// Copyright 2015 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "parse_certificate.h" #include "cert_errors.h" #include "general_names.h" #include "parsed_certificate.h" #include "test_helpers.h" #include "input.h" #include #include namespace bssl { namespace { // Pretty-prints a GeneralizedTime as a human-readable string for use in test // expectations (it is more readable to specify the expected results as a // string). std::string ToString(const der::GeneralizedTime& time) { std::ostringstream pretty_time; pretty_time << "year=" << int{time.year} << ", month=" << int{time.month} << ", day=" << int{time.day} << ", hours=" << int{time.hours} << ", minutes=" << int{time.minutes} << ", seconds=" << int{time.seconds}; return pretty_time.str(); } std::string GetFilePath(const std::string& file_name) { return std::string("testdata/parse_certificate_unittest/") + file_name; } // Loads certificate data and expectations from the PEM file |file_name|. // Verifies that parsing the Certificate matches expectations: // * If expected to fail, emits the expected errors // * If expected to succeeds, the parsed fields match expectations void RunCertificateTest(const std::string& file_name) { std::string data; std::string expected_errors; std::string expected_tbs_certificate; std::string expected_signature_algorithm; std::string expected_signature; // Read the certificate data and test expectations from a single PEM file. const PemBlockMapping mappings[] = { {"CERTIFICATE", &data}, {"ERRORS", &expected_errors, true /*optional*/}, {"SIGNATURE", &expected_signature, true /*optional*/}, {"SIGNATURE ALGORITHM", &expected_signature_algorithm, true /*optional*/}, {"TBS CERTIFICATE", &expected_tbs_certificate, true /*optional*/}, }; std::string test_file_path = GetFilePath(file_name); ASSERT_TRUE(ReadTestDataFromPemFile(test_file_path, mappings)); // Note that empty expected_errors doesn't necessarily mean success. bool expected_result = !expected_tbs_certificate.empty(); // Parsing the certificate. der::Input tbs_certificate_tlv; der::Input signature_algorithm_tlv; der::BitString signature_value; CertErrors errors; bool actual_result = ParseCertificate(der::Input(data), &tbs_certificate_tlv, &signature_algorithm_tlv, &signature_value, &errors); EXPECT_EQ(expected_result, actual_result); VerifyCertErrors(expected_errors, errors, test_file_path); // Ensure that the parsed certificate matches expectations. if (expected_result && actual_result) { EXPECT_EQ(0, signature_value.unused_bits()); EXPECT_EQ(der::Input(expected_signature), signature_value.bytes()); EXPECT_EQ(der::Input(expected_signature_algorithm), signature_algorithm_tlv); EXPECT_EQ(der::Input(expected_tbs_certificate), tbs_certificate_tlv); } } // Tests parsing a Certificate. TEST(ParseCertificateTest, Version3) { RunCertificateTest("cert_version3.pem"); } // Tests parsing a simplified Certificate-like structure (the sub-fields for // algorithm and tbsCertificate are not actually valid, but ParseCertificate() // doesn't check them) TEST(ParseCertificateTest, Skeleton) { RunCertificateTest("cert_skeleton.pem"); } // Tests parsing a Certificate that is not a sequence fails. TEST(ParseCertificateTest, NotSequence) { RunCertificateTest("cert_not_sequence.pem"); } // Tests that uncomsumed data is not allowed after the main SEQUENCE. TEST(ParseCertificateTest, DataAfterSignature) { RunCertificateTest("cert_data_after_signature.pem"); } // Tests that parsing fails if the signature BIT STRING is missing. TEST(ParseCertificateTest, MissingSignature) { RunCertificateTest("cert_missing_signature.pem"); } // Tests that parsing fails if the signature is present but not a BIT STRING. TEST(ParseCertificateTest, SignatureNotBitString) { RunCertificateTest("cert_signature_not_bit_string.pem"); } // Tests that parsing fails if the main SEQUENCE is empty (missing all the // fields). TEST(ParseCertificateTest, EmptySequence) { RunCertificateTest("cert_empty_sequence.pem"); } // Tests what happens when the signature algorithm is present, but has the wrong // tag. TEST(ParseCertificateTest, AlgorithmNotSequence) { RunCertificateTest("cert_algorithm_not_sequence.pem"); } // Loads tbsCertificate data and expectations from the PEM file |file_name|. // Verifies that parsing the TBSCertificate succeeds, and each parsed field // matches the expectations. // // TODO(eroman): Get rid of the |expected_version| parameter -- this should be // encoded in the test expectations file. void RunTbsCertificateTestGivenVersion(const std::string& file_name, CertificateVersion expected_version) { std::string data; std::string expected_serial_number; std::string expected_signature_algorithm; std::string expected_issuer; std::string expected_validity_not_before; std::string expected_validity_not_after; std::string expected_subject; std::string expected_spki; std::string expected_issuer_unique_id; std::string expected_subject_unique_id; std::string expected_extensions; std::string expected_errors; // Read the certificate data and test expectations from a single PEM file. const PemBlockMapping mappings[] = { {"TBS CERTIFICATE", &data}, {"SIGNATURE ALGORITHM", &expected_signature_algorithm, true}, {"SERIAL NUMBER", &expected_serial_number, true}, {"ISSUER", &expected_issuer, true}, {"VALIDITY NOTBEFORE", &expected_validity_not_before, true}, {"VALIDITY NOTAFTER", &expected_validity_not_after, true}, {"SUBJECT", &expected_subject, true}, {"SPKI", &expected_spki, true}, {"ISSUER UNIQUE ID", &expected_issuer_unique_id, true}, {"SUBJECT UNIQUE ID", &expected_subject_unique_id, true}, {"EXTENSIONS", &expected_extensions, true}, {"ERRORS", &expected_errors, true}, }; std::string test_file_path = GetFilePath(file_name); ASSERT_TRUE(ReadTestDataFromPemFile(test_file_path, mappings)); bool expected_result = !expected_spki.empty(); ParsedTbsCertificate parsed; CertErrors errors; bool actual_result = ParseTbsCertificate(der::Input(data), {}, &parsed, &errors); EXPECT_EQ(expected_result, actual_result); VerifyCertErrors(expected_errors, errors, test_file_path); if (!expected_result || !actual_result) return; // Ensure that the ParsedTbsCertificate matches expectations. EXPECT_EQ(expected_version, parsed.version); EXPECT_EQ(der::Input(expected_serial_number), parsed.serial_number); EXPECT_EQ(der::Input(expected_signature_algorithm), parsed.signature_algorithm_tlv); EXPECT_EQ(der::Input(expected_issuer), parsed.issuer_tlv); // In the test expectations PEM file, validity is described as a // textual string of the parsed value (rather than as DER). EXPECT_EQ(expected_validity_not_before, ToString(parsed.validity_not_before)); EXPECT_EQ(expected_validity_not_after, ToString(parsed.validity_not_after)); EXPECT_EQ(der::Input(expected_subject), parsed.subject_tlv); EXPECT_EQ(der::Input(expected_spki), parsed.spki_tlv); EXPECT_EQ(!expected_issuer_unique_id.empty(), parsed.issuer_unique_id.has_value()); if (parsed.issuer_unique_id.has_value()) { EXPECT_EQ(der::Input(expected_issuer_unique_id), parsed.issuer_unique_id->bytes()); } EXPECT_EQ(!expected_subject_unique_id.empty(), parsed.subject_unique_id.has_value()); if (parsed.subject_unique_id.has_value()) { EXPECT_EQ(der::Input(expected_subject_unique_id), parsed.subject_unique_id->bytes()); } EXPECT_EQ(!expected_extensions.empty(), parsed.extensions_tlv.has_value()); if (parsed.extensions_tlv) { EXPECT_EQ(der::Input(expected_extensions), parsed.extensions_tlv.value()); } } void RunTbsCertificateTest(const std::string& file_name) { RunTbsCertificateTestGivenVersion(file_name, CertificateVersion::V3); } // Tests parsing a TBSCertificate for v3 that contains no optional fields. TEST(ParseTbsCertificateTest, Version3NoOptionals) { RunTbsCertificateTest("tbs_v3_no_optionals.pem"); } // Tests parsing a TBSCertificate for v3 that contains extensions. TEST(ParseTbsCertificateTest, Version3WithExtensions) { RunTbsCertificateTest("tbs_v3_extensions.pem"); } // Tests parsing a TBSCertificate which lacks a version number (causing it to // default to v1). TEST(ParseTbsCertificateTest, Version1) { RunTbsCertificateTestGivenVersion("tbs_v1.pem", CertificateVersion::V1); } // The version was set to v1 explicitly rather than omitting the version field. TEST(ParseTbsCertificateTest, ExplicitVersion1) { RunTbsCertificateTest("tbs_explicit_v1.pem"); } // Extensions are not defined in version 1. TEST(ParseTbsCertificateTest, Version1WithExtensions) { RunTbsCertificateTest("tbs_v1_extensions.pem"); } // Extensions are not defined in version 2. TEST(ParseTbsCertificateTest, Version2WithExtensions) { RunTbsCertificateTest("tbs_v2_extensions.pem"); } // A boring version 2 certificate with none of the optional fields. TEST(ParseTbsCertificateTest, Version2NoOptionals) { RunTbsCertificateTestGivenVersion("tbs_v2_no_optionals.pem", CertificateVersion::V2); } // A version 2 certificate with an issuer unique ID field. TEST(ParseTbsCertificateTest, Version2IssuerUniqueId) { RunTbsCertificateTestGivenVersion("tbs_v2_issuer_unique_id.pem", CertificateVersion::V2); } // A version 2 certificate with both a issuer and subject unique ID field. TEST(ParseTbsCertificateTest, Version2IssuerAndSubjectUniqueId) { RunTbsCertificateTestGivenVersion("tbs_v2_issuer_and_subject_unique_id.pem", CertificateVersion::V2); } // A version 3 certificate with all of the optional fields (issuer unique id, // subject unique id, and extensions). TEST(ParseTbsCertificateTest, Version3AllOptionals) { RunTbsCertificateTest("tbs_v3_all_optionals.pem"); } // The version was set to v4, which is unrecognized. TEST(ParseTbsCertificateTest, Version4) { RunTbsCertificateTest("tbs_v4.pem"); } // Tests that extraneous data after extensions in a v3 is rejected. TEST(ParseTbsCertificateTest, Version3DataAfterExtensions) { RunTbsCertificateTest("tbs_v3_data_after_extensions.pem"); } // Tests using a real-world certificate (whereas the other tests are fabricated // (and in fact invalid) data. TEST(ParseTbsCertificateTest, Version3Real) { RunTbsCertificateTest("tbs_v3_real.pem"); } // Parses a TBSCertificate whose "validity" field expresses both notBefore // and notAfter using UTCTime. TEST(ParseTbsCertificateTest, ValidityBothUtcTime) { RunTbsCertificateTest("tbs_validity_both_utc_time.pem"); } // Parses a TBSCertificate whose "validity" field expresses both notBefore // and notAfter using GeneralizedTime. TEST(ParseTbsCertificateTest, ValidityBothGeneralizedTime) { RunTbsCertificateTest("tbs_validity_both_generalized_time.pem"); } // Parses a TBSCertificate whose "validity" field expresses notBefore using // UTCTime and notAfter using GeneralizedTime. TEST(ParseTbsCertificateTest, ValidityUTCTimeAndGeneralizedTime) { RunTbsCertificateTest("tbs_validity_utc_time_and_generalized_time.pem"); } // Parses a TBSCertificate whose validity" field expresses notBefore using // GeneralizedTime and notAfter using UTCTime. Also of interest, notBefore > // notAfter. Parsing will succeed, however no time can satisfy this constraint. TEST(ParseTbsCertificateTest, ValidityGeneralizedTimeAndUTCTime) { RunTbsCertificateTest("tbs_validity_generalized_time_and_utc_time.pem"); } // Parses a TBSCertificate whose "validity" field does not strictly follow // the DER rules (and fails to be parsed). TEST(ParseTbsCertificateTest, ValidityRelaxed) { RunTbsCertificateTest("tbs_validity_relaxed.pem"); } // Parses a KeyUsage with a single 0 bit. TEST(ParseKeyUsageTest, OneBitAllZeros) { const uint8_t der[] = { 0x03, 0x02, // BIT STRING 0x07, // Number of unused bits 0x00, // bits }; der::BitString key_usage; ASSERT_FALSE(ParseKeyUsage(der::Input(der), &key_usage)); } // Parses a KeyUsage with 32 bits that are all 0. TEST(ParseKeyUsageTest, 32BitsAllZeros) { const uint8_t der[] = { 0x03, 0x05, // BIT STRING 0x00, // Number of unused bits 0x00, 0x00, 0x00, 0x00, }; der::BitString key_usage; ASSERT_FALSE(ParseKeyUsage(der::Input(der), &key_usage)); } // Parses a KeyUsage with 32 bits, one of which is 1 (but not in recognized // set). TEST(ParseKeyUsageTest, 32BitsOneSet) { const uint8_t der[] = { 0x03, 0x05, // BIT STRING 0x00, // Number of unused bits 0x00, 0x00, 0x00, 0x02, }; der::BitString key_usage; ASSERT_TRUE(ParseKeyUsage(der::Input(der), &key_usage)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DIGITAL_SIGNATURE)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_NON_REPUDIATION)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_ENCIPHERMENT)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DATA_ENCIPHERMENT)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_AGREEMENT)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_CERT_SIGN)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_CRL_SIGN)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_ENCIPHER_ONLY)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DECIPHER_ONLY)); } // Parses a KeyUsage containing bit string 101. TEST(ParseKeyUsageTest, ThreeBits) { const uint8_t der[] = { 0x03, 0x02, // BIT STRING 0x05, // Number of unused bits 0xA0, // bits }; der::BitString key_usage; ASSERT_TRUE(ParseKeyUsage(der::Input(der), &key_usage)); EXPECT_TRUE(key_usage.AssertsBit(KEY_USAGE_BIT_DIGITAL_SIGNATURE)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_NON_REPUDIATION)); EXPECT_TRUE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_ENCIPHERMENT)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DATA_ENCIPHERMENT)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_AGREEMENT)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_CERT_SIGN)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_CRL_SIGN)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_ENCIPHER_ONLY)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DECIPHER_ONLY)); } // Parses a KeyUsage containing DECIPHER_ONLY, which is the // only bit that doesn't fit in the first byte. TEST(ParseKeyUsageTest, DecipherOnly) { const uint8_t der[] = { 0x03, 0x03, // BIT STRING 0x07, // Number of unused bits 0x00, 0x80, // bits }; der::BitString key_usage; ASSERT_TRUE(ParseKeyUsage(der::Input(der), &key_usage)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DIGITAL_SIGNATURE)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_NON_REPUDIATION)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_ENCIPHERMENT)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DATA_ENCIPHERMENT)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_AGREEMENT)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_CERT_SIGN)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_CRL_SIGN)); EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_ENCIPHER_ONLY)); EXPECT_TRUE(key_usage.AssertsBit(KEY_USAGE_BIT_DECIPHER_ONLY)); } // Parses an empty KeyUsage. TEST(ParseKeyUsageTest, Empty) { const uint8_t der[] = { 0x03, 0x01, // BIT STRING 0x00, // Number of unused bits }; der::BitString key_usage; ASSERT_FALSE(ParseKeyUsage(der::Input(der), &key_usage)); } TEST(ParseAuthorityInfoAccess, BasicTests) { // SEQUENCE { // SEQUENCE { // # ocsp with directoryName // OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.1 } // [4] { // SEQUENCE { // SET { // SEQUENCE { // # commonName // OBJECT_IDENTIFIER { 2.5.4.3 } // PrintableString { "ocsp" } // } // } // } // } // } // SEQUENCE { // # caIssuers with directoryName // OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.2 } // [4] { // SEQUENCE { // SET { // SEQUENCE { // # commonName // OBJECT_IDENTIFIER { 2.5.4.3 } // PrintableString { "ca issuer" } // } // } // } // } // } // SEQUENCE { // # non-standard method with URI // OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.3 } // [6 PRIMITIVE] { "http://nonstandard.example.com" } // } // SEQUENCE { // # ocsp with URI // OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.1 } // [6 PRIMITIVE] { "http://ocsp.example.com" } // } // SEQUENCE { // # caIssuers with URI // OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.2 } // [6 PRIMITIVE] { "http://www.example.com/issuer.crt" } // } // } const uint8_t der[] = { 0x30, 0x81, 0xc3, 0x30, 0x1d, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x30, 0x01, 0xa4, 0x11, 0x30, 0x0f, 0x31, 0x0d, 0x30, 0x0b, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x04, 0x6f, 0x63, 0x73, 0x70, 0x30, 0x22, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x30, 0x02, 0xa4, 0x16, 0x30, 0x14, 0x31, 0x12, 0x30, 0x10, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x09, 0x63, 0x61, 0x20, 0x69, 0x73, 0x73, 0x75, 0x65, 0x72, 0x30, 0x2a, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x30, 0x03, 0x86, 0x1e, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x6e, 0x6f, 0x6e, 0x73, 0x74, 0x61, 0x6e, 0x64, 0x61, 0x72, 0x64, 0x2e, 0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d, 0x30, 0x23, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x30, 0x01, 0x86, 0x17, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x6f, 0x63, 0x73, 0x70, 0x2e, 0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d, 0x30, 0x2d, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x30, 0x02, 0x86, 0x21, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x77, 0x77, 0x77, 0x2e, 0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x69, 0x73, 0x73, 0x75, 0x65, 0x72, 0x2e, 0x63, 0x72, 0x74}; std::vector access_descriptions; ASSERT_TRUE(ParseAuthorityInfoAccess(der::Input(der), &access_descriptions)); ASSERT_EQ(5u, access_descriptions.size()); { const auto& desc = access_descriptions[0]; EXPECT_EQ(der::Input(kAdOcspOid), desc.access_method_oid); const uint8_t location_der[] = {0xa4, 0x11, 0x30, 0x0f, 0x31, 0x0d, 0x30, 0x0b, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x04, 0x6f, 0x63, 0x73, 0x70}; EXPECT_EQ(der::Input(location_der), desc.access_location); } { const auto& desc = access_descriptions[1]; EXPECT_EQ(der::Input(kAdCaIssuersOid), desc.access_method_oid); const uint8_t location_der[] = { 0xa4, 0x16, 0x30, 0x14, 0x31, 0x12, 0x30, 0x10, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x09, 0x63, 0x61, 0x20, 0x69, 0x73, 0x73, 0x75, 0x65, 0x72}; EXPECT_EQ(der::Input(location_der), desc.access_location); } { const auto& desc = access_descriptions[2]; const uint8_t method_oid[] = {0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x30, 0x03}; EXPECT_EQ(der::Input(method_oid), desc.access_method_oid); const uint8_t location_der[] = { 0x86, 0x1e, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x6e, 0x6f, 0x6e, 0x73, 0x74, 0x61, 0x6e, 0x64, 0x61, 0x72, 0x64, 0x2e, 0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d}; EXPECT_EQ(der::Input(location_der), desc.access_location); } { const auto& desc = access_descriptions[3]; EXPECT_EQ(der::Input(kAdOcspOid), desc.access_method_oid); const uint8_t location_der[] = {0x86, 0x17, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x6f, 0x63, 0x73, 0x70, 0x2e, 0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d}; EXPECT_EQ(der::Input(location_der), desc.access_location); } { const auto& desc = access_descriptions[4]; EXPECT_EQ(der::Input(kAdCaIssuersOid), desc.access_method_oid); const uint8_t location_der[] = { 0x86, 0x21, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x77, 0x77, 0x77, 0x2e, 0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x69, 0x73, 0x73, 0x75, 0x65, 0x72, 0x2e, 0x63, 0x72, 0x74}; EXPECT_EQ(der::Input(location_der), desc.access_location); } std::vector ca_issuers_uris, ocsp_uris; ASSERT_TRUE(ParseAuthorityInfoAccessURIs(der::Input(der), &ca_issuers_uris, &ocsp_uris)); ASSERT_EQ(1u, ca_issuers_uris.size()); EXPECT_EQ("http://www.example.com/issuer.crt", ca_issuers_uris.front()); ASSERT_EQ(1u, ocsp_uris.size()); EXPECT_EQ("http://ocsp.example.com", ocsp_uris.front()); } TEST(ParseAuthorityInfoAccess, NoOcspOrCaIssuersURIs) { // SEQUENCE { // SEQUENCE { // # non-standard method with directoryName // OBJECT_IDENTIFIER { 1.2.3 } // [4] { // SEQUENCE { // SET { // SEQUENCE { // # commonName // OBJECT_IDENTIFIER { 2.5.4.3 } // PrintableString { "foo" } // } // } // } // } // } // } const uint8_t der[] = {0x30, 0x18, 0x30, 0x16, 0x06, 0x02, 0x2a, 0x03, 0xa4, 0x10, 0x30, 0x0e, 0x31, 0x0c, 0x30, 0x0a, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x03, 0x66, 0x6f, 0x6f}; std::vector access_descriptions; ASSERT_TRUE(ParseAuthorityInfoAccess(der::Input(der), &access_descriptions)); ASSERT_EQ(1u, access_descriptions.size()); const auto& desc = access_descriptions[0]; const uint8_t method_oid[] = {0x2a, 0x03}; EXPECT_EQ(der::Input(method_oid), desc.access_method_oid); const uint8_t location_der[] = {0xa4, 0x10, 0x30, 0x0e, 0x31, 0x0c, 0x30, 0x0a, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x03, 0x66, 0x6f, 0x6f}; EXPECT_EQ(der::Input(location_der), desc.access_location); std::vector ca_issuers_uris, ocsp_uris; // ParseAuthorityInfoAccessURIs should still return success since it was a // valid AuthorityInfoAccess extension, even though it did not contain any // elements we care about, and both output vectors should be empty. ASSERT_TRUE(ParseAuthorityInfoAccessURIs(der::Input(der), &ca_issuers_uris, &ocsp_uris)); EXPECT_EQ(0u, ca_issuers_uris.size()); EXPECT_EQ(0u, ocsp_uris.size()); } TEST(ParseAuthorityInfoAccess, IncompleteAccessDescription) { // SEQUENCE { // # first entry is ok // SEQUENCE { // OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.1 } // [6 PRIMITIVE] { "http://ocsp.example.com" } // } // # second is missing accessLocation field // SEQUENCE { // OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.2 } // } // } const uint8_t der[] = {0x30, 0x31, 0x30, 0x23, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x30, 0x01, 0x86, 0x17, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x6f, 0x63, 0x73, 0x70, 0x2e, 0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d, 0x30, 0x0a, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x30, 0x02}; std::vector access_descriptions; EXPECT_FALSE(ParseAuthorityInfoAccess(der::Input(der), &access_descriptions)); std::vector ca_issuers_uris, ocsp_uris; EXPECT_FALSE(ParseAuthorityInfoAccessURIs(der::Input(der), &ca_issuers_uris, &ocsp_uris)); } TEST(ParseAuthorityInfoAccess, ExtraDataInAccessDescription) { // SEQUENCE { // SEQUENCE { // OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.1 } // [6 PRIMITIVE] { "http://ocsp.example.com" } // # invalid, AccessDescription only has 2 fields // PrintableString { "henlo" } // } // } const uint8_t der[] = { 0x30, 0x2c, 0x30, 0x2a, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x30, 0x01, 0x86, 0x17, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x6f, 0x63, 0x73, 0x70, 0x2e, 0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d, 0x13, 0x05, 0x68, 0x65, 0x6e, 0x6c, 0x6f}; std::vector access_descriptions; EXPECT_FALSE(ParseAuthorityInfoAccess(der::Input(der), &access_descriptions)); std::vector ca_issuers_uris, ocsp_uris; EXPECT_FALSE(ParseAuthorityInfoAccessURIs(der::Input(der), &ca_issuers_uris, &ocsp_uris)); } TEST(ParseAuthorityInfoAccess, EmptySequence) { // SEQUENCE { } const uint8_t der[] = {0x30, 0x00}; std::vector access_descriptions; EXPECT_FALSE(ParseAuthorityInfoAccess(der::Input(der), &access_descriptions)); std::vector ca_issuers_uris, ocsp_uris; EXPECT_FALSE(ParseAuthorityInfoAccessURIs(der::Input(der), &ca_issuers_uris, &ocsp_uris)); } // Test fixture for testing ParseCrlDistributionPoints. // // Test data is encoded in certificate files. This fixture is responsible for // reading and parsing the certificates to get at the extension under test. class ParseCrlDistributionPointsTest : public ::testing::Test { public: protected: bool GetCrlDps(const char* file_name, std::vector* dps) { std::string cert_bytes; // Read the test certificate file. const PemBlockMapping mappings[] = { {"CERTIFICATE", &cert_bytes}, }; std::string test_file_path = GetFilePath(file_name); EXPECT_TRUE(ReadTestDataFromPemFile(test_file_path, mappings)); // Extract the CRLDP from the test Certificate. CertErrors errors; std::shared_ptr cert = ParsedCertificate::Create( bssl::UniquePtr(CRYPTO_BUFFER_new( reinterpret_cast(cert_bytes.data()), cert_bytes.size(), nullptr)), {}, &errors); if (!cert) return false; auto it = cert->extensions().find(der::Input(kCrlDistributionPointsOid)); if (it == cert->extensions().end()) return false; der::Input crl_dp_tlv = it->second.value; // Keep the certificate data alive, since this function will return // der::Inputs that reference it. Run the function under test (for parsing // // TODO(eroman): The use of ParsedCertificate in this test should be removed // in lieu of lazy parsing. keep_alive_certs_.push_back(cert); return ParseCrlDistributionPoints(crl_dp_tlv, dps); } private: ParsedCertificateList keep_alive_certs_; }; TEST_F(ParseCrlDistributionPointsTest, OneUriNoIssuer) { std::vector dps; ASSERT_TRUE(GetCrlDps("crldp_1uri_noissuer.pem", &dps)); ASSERT_EQ(1u, dps.size()); const ParsedDistributionPoint& dp1 = dps.front(); ASSERT_TRUE(dp1.distribution_point_fullname); const GeneralNames& fullname = *dp1.distribution_point_fullname; EXPECT_EQ(GENERAL_NAME_UNIFORM_RESOURCE_IDENTIFIER, fullname.present_name_types); ASSERT_EQ(1u, fullname.uniform_resource_identifiers.size()); EXPECT_EQ(fullname.uniform_resource_identifiers.front(), std::string("http://www.example.com/foo.crl")); EXPECT_FALSE(dp1.distribution_point_name_relative_to_crl_issuer); EXPECT_FALSE(dp1.reasons); EXPECT_FALSE(dp1.crl_issuer); } TEST_F(ParseCrlDistributionPointsTest, ThreeUrisNoIssuer) { std::vector dps; ASSERT_TRUE(GetCrlDps("crldp_3uri_noissuer.pem", &dps)); ASSERT_EQ(1u, dps.size()); const ParsedDistributionPoint& dp1 = dps.front(); ASSERT_TRUE(dp1.distribution_point_fullname); const GeneralNames& fullname = *dp1.distribution_point_fullname; EXPECT_EQ(GENERAL_NAME_UNIFORM_RESOURCE_IDENTIFIER, fullname.present_name_types); ASSERT_EQ(3u, fullname.uniform_resource_identifiers.size()); EXPECT_EQ(fullname.uniform_resource_identifiers[0], std::string("http://www.example.com/foo1.crl")); EXPECT_EQ(fullname.uniform_resource_identifiers[1], std::string("http://www.example.com/blah.crl")); EXPECT_EQ(fullname.uniform_resource_identifiers[2], std::string("not-even-a-url")); EXPECT_FALSE(dp1.distribution_point_name_relative_to_crl_issuer); EXPECT_FALSE(dp1.reasons); EXPECT_FALSE(dp1.crl_issuer); } TEST_F(ParseCrlDistributionPointsTest, CrlIssuerAsDirname) { std::vector dps; ASSERT_TRUE(GetCrlDps("crldp_issuer_as_dirname.pem", &dps)); ASSERT_EQ(1u, dps.size()); const ParsedDistributionPoint& dp1 = dps.front(); ASSERT_TRUE(dp1.distribution_point_fullname); const GeneralNames& fullname = *dp1.distribution_point_fullname; EXPECT_EQ(GENERAL_NAME_DIRECTORY_NAME, fullname.present_name_types); // Generated by `ascii2der | xxd -i` from the Name value in // crldp_issuer_as_dirname.pem. const uint8_t kExpectedName[] = { 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, 0x55, 0x53, 0x31, 0x1f, 0x30, 0x1d, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x13, 0x16, 0x54, 0x65, 0x73, 0x74, 0x20, 0x43, 0x65, 0x72, 0x74, 0x69, 0x66, 0x69, 0x63, 0x61, 0x74, 0x65, 0x73, 0x20, 0x32, 0x30, 0x31, 0x31, 0x31, 0x22, 0x30, 0x20, 0x06, 0x03, 0x55, 0x04, 0x0b, 0x13, 0x19, 0x69, 0x6e, 0x64, 0x69, 0x72, 0x65, 0x63, 0x74, 0x43, 0x52, 0x4c, 0x20, 0x43, 0x41, 0x33, 0x20, 0x63, 0x52, 0x4c, 0x49, 0x73, 0x73, 0x75, 0x65, 0x72, 0x31, 0x29, 0x30, 0x27, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x20, 0x69, 0x6e, 0x64, 0x69, 0x72, 0x65, 0x63, 0x74, 0x20, 0x43, 0x52, 0x4c, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x69, 0x6e, 0x64, 0x69, 0x72, 0x65, 0x63, 0x74, 0x43, 0x52, 0x4c, 0x20, 0x43, 0x41, 0x33}; ASSERT_EQ(1u, fullname.directory_names.size()); EXPECT_EQ(der::Input(kExpectedName), fullname.directory_names[0]); EXPECT_FALSE(dp1.distribution_point_name_relative_to_crl_issuer); EXPECT_FALSE(dp1.reasons); ASSERT_TRUE(dp1.crl_issuer); // Generated by `ascii2der | xxd -i` from the cRLIssuer value in // crldp_issuer_as_dirname.pem. const uint8_t kExpectedCrlIssuer[] = { 0xa4, 0x54, 0x30, 0x52, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, 0x55, 0x53, 0x31, 0x1f, 0x30, 0x1d, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x13, 0x16, 0x54, 0x65, 0x73, 0x74, 0x20, 0x43, 0x65, 0x72, 0x74, 0x69, 0x66, 0x69, 0x63, 0x61, 0x74, 0x65, 0x73, 0x20, 0x32, 0x30, 0x31, 0x31, 0x31, 0x22, 0x30, 0x20, 0x06, 0x03, 0x55, 0x04, 0x0b, 0x13, 0x19, 0x69, 0x6e, 0x64, 0x69, 0x72, 0x65, 0x63, 0x74, 0x43, 0x52, 0x4c, 0x20, 0x43, 0x41, 0x33, 0x20, 0x63, 0x52, 0x4c, 0x49, 0x73, 0x73, 0x75, 0x65, 0x72}; EXPECT_EQ(der::Input(kExpectedCrlIssuer), dp1.crl_issuer); } TEST_F(ParseCrlDistributionPointsTest, FullnameAsDirname) { std::vector dps; ASSERT_TRUE(GetCrlDps("crldp_full_name_as_dirname.pem", &dps)); ASSERT_EQ(1u, dps.size()); const ParsedDistributionPoint& dp1 = dps.front(); ASSERT_TRUE(dp1.distribution_point_fullname); const GeneralNames& fullname = *dp1.distribution_point_fullname; EXPECT_EQ(GENERAL_NAME_DIRECTORY_NAME, fullname.present_name_types); // Generated by `ascii2der | xxd -i` from the Name value in // crldp_full_name_as_dirname.pem. const uint8_t kExpectedName[] = { 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, 0x55, 0x53, 0x31, 0x1f, 0x30, 0x1d, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x13, 0x16, 0x54, 0x65, 0x73, 0x74, 0x20, 0x43, 0x65, 0x72, 0x74, 0x69, 0x66, 0x69, 0x63, 0x61, 0x74, 0x65, 0x73, 0x20, 0x32, 0x30, 0x31, 0x31, 0x31, 0x45, 0x30, 0x43, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x3c, 0x53, 0x65, 0x6c, 0x66, 0x2d, 0x49, 0x73, 0x73, 0x75, 0x65, 0x64, 0x20, 0x43, 0x65, 0x72, 0x74, 0x20, 0x44, 0x50, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x42, 0x61, 0x73, 0x69, 0x63, 0x20, 0x53, 0x65, 0x6c, 0x66, 0x2d, 0x49, 0x73, 0x73, 0x75, 0x65, 0x64, 0x20, 0x43, 0x52, 0x4c, 0x20, 0x53, 0x69, 0x67, 0x6e, 0x69, 0x6e, 0x67, 0x20, 0x4b, 0x65, 0x79, 0x20, 0x43, 0x41}; ASSERT_EQ(1u, fullname.directory_names.size()); EXPECT_EQ(der::Input(kExpectedName), fullname.directory_names[0]); EXPECT_FALSE(dp1.distribution_point_name_relative_to_crl_issuer); EXPECT_FALSE(dp1.reasons); EXPECT_FALSE(dp1.crl_issuer); } TEST_F(ParseCrlDistributionPointsTest, RelativeNameAndReasonsAndMultipleDPs) { // SEQUENCE { // SEQUENCE { // # distributionPoint // [0] { // # nameRelativeToCRLIssuer // [1] { // SET { // SEQUENCE { // # commonName // OBJECT_IDENTIFIER { 2.5.4.3 } // PrintableString { "CRL1" } // } // } // } // } // # reasons // [1 PRIMITIVE] { b`011` } // } // SEQUENCE { // # distributionPoint // [0] { // # fullName // [0] { // [4] { // SEQUENCE { // SET { // SEQUENCE { // # commonName // OBJECT_IDENTIFIER { 2.5.4.3 } // PrintableString { "CRL2" } // } // } // } // } // } // } // # reasons // [1 PRIMITIVE] { b`100111111` } // } // } const uint8_t kInputDer[] = { 0x30, 0x37, 0x30, 0x17, 0xa0, 0x11, 0xa1, 0x0f, 0x31, 0x0d, 0x30, 0x0b, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x04, 0x43, 0x52, 0x4c, 0x31, 0x81, 0x02, 0x05, 0x60, 0x30, 0x1c, 0xa0, 0x15, 0xa0, 0x13, 0xa4, 0x11, 0x30, 0x0f, 0x31, 0x0d, 0x30, 0x0b, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x04, 0x43, 0x52, 0x4c, 0x32, 0x81, 0x03, 0x07, 0x9f, 0x80}; std::vector dps; ASSERT_TRUE(ParseCrlDistributionPoints(der::Input(kInputDer), &dps)); ASSERT_EQ(2u, dps.size()); { const ParsedDistributionPoint& dp = dps[0]; EXPECT_FALSE(dp.distribution_point_fullname); ASSERT_TRUE(dp.distribution_point_name_relative_to_crl_issuer); // SET { // SEQUENCE { // # commonName // OBJECT_IDENTIFIER { 2.5.4.3 } // PrintableString { "CRL1" } // } // } const uint8_t kExpectedRDN[] = {0x31, 0x0d, 0x30, 0x0b, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x04, 0x43, 0x52, 0x4c, 0x31}; EXPECT_EQ(der::Input(kExpectedRDN), *dp.distribution_point_name_relative_to_crl_issuer); ASSERT_TRUE(dp.reasons); const uint8_t kExpectedReasons[] = {0x05, 0x60}; EXPECT_EQ(der::Input(kExpectedReasons), *dp.reasons); EXPECT_FALSE(dp.crl_issuer); } { const ParsedDistributionPoint& dp = dps[1]; ASSERT_TRUE(dp.distribution_point_fullname); const GeneralNames& fullname = *dp.distribution_point_fullname; EXPECT_EQ(GENERAL_NAME_DIRECTORY_NAME, fullname.present_name_types); // SET { // SEQUENCE { // # commonName // OBJECT_IDENTIFIER { 2.5.4.3 } // PrintableString { "CRL2" } // } // } const uint8_t kExpectedName[] = {0x31, 0x0d, 0x30, 0x0b, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x04, 0x43, 0x52, 0x4c, 0x32}; ASSERT_EQ(1u, fullname.directory_names.size()); EXPECT_EQ(der::Input(kExpectedName), fullname.directory_names[0]); EXPECT_FALSE(dp.distribution_point_name_relative_to_crl_issuer); ASSERT_TRUE(dp.reasons); const uint8_t kExpectedReasons[] = {0x07, 0x9f, 0x80}; EXPECT_EQ(der::Input(kExpectedReasons), *dp.reasons); EXPECT_FALSE(dp.crl_issuer); } } TEST_F(ParseCrlDistributionPointsTest, NoDistributionPointName) { // SEQUENCE { // SEQUENCE { // # cRLIssuer // [2] { // [4] { // SEQUENCE { // SET { // SEQUENCE { // # organizationUnitName // OBJECT_IDENTIFIER { 2.5.4.11 } // PrintableString { "crl issuer" } // } // } // } // } // } // } // } const uint8_t kInputDer[] = {0x30, 0x1d, 0x30, 0x1b, 0xa2, 0x19, 0xa4, 0x17, 0x30, 0x15, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x0b, 0x13, 0x0a, 0x63, 0x72, 0x6c, 0x20, 0x69, 0x73, 0x73, 0x75, 0x65, 0x72}; std::vector dps; ASSERT_TRUE(ParseCrlDistributionPoints(der::Input(kInputDer), &dps)); ASSERT_EQ(1u, dps.size()); const ParsedDistributionPoint& dp = dps[0]; EXPECT_FALSE(dp.distribution_point_fullname); EXPECT_FALSE(dp.distribution_point_name_relative_to_crl_issuer); EXPECT_FALSE(dp.reasons); ASSERT_TRUE(dp.crl_issuer); const uint8_t kExpectedDer[] = {0xa4, 0x17, 0x30, 0x15, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x0b, 0x13, 0x0a, 0x63, 0x72, 0x6c, 0x20, 0x69, 0x73, 0x73, 0x75, 0x65, 0x72}; EXPECT_EQ(der::Input(kExpectedDer), *dp.crl_issuer); } TEST_F(ParseCrlDistributionPointsTest, OnlyReasons) { // SEQUENCE { // SEQUENCE { // # reasons // [1 PRIMITIVE] { b`011` } // } // } const uint8_t kInputDer[] = {0x30, 0x06, 0x30, 0x04, 0x81, 0x02, 0x05, 0x60}; std::vector dps; EXPECT_FALSE(ParseCrlDistributionPoints(der::Input(kInputDer), &dps)); } TEST_F(ParseCrlDistributionPointsTest, EmptyDistributionPoint) { // SEQUENCE { // SEQUENCE { // } // } const uint8_t kInputDer[] = {0x30, 0x02, 0x30, 0x00}; std::vector dps; EXPECT_FALSE(ParseCrlDistributionPoints(der::Input(kInputDer), &dps)); } TEST_F(ParseCrlDistributionPointsTest, EmptyDistributionPoints) { // SEQUENCE { } const uint8_t kInputDer[] = {0x30, 0x00}; std::vector dps; EXPECT_FALSE(ParseCrlDistributionPoints(der::Input(kInputDer), &dps)); } bool ParseAuthorityKeyIdentifierTestData( const char* file_name, std::string* backing_bytes, ParsedAuthorityKeyIdentifier* authority_key_identifier) { // Read the test file. const PemBlockMapping mappings[] = { {"AUTHORITY_KEY_IDENTIFIER", backing_bytes}, }; std::string test_file_path = std::string( "testdata/parse_certificate_unittest/authority_key_identifier/") + file_name; EXPECT_TRUE(ReadTestDataFromPemFile(test_file_path, mappings)); return ParseAuthorityKeyIdentifier(der::Input(*backing_bytes), authority_key_identifier); } TEST(ParseAuthorityKeyIdentifierTest, EmptyInput) { ParsedAuthorityKeyIdentifier authority_key_identifier; EXPECT_FALSE( ParseAuthorityKeyIdentifier(der::Input(), &authority_key_identifier)); } TEST(ParseAuthorityKeyIdentifierTest, EmptySequence) { std::string backing_bytes; ParsedAuthorityKeyIdentifier authority_key_identifier; // TODO(mattm): should this be an error? RFC 5280 doesn't explicitly say it. ASSERT_TRUE(ParseAuthorityKeyIdentifierTestData( "empty_sequence.pem", &backing_bytes, &authority_key_identifier)); EXPECT_FALSE(authority_key_identifier.key_identifier); EXPECT_FALSE(authority_key_identifier.authority_cert_issuer); EXPECT_FALSE(authority_key_identifier.authority_cert_serial_number); } TEST(ParseAuthorityKeyIdentifierTest, KeyIdentifier) { std::string backing_bytes; ParsedAuthorityKeyIdentifier authority_key_identifier; ASSERT_TRUE(ParseAuthorityKeyIdentifierTestData( "key_identifier.pem", &backing_bytes, &authority_key_identifier)); ASSERT_TRUE(authority_key_identifier.key_identifier); const uint8_t kExpectedValue[] = {0xDE, 0xAD, 0xB0, 0x0F}; EXPECT_EQ(der::Input(kExpectedValue), authority_key_identifier.key_identifier); } TEST(ParseAuthorityKeyIdentifierTest, IssuerAndSerial) { std::string backing_bytes; ParsedAuthorityKeyIdentifier authority_key_identifier; ASSERT_TRUE(ParseAuthorityKeyIdentifierTestData( "issuer_and_serial.pem", &backing_bytes, &authority_key_identifier)); EXPECT_FALSE(authority_key_identifier.key_identifier); ASSERT_TRUE(authority_key_identifier.authority_cert_issuer); const uint8_t kExpectedIssuer[] = {0xa4, 0x11, 0x30, 0x0f, 0x31, 0x0d, 0x30, 0x0b, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c, 0x04, 0x52, 0x6f, 0x6f, 0x74}; EXPECT_EQ(der::Input(kExpectedIssuer), authority_key_identifier.authority_cert_issuer); ASSERT_TRUE(authority_key_identifier.authority_cert_serial_number); const uint8_t kExpectedSerial[] = {0x27, 0x4F}; EXPECT_EQ(der::Input(kExpectedSerial), authority_key_identifier.authority_cert_serial_number); } TEST(ParseAuthorityKeyIdentifierTest, KeyIdentifierAndIssuerAndSerial) { std::string backing_bytes; ParsedAuthorityKeyIdentifier authority_key_identifier; ASSERT_TRUE(ParseAuthorityKeyIdentifierTestData( "key_identifier_and_issuer_and_serial.pem", &backing_bytes, &authority_key_identifier)); ASSERT_TRUE(authority_key_identifier.key_identifier); const uint8_t kExpectedValue[] = {0xDE, 0xAD, 0xB0, 0x0F}; EXPECT_EQ(der::Input(kExpectedValue), authority_key_identifier.key_identifier); ASSERT_TRUE(authority_key_identifier.authority_cert_issuer); const uint8_t kExpectedIssuer[] = {0xa4, 0x11, 0x30, 0x0f, 0x31, 0x0d, 0x30, 0x0b, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c, 0x04, 0x52, 0x6f, 0x6f, 0x74}; EXPECT_EQ(der::Input(kExpectedIssuer), authority_key_identifier.authority_cert_issuer); ASSERT_TRUE(authority_key_identifier.authority_cert_serial_number); const uint8_t kExpectedSerial[] = {0x27, 0x4F}; EXPECT_EQ(der::Input(kExpectedSerial), authority_key_identifier.authority_cert_serial_number); } TEST(ParseAuthorityKeyIdentifierTest, IssuerOnly) { std::string backing_bytes; ParsedAuthorityKeyIdentifier authority_key_identifier; EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData( "issuer_only.pem", &backing_bytes, &authority_key_identifier)); } TEST(ParseAuthorityKeyIdentifierTest, SerialOnly) { std::string backing_bytes; ParsedAuthorityKeyIdentifier authority_key_identifier; EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData( "serial_only.pem", &backing_bytes, &authority_key_identifier)); } TEST(ParseAuthorityKeyIdentifierTest, InvalidContents) { std::string backing_bytes; ParsedAuthorityKeyIdentifier authority_key_identifier; EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData( "invalid_contents.pem", &backing_bytes, &authority_key_identifier)); } TEST(ParseAuthorityKeyIdentifierTest, InvalidKeyIdentifier) { std::string backing_bytes; ParsedAuthorityKeyIdentifier authority_key_identifier; EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData( "invalid_key_identifier.pem", &backing_bytes, &authority_key_identifier)); } TEST(ParseAuthorityKeyIdentifierTest, InvalidIssuer) { std::string backing_bytes; ParsedAuthorityKeyIdentifier authority_key_identifier; EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData( "invalid_issuer.pem", &backing_bytes, &authority_key_identifier)); } TEST(ParseAuthorityKeyIdentifierTest, InvalidSerial) { std::string backing_bytes; ParsedAuthorityKeyIdentifier authority_key_identifier; EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData( "invalid_serial.pem", &backing_bytes, &authority_key_identifier)); } TEST(ParseAuthorityKeyIdentifierTest, ExtraContentsAfterIssuerAndSerial) { std::string backing_bytes; ParsedAuthorityKeyIdentifier authority_key_identifier; EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData( "extra_contents_after_issuer_and_serial.pem", &backing_bytes, &authority_key_identifier)); } TEST(ParseAuthorityKeyIdentifierTest, ExtraContentsAfterExtensionSequence) { std::string backing_bytes; ParsedAuthorityKeyIdentifier authority_key_identifier; EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData( "extra_contents_after_extension_sequence.pem", &backing_bytes, &authority_key_identifier)); } TEST(ParseSubjectKeyIdentifierTest, EmptyInput) { der::Input subject_key_identifier; EXPECT_FALSE( ParseSubjectKeyIdentifier(der::Input(), &subject_key_identifier)); } TEST(ParseSubjectKeyIdentifierTest, Valid) { // OCTET_STRING {`abcd`} const uint8_t kInput[] = {0x04, 0x02, 0xab, 0xcd}; const uint8_t kExpected[] = {0xab, 0xcd}; der::Input subject_key_identifier; EXPECT_TRUE( ParseSubjectKeyIdentifier(der::Input(kInput), &subject_key_identifier)); EXPECT_EQ(der::Input(kExpected), subject_key_identifier); } TEST(ParseSubjectKeyIdentifierTest, ExtraData) { // OCTET_STRING {`abcd`} // NULL const uint8_t kInput[] = {0x04, 0x02, 0xab, 0xcd, 0x05}; der::Input subject_key_identifier; EXPECT_FALSE( ParseSubjectKeyIdentifier(der::Input(kInput), &subject_key_identifier)); } } // namespace } // namespace net