CRYPTO_is_BMI1_capable(void) {
#if defined(__BMI1__)
return 1;
#else
return (OPENSSL_ia32cap_get()[2] & (1 << 3)) != 0;
#endif
}
OPENSSL_INLINE int CRYPTO_is_AVX2_capable(void) {
#if defined(__AVX2__)
return 1;
#else
return (OPENSSL_ia32cap_get()[2] & (1 << 5)) != 0;
#endif
}
OPENSSL_INLINE int CRYPTO_is_BMI2_capable(void) {
#if defined(__BMI2__)
return 1;
#else
return (OPENSSL_ia32cap_get()[2] & (1 << 8)) != 0;
#endif
}
OPENSSL_INLINE int CRYPTO_is_ADX_capable(void) {
#if defined(__ADX__)
return 1;
#else
return (OPENSSL_ia32cap_get()[2] & (1 << 19)) != 0;
#endif
}
#endif // OPENSSL_X86 || OPENSSL_X86_64
#if defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
extern uint32_t OPENSSL_armcap_P;
// We do not detect any features at runtime on several 32-bit Arm platforms.
// Apple platforms and OpenBSD require NEON and moved to 64-bit to pick up Armv8
// extensions. Android baremetal does not aim to support 32-bit Arm at all, but
// it simplifies things to make it build.
#if defined(OPENSSL_ARM) && !defined(OPENSSL_STATIC_ARMCAP) && \
(defined(OPENSSL_APPLE) || defined(OPENSSL_OPENBSD) || \
defined(ANDROID_BAREMETAL))
#define OPENSSL_STATIC_ARMCAP
#endif
// Normalize some older feature flags to their modern ACLE values.
// https://developer.arm.com/architectures/system-architectures/software-standards/acle
#if defined(__ARM_NEON__) && !defined(__ARM_NEON)
#define __ARM_NEON 1
#endif
#if defined(__ARM_FEATURE_CRYPTO)
#if !defined(__ARM_FEATURE_AES)
#define __ARM_FEATURE_AES 1
#endif
#if !defined(__ARM_FEATURE_SHA2)
#define __ARM_FEATURE_SHA2 1
#endif
#endif
// CRYPTO_is_NEON_capable returns true if the current CPU has a NEON unit. If
// this is known statically, it is a constant inline function.
OPENSSL_INLINE int CRYPTO_is_NEON_capable(void) {
#if defined(OPENSSL_STATIC_ARMCAP_NEON) || defined(__ARM_NEON)
return 1;
#elif defined(OPENSSL_STATIC_ARMCAP)
return 0;
#else
return (OPENSSL_armcap_P & ARMV7_NEON) != 0;
#endif
}
OPENSSL_INLINE int CRYPTO_is_ARMv8_AES_capable(void) {
#if defined(OPENSSL_STATIC_ARMCAP_AES) || defined(__ARM_FEATURE_AES)
return 1;
#elif defined(OPENSSL_STATIC_ARMCAP)
return 0;
#else
return (OPENSSL_armcap_P & ARMV8_AES) != 0;
#endif
}
OPENSSL_INLINE int CRYPTO_is_ARMv8_PMULL_capable(void) {
#if defined(OPENSSL_STATIC_ARMCAP_PMULL) || defined(__ARM_FEATURE_AES)
return 1;
#elif defined(OPENSSL_STATIC_ARMCAP)
return 0;
#else
return (OPENSSL_armcap_P & ARMV8_PMULL) != 0;
#endif
}
#endif // OPENSSL_ARM || OPENSSL_AARCH64
#if defined(BORINGSSL_DISPATCH_TEST)
// Runtime CPU dispatch testing support
// BORINGSSL_function_hit is an array of flags. The following functions will
// set these flags if BORINGSSL_DISPATCH_TEST is defined.
// 0: aes_hw_ctr32_encrypt_blocks
// 1: aes_hw_encrypt
// 2: aesni_gcm_encrypt
// 3: aes_hw_set_encrypt_key
// 4: vpaes_encrypt
// 5: vpaes_set_encrypt_key
extern uint8_t BORINGSSL_function_hit[7];
#endif // BORINGSSL_DISPATCH_TEST
// OPENSSL_vasprintf_internal is just like |vasprintf(3)|. If |system_malloc| is
// 0, memory will be allocated with |OPENSSL_malloc| and must be freed with
// |OPENSSL_free|. Otherwise the system |malloc| function is used and the memory
// must be freed with the system |free| function.
OPENSSL_EXPORT int OPENSSL_vasprintf_internal(char **str, const char *format,
va_list args, int system_malloc)
OPENSSL_PRINTF_FORMAT_FUNC(2, 0);
#if defined(__cplusplus)
} // extern C
#endif
#endif // OPENSSL_HEADER_CRYPTO_INTERNAL_H