/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * ECC cipher suite support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #ifndef OPENSSL_HEADER_SSL_INTERNAL_H #define OPENSSL_HEADER_SSL_INTERNAL_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../crypto/err/internal.h" #include "../crypto/internal.h" #if defined(OPENSSL_WINDOWS) // Windows defines struct timeval in winsock2.h. OPENSSL_MSVC_PRAGMA(warning(push, 3)) #include OPENSSL_MSVC_PRAGMA(warning(pop)) #else #include #endif BSSL_NAMESPACE_BEGIN struct SSL_CONFIG; struct SSL_HANDSHAKE; struct SSL_PROTOCOL_METHOD; struct SSL_X509_METHOD; // C++ utilities. // New behaves like |new| but uses |OPENSSL_malloc| for memory allocation. It // returns nullptr on allocation error. It only implements single-object // allocation and not new T[n]. // // Note: unlike |new|, this does not support non-public constructors. template T *New(Args &&... args) { void *t = OPENSSL_malloc(sizeof(T)); if (t == nullptr) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return nullptr; } return new (t) T(std::forward(args)...); } // Delete behaves like |delete| but uses |OPENSSL_free| to release memory. // // Note: unlike |delete| this does not support non-public destructors. template void Delete(T *t) { if (t != nullptr) { t->~T(); OPENSSL_free(t); } } // All types with kAllowUniquePtr set may be used with UniquePtr. Other types // may be C structs which require a |BORINGSSL_MAKE_DELETER| registration. namespace internal { template struct DeleterImpl::type> { static void Free(T *t) { Delete(t); } }; } // namespace internal // MakeUnique behaves like |std::make_unique| but returns nullptr on allocation // error. template UniquePtr MakeUnique(Args &&... args) { return UniquePtr(New(std::forward(args)...)); } #if defined(BORINGSSL_ALLOW_CXX_RUNTIME) #define HAS_VIRTUAL_DESTRUCTOR #define PURE_VIRTUAL = 0 #else // HAS_VIRTUAL_DESTRUCTOR should be declared in any base class which defines a // virtual destructor. This avoids a dependency on |_ZdlPv| and prevents the // class from being used with |delete|. #define HAS_VIRTUAL_DESTRUCTOR \ void operator delete(void *) { abort(); } // PURE_VIRTUAL should be used instead of = 0 when defining pure-virtual // functions. This avoids a dependency on |__cxa_pure_virtual| but loses // compile-time checking. #define PURE_VIRTUAL \ { abort(); } #endif // CONSTEXPR_ARRAY works around a VS 2015 bug where ranged for loops don't work // on constexpr arrays. #if defined(_MSC_VER) && !defined(__clang__) && _MSC_VER < 1910 #define CONSTEXPR_ARRAY const #else #define CONSTEXPR_ARRAY constexpr #endif // Array is an owning array of elements of |T|. template class Array { public: // Array's default constructor creates an empty array. Array() {} Array(const Array &) = delete; Array(Array &&other) { *this = std::move(other); } ~Array() { Reset(); } Array &operator=(const Array &) = delete; Array &operator=(Array &&other) { Reset(); other.Release(&data_, &size_); return *this; } const T *data() const { return data_; } T *data() { return data_; } size_t size() const { return size_; } bool empty() const { return size_ == 0; } const T &operator[](size_t i) const { return data_[i]; } T &operator[](size_t i) { return data_[i]; } T *begin() { return data_; } const T *cbegin() const { return data_; } T *end() { return data_ + size_; } const T *cend() const { return data_ + size_; } void Reset() { Reset(nullptr, 0); } // Reset releases the current contents of the array and takes ownership of the // raw pointer supplied by the caller. void Reset(T *new_data, size_t new_size) { for (size_t i = 0; i < size_; i++) { data_[i].~T(); } OPENSSL_free(data_); data_ = new_data; size_ = new_size; } // Release releases ownership of the array to a raw pointer supplied by the // caller. void Release(T **out, size_t *out_size) { *out = data_; *out_size = size_; data_ = nullptr; size_ = 0; } // Init replaces the array with a newly-allocated array of |new_size| // default-constructed copies of |T|. It returns true on success and false on // error. // // Note that if |T| is a primitive type like |uint8_t|, it is uninitialized. bool Init(size_t new_size) { Reset(); if (new_size == 0) { return true; } if (new_size > std::numeric_limits::max() / sizeof(T)) { OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); return false; } data_ = reinterpret_cast(OPENSSL_malloc(new_size * sizeof(T))); if (data_ == nullptr) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return false; } size_ = new_size; for (size_t i = 0; i < size_; i++) { new (&data_[i]) T; } return true; } // CopyFrom replaces the array with a newly-allocated copy of |in|. It returns // true on success and false on error. bool CopyFrom(Span in) { if (!Init(in.size())) { return false; } OPENSSL_memcpy(data_, in.data(), sizeof(T) * in.size()); return true; } // Shrink shrinks the stored size of the array to |new_size|. It crashes if // the new size is larger. Note this does not shrink the allocation itself. void Shrink(size_t new_size) { if (new_size > size_) { abort(); } size_ = new_size; } private: T *data_ = nullptr; size_t size_ = 0; }; // GrowableArray is an array that owns elements of |T|, backed by an // Array. When necessary, pushing will automatically trigger a resize. // // Note, for simplicity, this class currently differs from |std::vector| in that // |T| must be efficiently default-constructible. Allocated elements beyond the // end of the array are constructed and destructed. template class GrowableArray { public: GrowableArray() = default; GrowableArray(const GrowableArray &) = delete; GrowableArray(GrowableArray &&other) { *this = std::move(other); } ~GrowableArray() {} GrowableArray &operator=(const GrowableArray &) = delete; GrowableArray &operator=(GrowableArray &&other) { size_ = other.size_; other.size_ = 0; array_ = std::move(other.array_); return *this; } size_t size() const { return size_; } bool empty() const { return size_ == 0; } const T &operator[](size_t i) const { return array_[i]; } T &operator[](size_t i) { return array_[i]; } T *begin() { return array_.data(); } const T *cbegin() const { return array_.data(); } T *end() { return array_.data() + size_; } const T *cend() const { return array_.data() + size_; } // Push adds |elem| at the end of the internal array, growing if necessary. It // returns false when allocation fails. bool Push(T elem) { if (!MaybeGrow()) { return false; } array_[size_] = std::move(elem); size_++; return true; } // CopyFrom replaces the contents of the array with a copy of |in|. It returns // true on success and false on allocation error. bool CopyFrom(Span in) { if (!array_.CopyFrom(in)) { return false; } size_ = in.size(); return true; } private: // If there is no room for one more element, creates a new backing array with // double the size of the old one and copies elements over. bool MaybeGrow() { if (array_.size() == 0) { return array_.Init(kDefaultSize); } // No need to grow if we have room for one more T. if (size_ < array_.size()) { return true; } // Double the array's size if it's safe to do so. if (array_.size() > std::numeric_limits::max() / 2) { OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); return false; } Array new_array; if (!new_array.Init(array_.size() * 2)) { return false; } for (size_t i = 0; i < array_.size(); i++) { new_array[i] = std::move(array_[i]); } array_ = std::move(new_array); return true; } // |size_| is the number of elements stored in this GrowableArray. size_t size_ = 0; // |array_| is the backing array. Note that |array_.size()| is this // GrowableArray's current capacity and that |size_ <= array_.size()|. Array array_; // |kDefaultSize| is the default initial size of the backing array. static constexpr size_t kDefaultSize = 16; }; // CBBFinishArray behaves like |CBB_finish| but stores the result in an Array. OPENSSL_EXPORT bool CBBFinishArray(CBB *cbb, Array *out); // Protocol versions. // // Due to DTLS's historical wire version differences, we maintain two notions of // version. // // The "version" or "wire version" is the actual 16-bit value that appears on // the wire. It uniquely identifies a version and is also used at API // boundaries. The set of supported versions differs between TLS and DTLS. Wire // versions are opaque values and may not be compared numerically. // // The "protocol version" identifies the high-level handshake variant being // used. DTLS versions map to the corresponding TLS versions. Protocol versions // are sequential and may be compared numerically. // ssl_protocol_version_from_wire sets |*out| to the protocol version // corresponding to wire version |version| and returns true. If |version| is not // a valid TLS or DTLS version, it returns false. // // Note this simultaneously handles both DTLS and TLS. Use one of the // higher-level functions below for most operations. bool ssl_protocol_version_from_wire(uint16_t *out, uint16_t version); // ssl_get_version_range sets |*out_min_version| and |*out_max_version| to the // minimum and maximum enabled protocol versions, respectively. bool ssl_get_version_range(const SSL_HANDSHAKE *hs, uint16_t *out_min_version, uint16_t *out_max_version); // ssl_supports_version returns whether |hs| supports |version|. bool ssl_supports_version(SSL_HANDSHAKE *hs, uint16_t version); // ssl_method_supports_version returns whether |method| supports |version|. bool ssl_method_supports_version(const SSL_PROTOCOL_METHOD *method, uint16_t version); // ssl_add_supported_versions writes the supported versions of |hs| to |cbb|, in // decreasing preference order. bool ssl_add_supported_versions(SSL_HANDSHAKE *hs, CBB *cbb); // ssl_negotiate_version negotiates a common version based on |hs|'s preferences // and the peer preference list in |peer_versions|. On success, it returns true // and sets |*out_version| to the selected version. Otherwise, it returns false // and sets |*out_alert| to an alert to send. bool ssl_negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert, uint16_t *out_version, const CBS *peer_versions); // ssl_protocol_version returns |ssl|'s protocol version. It is an error to // call this function before the version is determined. uint16_t ssl_protocol_version(const SSL *ssl); // Cipher suites. BSSL_NAMESPACE_END struct ssl_cipher_st { // name is the OpenSSL name for the cipher. const char *name; // standard_name is the IETF name for the cipher. const char *standard_name; // id is the cipher suite value bitwise OR-d with 0x03000000. uint32_t id; // algorithm_* determine the cipher suite. See constants below for the values. uint32_t algorithm_mkey; uint32_t algorithm_auth; uint32_t algorithm_enc; uint32_t algorithm_mac; uint32_t algorithm_prf; }; BSSL_NAMESPACE_BEGIN // Bits for |algorithm_mkey| (key exchange algorithm). #define SSL_kRSA 0x00000001u #define SSL_kECDHE 0x00000002u // SSL_kPSK is only set for plain PSK, not ECDHE_PSK. #define SSL_kPSK 0x00000004u #define SSL_kGENERIC 0x00000008u // Bits for |algorithm_auth| (server authentication). #define SSL_aRSA 0x00000001u #define SSL_aECDSA 0x00000002u // SSL_aPSK is set for both PSK and ECDHE_PSK. #define SSL_aPSK 0x00000004u #define SSL_aGENERIC 0x00000008u #define SSL_aCERT (SSL_aRSA | SSL_aECDSA) // Bits for |algorithm_enc| (symmetric encryption). #define SSL_3DES 0x00000001u #define SSL_AES128 0x00000002u #define SSL_AES256 0x00000004u #define SSL_AES128GCM 0x00000008u #define SSL_AES256GCM 0x00000010u #define SSL_eNULL 0x00000020u #define SSL_CHACHA20POLY1305 0x00000040u #define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM) // Bits for |algorithm_mac| (symmetric authentication). #define SSL_SHA1 0x00000001u // SSL_AEAD is set for all AEADs. #define SSL_AEAD 0x00000002u // Bits for |algorithm_prf| (handshake digest). #define SSL_HANDSHAKE_MAC_DEFAULT 0x1 #define SSL_HANDSHAKE_MAC_SHA256 0x2 #define SSL_HANDSHAKE_MAC_SHA384 0x4 // SSL_MAX_MD_SIZE is size of the largest hash function used in TLS, SHA-384. #define SSL_MAX_MD_SIZE 48 // An SSLCipherPreferenceList contains a list of SSL_CIPHERs with equal- // preference groups. For TLS clients, the groups are moot because the server // picks the cipher and groups cannot be expressed on the wire. However, for // servers, the equal-preference groups allow the client's preferences to be // partially respected. (This only has an effect with // SSL_OP_CIPHER_SERVER_PREFERENCE). // // The equal-preference groups are expressed by grouping SSL_CIPHERs together. // All elements of a group have the same priority: no ordering is expressed // within a group. // // The values in |ciphers| are in one-to-one correspondence with // |in_group_flags|. (That is, sk_SSL_CIPHER_num(ciphers) is the number of // bytes in |in_group_flags|.) The bytes in |in_group_flags| are either 1, to // indicate that the corresponding SSL_CIPHER is not the last element of a // group, or 0 to indicate that it is. // // For example, if |in_group_flags| contains all zeros then that indicates a // traditional, fully-ordered preference. Every SSL_CIPHER is the last element // of the group (i.e. they are all in a one-element group). // // For a more complex example, consider: // ciphers: A B C D E F // in_group_flags: 1 1 0 0 1 0 // // That would express the following, order: // // A E // B -> D -> F // C struct SSLCipherPreferenceList { static constexpr bool kAllowUniquePtr = true; SSLCipherPreferenceList() = default; ~SSLCipherPreferenceList(); bool Init(UniquePtr ciphers, Span in_group_flags); bool Init(const SSLCipherPreferenceList &); void Remove(const SSL_CIPHER *cipher); UniquePtr ciphers; bool *in_group_flags = nullptr; }; // AllCiphers returns an array of all supported ciphers, sorted by id. Span AllCiphers(); // ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD // object for |cipher| protocol version |version|. It sets |*out_mac_secret_len| // and |*out_fixed_iv_len| to the MAC key length and fixed IV length, // respectively. The MAC key length is zero except for legacy block and stream // ciphers. It returns true on success and false on error. bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead, size_t *out_mac_secret_len, size_t *out_fixed_iv_len, const SSL_CIPHER *cipher, uint16_t version, bool is_dtls); // ssl_get_handshake_digest returns the |EVP_MD| corresponding to |version| and // |cipher|. const EVP_MD *ssl_get_handshake_digest(uint16_t version, const SSL_CIPHER *cipher); // ssl_create_cipher_list evaluates |rule_str|. It sets |*out_cipher_list| to a // newly-allocated |SSLCipherPreferenceList| containing the result. It returns // true on success and false on failure. If |strict| is true, nonsense will be // rejected. If false, nonsense will be silently ignored. An empty result is // considered an error regardless of |strict|. bool ssl_create_cipher_list(UniquePtr *out_cipher_list, const char *rule_str, bool strict); // ssl_cipher_get_value returns the cipher suite id of |cipher|. uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher); // ssl_cipher_auth_mask_for_key returns the mask of cipher |algorithm_auth| // values suitable for use with |key| in TLS 1.2 and below. uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key); // ssl_cipher_uses_certificate_auth returns whether |cipher| authenticates the // server and, optionally, the client with a certificate. bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher); // ssl_cipher_requires_server_key_exchange returns whether |cipher| requires a // ServerKeyExchange message. // // This function may return false while still allowing |cipher| an optional // ServerKeyExchange. This is the case for plain PSK ciphers. bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher); // ssl_cipher_get_record_split_len, for TLS 1.0 CBC mode ciphers, returns the // length of an encrypted 1-byte record, for use in record-splitting. Otherwise // it returns zero. size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher); // ssl_choose_tls13_cipher returns an |SSL_CIPHER| corresponding with the best // available from |cipher_suites| compatible with |version| and |group_id|. It // returns NULL if there isn't a compatible cipher. const SSL_CIPHER *ssl_choose_tls13_cipher(CBS cipher_suites, uint16_t version, uint16_t group_id); // Transcript layer. // SSLTranscript maintains the handshake transcript as a combination of a // buffer and running hash. class SSLTranscript { public: SSLTranscript(); ~SSLTranscript(); // Init initializes the handshake transcript. If called on an existing // transcript, it resets the transcript and hash. It returns true on success // and false on failure. bool Init(); // InitHash initializes the handshake hash based on the PRF and contents of // the handshake transcript. Subsequent calls to |Update| will update the // rolling hash. It returns one on success and zero on failure. It is an error // to call this function after the handshake buffer is released. bool InitHash(uint16_t version, const SSL_CIPHER *cipher); // UpdateForHelloRetryRequest resets the rolling hash with the // HelloRetryRequest construction. It returns true on success and false on // failure. It is an error to call this function before the handshake buffer // is released. bool UpdateForHelloRetryRequest(); // CopyToHashContext initializes |ctx| with |digest| and the data thus far in // the transcript. It returns true on success and false on failure. If the // handshake buffer is still present, |digest| may be any supported digest. // Otherwise, |digest| must match the transcript hash. bool CopyToHashContext(EVP_MD_CTX *ctx, const EVP_MD *digest); Span buffer() { return MakeConstSpan(reinterpret_cast(buffer_->data), buffer_->length); } // FreeBuffer releases the handshake buffer. Subsequent calls to // |Update| will not update the handshake buffer. void FreeBuffer(); // DigestLen returns the length of the PRF hash. size_t DigestLen() const; // Digest returns the PRF hash. For TLS 1.1 and below, this is // |EVP_md5_sha1|. const EVP_MD *Digest() const; // Update adds |in| to the handshake buffer and handshake hash, whichever is // enabled. It returns true on success and false on failure. bool Update(Span in); // GetHash writes the handshake hash to |out| which must have room for at // least |DigestLen| bytes. On success, it returns true and sets |*out_len| to // the number of bytes written. Otherwise, it returns false. bool GetHash(uint8_t *out, size_t *out_len); // GetFinishedMAC computes the MAC for the Finished message into the bytes // pointed by |out| and writes the number of bytes to |*out_len|. |out| must // have room for |EVP_MAX_MD_SIZE| bytes. It returns true on success and false // on failure. bool GetFinishedMAC(uint8_t *out, size_t *out_len, const SSL_SESSION *session, bool from_server); private: // buffer_, if non-null, contains the handshake transcript. UniquePtr buffer_; // hash, if initialized with an |EVP_MD|, maintains the handshake hash. ScopedEVP_MD_CTX hash_; }; // tls1_prf computes the PRF function for |ssl|. It fills |out|, using |secret| // as the secret and |label| as the label. |seed1| and |seed2| are concatenated // to form the seed parameter. It returns true on success and false on failure. bool tls1_prf(const EVP_MD *digest, Span out, Span secret, Span label, Span seed1, Span seed2); // Encryption layer. // SSLAEADContext contains information about an AEAD that is being used to // encrypt an SSL connection. class SSLAEADContext { public: SSLAEADContext(uint16_t version, bool is_dtls, const SSL_CIPHER *cipher); ~SSLAEADContext(); static constexpr bool kAllowUniquePtr = true; SSLAEADContext(const SSLAEADContext &&) = delete; SSLAEADContext &operator=(const SSLAEADContext &&) = delete; // CreateNullCipher creates an |SSLAEADContext| for the null cipher. static UniquePtr CreateNullCipher(bool is_dtls); // Create creates an |SSLAEADContext| using the supplied key material. It // returns nullptr on error. Only one of |Open| or |Seal| may be used with the // resulting object, depending on |direction|. |version| is the normalized // protocol version, so DTLS 1.0 is represented as 0x0301, not 0xffef. static UniquePtr Create(enum evp_aead_direction_t direction, uint16_t version, bool is_dtls, const SSL_CIPHER *cipher, Span enc_key, Span mac_key, Span fixed_iv); // CreatePlaceholderForQUIC creates a placeholder |SSLAEADContext| for the // given cipher and version. The resulting object can be queried for various // properties but cannot encrypt or decrypt data. static UniquePtr CreatePlaceholderForQUIC( uint16_t version, const SSL_CIPHER *cipher); // SetVersionIfNullCipher sets the version the SSLAEADContext for the null // cipher, to make version-specific determinations in the record layer prior // to a cipher being selected. void SetVersionIfNullCipher(uint16_t version); // ProtocolVersion returns the protocol version associated with this // SSLAEADContext. It can only be called once |version_| has been set to a // valid value. uint16_t ProtocolVersion() const; // RecordVersion returns the record version that should be used with this // SSLAEADContext for record construction and crypto. uint16_t RecordVersion() const; const SSL_CIPHER *cipher() const { return cipher_; } // is_null_cipher returns true if this is the null cipher. bool is_null_cipher() const { return !cipher_; } // ExplicitNonceLen returns the length of the explicit nonce. size_t ExplicitNonceLen() const; // MaxOverhead returns the maximum overhead of calling |Seal|. size_t MaxOverhead() const; // SuffixLen calculates the suffix length written by |SealScatter| and writes // it to |*out_suffix_len|. It returns true on success and false on error. // |in_len| and |extra_in_len| should equal the argument of the same names // passed to |SealScatter|. bool SuffixLen(size_t *out_suffix_len, size_t in_len, size_t extra_in_len) const; // CiphertextLen calculates the total ciphertext length written by // |SealScatter| and writes it to |*out_len|. It returns true on success and // false on error. |in_len| and |extra_in_len| should equal the argument of // the same names passed to |SealScatter|. bool CiphertextLen(size_t *out_len, size_t in_len, size_t extra_in_len) const; // Open authenticates and decrypts |in| in-place. On success, it sets |*out| // to the plaintext in |in| and returns true. Otherwise, it returns // false. The output will always be |ExplicitNonceLen| bytes ahead of |in|. bool Open(Span *out, uint8_t type, uint16_t record_version, const uint8_t seqnum[8], Span header, Span in); // Seal encrypts and authenticates |in_len| bytes from |in| and writes the // result to |out|. It returns true on success and false on error. // // If |in| and |out| alias then |out| + |ExplicitNonceLen| must be == |in|. bool Seal(uint8_t *out, size_t *out_len, size_t max_out, uint8_t type, uint16_t record_version, const uint8_t seqnum[8], Span header, const uint8_t *in, size_t in_len); // SealScatter encrypts and authenticates |in_len| bytes from |in| and splits // the result between |out_prefix|, |out| and |out_suffix|. It returns one on // success and zero on error. // // On successful return, exactly |ExplicitNonceLen| bytes are written to // |out_prefix|, |in_len| bytes to |out|, and |SuffixLen| bytes to // |out_suffix|. // // |extra_in| may point to an additional plaintext buffer. If present, // |extra_in_len| additional bytes are encrypted and authenticated, and the // ciphertext is written to the beginning of |out_suffix|. |SuffixLen| should // be used to size |out_suffix| accordingly. // // If |in| and |out| alias then |out| must be == |in|. Other arguments may not // alias anything. bool SealScatter(uint8_t *out_prefix, uint8_t *out, uint8_t *out_suffix, uint8_t type, uint16_t record_version, const uint8_t seqnum[8], Span header, const uint8_t *in, size_t in_len, const uint8_t *extra_in, size_t extra_in_len); bool GetIV(const uint8_t **out_iv, size_t *out_iv_len) const; private: // GetAdditionalData returns the additional data, writing into |storage| if // necessary. Span GetAdditionalData(uint8_t storage[13], uint8_t type, uint16_t record_version, const uint8_t seqnum[8], size_t plaintext_len, Span header); const SSL_CIPHER *cipher_; ScopedEVP_AEAD_CTX ctx_; // fixed_nonce_ contains any bytes of the nonce that are fixed for all // records. uint8_t fixed_nonce_[12]; uint8_t fixed_nonce_len_ = 0, variable_nonce_len_ = 0; // version_ is the wire version that should be used with this AEAD. uint16_t version_; // is_dtls_ is whether DTLS is being used with this AEAD. bool is_dtls_; // variable_nonce_included_in_record_ is true if the variable nonce // for a record is included as a prefix before the ciphertext. bool variable_nonce_included_in_record_ : 1; // random_variable_nonce_ is true if the variable nonce is // randomly generated, rather than derived from the sequence // number. bool random_variable_nonce_ : 1; // xor_fixed_nonce_ is true if the fixed nonce should be XOR'd into the // variable nonce rather than prepended. bool xor_fixed_nonce_ : 1; // omit_length_in_ad_ is true if the length should be omitted in the // AEAD's ad parameter. bool omit_length_in_ad_ : 1; // ad_is_header_ is true if the AEAD's ad parameter is the record header. bool ad_is_header_ : 1; }; // DTLS replay bitmap. // DTLS1_BITMAP maintains a sliding window of 64 sequence numbers to detect // replayed packets. It should be initialized by zeroing every field. struct DTLS1_BITMAP { // map is a bit mask of the last 64 sequence numbers. Bit // |1< *out, size_t *out_consumed, uint8_t *out_alert, Span in); // dtls_open_record implements |tls_open_record| for DTLS. It only returns // |ssl_open_record_partial| if |in| was empty and sets |*out_consumed| to // zero. The caller should read one packet and try again. enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type, Span *out, size_t *out_consumed, uint8_t *out_alert, Span in); // ssl_seal_align_prefix_len returns the length of the prefix before the start // of the bulk of the ciphertext when sealing a record with |ssl|. Callers may // use this to align buffers. // // Note when TLS 1.0 CBC record-splitting is enabled, this includes the one byte // record and is the offset into second record's ciphertext. Thus sealing a // small record may result in a smaller output than this value. // // TODO(davidben): Is this alignment valuable? Record-splitting makes this a // mess. size_t ssl_seal_align_prefix_len(const SSL *ssl); // tls_seal_record seals a new record of type |type| and body |in| and writes it // to |out|. At most |max_out| bytes will be written. It returns true on success // and false on error. If enabled, |tls_seal_record| implements TLS 1.0 CBC // 1/n-1 record splitting and may write two records concatenated. // // For a large record, the bulk of the ciphertext will begin // |ssl_seal_align_prefix_len| bytes into out. Aligning |out| appropriately may // improve performance. It writes at most |in_len| + |SSL_max_seal_overhead| // bytes to |out|. // // |in| and |out| may not alias. bool tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, uint8_t type, const uint8_t *in, size_t in_len); enum dtls1_use_epoch_t { dtls1_use_previous_epoch, dtls1_use_current_epoch, }; // dtls_max_seal_overhead returns the maximum overhead, in bytes, of sealing a // record. size_t dtls_max_seal_overhead(const SSL *ssl, enum dtls1_use_epoch_t use_epoch); // dtls_seal_prefix_len returns the number of bytes of prefix to reserve in // front of the plaintext when sealing a record in-place. size_t dtls_seal_prefix_len(const SSL *ssl, enum dtls1_use_epoch_t use_epoch); // dtls_seal_record implements |tls_seal_record| for DTLS. |use_epoch| selects // which epoch's cipher state to use. Unlike |tls_seal_record|, |in| and |out| // may alias but, if they do, |in| must be exactly |dtls_seal_prefix_len| bytes // ahead of |out|. bool dtls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, uint8_t type, const uint8_t *in, size_t in_len, enum dtls1_use_epoch_t use_epoch); // ssl_process_alert processes |in| as an alert and updates |ssl|'s shutdown // state. It returns one of |ssl_open_record_discard|, |ssl_open_record_error|, // |ssl_open_record_close_notify|, or |ssl_open_record_fatal_alert| as // appropriate. enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert, Span in); // Private key operations. // ssl_has_private_key returns whether |hs| has a private key configured. bool ssl_has_private_key(const SSL_HANDSHAKE *hs); // ssl_private_key_* perform the corresponding operation on // |SSL_PRIVATE_KEY_METHOD|. If there is a custom private key configured, they // call the corresponding function or |complete| depending on whether there is a // pending operation. Otherwise, they implement the operation with // |EVP_PKEY|. enum ssl_private_key_result_t ssl_private_key_sign( SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out, uint16_t sigalg, Span in); enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out, Span in); // ssl_private_key_supports_signature_algorithm returns whether |hs|'s private // key supports |sigalg|. bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs, uint16_t sigalg); // ssl_public_key_verify verifies that the |signature| is valid for the public // key |pkey| and input |in|, using the signature algorithm |sigalg|. bool ssl_public_key_verify(SSL *ssl, Span signature, uint16_t sigalg, EVP_PKEY *pkey, Span in); // Key shares. // SSLKeyShare abstracts over Diffie-Hellman-like key exchanges. class SSLKeyShare { public: virtual ~SSLKeyShare() {} static constexpr bool kAllowUniquePtr = true; HAS_VIRTUAL_DESTRUCTOR // Create returns a SSLKeyShare instance for use with group |group_id| or // nullptr on error. static UniquePtr Create(uint16_t group_id); // Create deserializes an SSLKeyShare instance previously serialized by // |Serialize|. static UniquePtr Create(CBS *in); // GroupID returns the group ID. virtual uint16_t GroupID() const PURE_VIRTUAL; // Offer generates a keypair and writes the public value to // |out_public_key|. It returns true on success and false on error. virtual bool Offer(CBB *out_public_key) PURE_VIRTUAL; // Accept performs a key exchange against the |peer_key| generated by |Offer|. // On success, it returns true, writes the public value to |out_public_key|, // and sets |*out_secret| to the shared secret. On failure, it returns false // and sets |*out_alert| to an alert to send to the peer. // // The default implementation calls |Offer| and then |Finish|, assuming a key // exchange protocol where the peers are symmetric. virtual bool Accept(CBB *out_public_key, Array *out_secret, uint8_t *out_alert, Span peer_key); // Finish performs a key exchange against the |peer_key| generated by // |Accept|. On success, it returns true and sets |*out_secret| to the shared // secret. On failure, it returns false and sets |*out_alert| to an alert to // send to the peer. virtual bool Finish(Array *out_secret, uint8_t *out_alert, Span peer_key) PURE_VIRTUAL; // Serialize writes the state of the key exchange to |out|, returning true if // successful and false otherwise. virtual bool Serialize(CBB *out) { return false; } // Deserialize initializes the state of the key exchange from |in|, returning // true if successful and false otherwise. It is called by |Create|. virtual bool Deserialize(CBS *in) { return false; } }; struct NamedGroup { int nid; uint16_t group_id; const char name[8], alias[11]; }; // NamedGroups returns all supported groups. Span NamedGroups(); // ssl_nid_to_group_id looks up the group corresponding to |nid|. On success, it // sets |*out_group_id| to the group ID and returns true. Otherwise, it returns // false. bool ssl_nid_to_group_id(uint16_t *out_group_id, int nid); // ssl_name_to_group_id looks up the group corresponding to the |name| string of // length |len|. On success, it sets |*out_group_id| to the group ID and returns // true. Otherwise, it returns false. bool ssl_name_to_group_id(uint16_t *out_group_id, const char *name, size_t len); // Handshake messages. struct SSLMessage { bool is_v2_hello; uint8_t type; CBS body; // raw is the entire serialized handshake message, including the TLS or DTLS // message header. CBS raw; }; // SSL_MAX_HANDSHAKE_FLIGHT is the number of messages, including // ChangeCipherSpec, in the longest handshake flight. Currently this is the // client's second leg in a full handshake when client certificates, NPN, and // Channel ID, are all enabled. #define SSL_MAX_HANDSHAKE_FLIGHT 7 extern const uint8_t kHelloRetryRequest[SSL3_RANDOM_SIZE]; extern const uint8_t kTLS12DowngradeRandom[8]; extern const uint8_t kTLS13DowngradeRandom[8]; extern const uint8_t kJDK11DowngradeRandom[8]; // ssl_max_handshake_message_len returns the maximum number of bytes permitted // in a handshake message for |ssl|. size_t ssl_max_handshake_message_len(const SSL *ssl); // tls_can_accept_handshake_data returns whether |ssl| is able to accept more // data into handshake buffer. bool tls_can_accept_handshake_data(const SSL *ssl, uint8_t *out_alert); // tls_has_unprocessed_handshake_data returns whether there is buffered // handshake data that has not been consumed by |get_message|. bool tls_has_unprocessed_handshake_data(const SSL *ssl); // tls_append_handshake_data appends |data| to the handshake buffer. It returns // true on success and false on allocation failure. bool tls_append_handshake_data(SSL *ssl, Span data); // dtls_has_unprocessed_handshake_data behaves like // |tls_has_unprocessed_handshake_data| for DTLS. bool dtls_has_unprocessed_handshake_data(const SSL *ssl); // tls_flush_pending_hs_data flushes any handshake plaintext data. bool tls_flush_pending_hs_data(SSL *ssl); struct DTLS_OUTGOING_MESSAGE { DTLS_OUTGOING_MESSAGE() {} DTLS_OUTGOING_MESSAGE(const DTLS_OUTGOING_MESSAGE &) = delete; DTLS_OUTGOING_MESSAGE &operator=(const DTLS_OUTGOING_MESSAGE &) = delete; ~DTLS_OUTGOING_MESSAGE() { Clear(); } void Clear(); uint8_t *data = nullptr; uint32_t len = 0; uint16_t epoch = 0; bool is_ccs = false; }; // dtls_clear_outgoing_messages releases all buffered outgoing messages. void dtls_clear_outgoing_messages(SSL *ssl); // Callbacks. // ssl_do_info_callback calls |ssl|'s info callback, if set. void ssl_do_info_callback(const SSL *ssl, int type, int value); // ssl_do_msg_callback calls |ssl|'s message callback, if set. void ssl_do_msg_callback(const SSL *ssl, int is_write, int content_type, Span in); // Transport buffers. class SSLBuffer { public: SSLBuffer() {} ~SSLBuffer() { Clear(); } SSLBuffer(const SSLBuffer &) = delete; SSLBuffer &operator=(const SSLBuffer &) = delete; uint8_t *data() { return buf_ + offset_; } size_t size() const { return size_; } bool empty() const { return size_ == 0; } size_t cap() const { return cap_; } Span span() { return MakeSpan(data(), size()); } Span remaining() { return MakeSpan(data() + size(), cap() - size()); } // Clear releases the buffer. void Clear(); // EnsureCap ensures the buffer has capacity at least |new_cap|, aligned such // that data written after |header_len| is aligned to a // |SSL3_ALIGN_PAYLOAD|-byte boundary. It returns true on success and false // on error. bool EnsureCap(size_t header_len, size_t new_cap); // DidWrite extends the buffer by |len|. The caller must have filled in to // this point. void DidWrite(size_t len); // Consume consumes |len| bytes from the front of the buffer. The memory // consumed will remain valid until the next call to |DiscardConsumed| or // |Clear|. void Consume(size_t len); // DiscardConsumed discards the consumed bytes from the buffer. If the buffer // is now empty, it releases memory used by it. void DiscardConsumed(); private: // buf_ is the memory allocated for this buffer. uint8_t *buf_ = nullptr; // offset_ is the offset into |buf_| which the buffer contents start at. uint16_t offset_ = 0; // size_ is the size of the buffer contents from |buf_| + |offset_|. uint16_t size_ = 0; // cap_ is how much memory beyond |buf_| + |offset_| is available. uint16_t cap_ = 0; // inline_buf_ is a static buffer for short reads. uint8_t inline_buf_[SSL3_RT_HEADER_LENGTH]; // buf_allocated_ is true if |buf_| points to allocated data and must be freed // or false if it points into |inline_buf_|. bool buf_allocated_ = false; }; // ssl_read_buffer_extend_to extends the read buffer to the desired length. For // TLS, it reads to the end of the buffer until the buffer is |len| bytes // long. For DTLS, it reads a new packet and ignores |len|. It returns one on // success, zero on EOF, and a negative number on error. // // It is an error to call |ssl_read_buffer_extend_to| in DTLS when the buffer is // non-empty. int ssl_read_buffer_extend_to(SSL *ssl, size_t len); // ssl_handle_open_record handles the result of passing |ssl->s3->read_buffer| // to a record-processing function. If |ret| is a success or if the caller // should retry, it returns one and sets |*out_retry|. Otherwise, it returns <= // 0. int ssl_handle_open_record(SSL *ssl, bool *out_retry, ssl_open_record_t ret, size_t consumed, uint8_t alert); // ssl_write_buffer_flush flushes the write buffer to the transport. It returns // one on success and <= 0 on error. For DTLS, whether or not the write // succeeds, the write buffer will be cleared. int ssl_write_buffer_flush(SSL *ssl); // Certificate functions. // ssl_has_certificate returns whether a certificate and private key are // configured. bool ssl_has_certificate(const SSL_HANDSHAKE *hs); // ssl_parse_cert_chain parses a certificate list from |cbs| in the format used // by a TLS Certificate message. On success, it advances |cbs| and returns // true. Otherwise, it returns false and sets |*out_alert| to an alert to send // to the peer. // // If the list is non-empty then |*out_chain| and |*out_pubkey| will be set to // the certificate chain and the leaf certificate's public key // respectively. Otherwise, both will be set to nullptr. // // If the list is non-empty and |out_leaf_sha256| is non-NULL, it writes the // SHA-256 hash of the leaf to |out_leaf_sha256|. bool ssl_parse_cert_chain(uint8_t *out_alert, UniquePtr *out_chain, UniquePtr *out_pubkey, uint8_t *out_leaf_sha256, CBS *cbs, CRYPTO_BUFFER_POOL *pool); // ssl_add_cert_chain adds |hs->ssl|'s certificate chain to |cbb| in the format // used by a TLS Certificate message. If there is no certificate chain, it emits // an empty certificate list. It returns true on success and false on error. bool ssl_add_cert_chain(SSL_HANDSHAKE *hs, CBB *cbb); enum ssl_key_usage_t { key_usage_digital_signature = 0, key_usage_encipherment = 2, }; // ssl_cert_check_key_usage parses the DER-encoded, X.509 certificate in |in| // and returns true if doesn't specify a key usage or, if it does, if it // includes |bit|. Otherwise it pushes to the error queue and returns false. bool ssl_cert_check_key_usage(const CBS *in, enum ssl_key_usage_t bit); // ssl_cert_parse_pubkey extracts the public key from the DER-encoded, X.509 // certificate in |in|. It returns an allocated |EVP_PKEY| or else returns // nullptr and pushes to the error queue. UniquePtr ssl_cert_parse_pubkey(const CBS *in); // ssl_parse_client_CA_list parses a CA list from |cbs| in the format used by a // TLS CertificateRequest message. On success, it returns a newly-allocated // |CRYPTO_BUFFER| list and advances |cbs|. Otherwise, it returns nullptr and // sets |*out_alert| to an alert to send to the peer. UniquePtr ssl_parse_client_CA_list(SSL *ssl, uint8_t *out_alert, CBS *cbs); // ssl_has_client_CAs returns there are configured CAs. bool ssl_has_client_CAs(const SSL_CONFIG *cfg); // ssl_add_client_CA_list adds the configured CA list to |cbb| in the format // used by a TLS CertificateRequest message. It returns true on success and // false on error. bool ssl_add_client_CA_list(SSL_HANDSHAKE *hs, CBB *cbb); // ssl_check_leaf_certificate returns one if |pkey| and |leaf| are suitable as // a server's leaf certificate for |hs|. Otherwise, it returns zero and pushes // an error on the error queue. bool ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey, const CRYPTO_BUFFER *leaf); // ssl_on_certificate_selected is called once the certificate has been selected. // It finalizes the certificate and initializes |hs->local_pubkey|. It returns // true on success and false on error. bool ssl_on_certificate_selected(SSL_HANDSHAKE *hs); // TLS 1.3 key derivation. // tls13_init_key_schedule initializes the handshake hash and key derivation // state, and incorporates the PSK. The cipher suite and PRF hash must have been // selected at this point. It returns true on success and false on error. bool tls13_init_key_schedule(SSL_HANDSHAKE *hs, Span psk); // tls13_init_early_key_schedule initializes the handshake hash and key // derivation state from the resumption secret and incorporates the PSK to // derive the early secrets. It returns one on success and zero on error. bool tls13_init_early_key_schedule(SSL_HANDSHAKE *hs, Span psk); // tls13_advance_key_schedule incorporates |in| into the key schedule with // HKDF-Extract. It returns true on success and false on error. bool tls13_advance_key_schedule(SSL_HANDSHAKE *hs, Span in); // tls13_set_traffic_key sets the read or write traffic keys to // |traffic_secret|. The version and cipher suite are determined from |session|. // It returns true on success and false on error. bool tls13_set_traffic_key(SSL *ssl, enum ssl_encryption_level_t level, enum evp_aead_direction_t direction, const SSL_SESSION *session, Span traffic_secret); // tls13_derive_early_secret derives the early traffic secret. It returns true // on success and false on error. bool tls13_derive_early_secret(SSL_HANDSHAKE *hs); // tls13_derive_handshake_secrets derives the handshake traffic secret. It // returns true on success and false on error. bool tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs); // tls13_rotate_traffic_key derives the next read or write traffic secret. It // returns true on success and false on error. bool tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction); // tls13_derive_application_secrets derives the initial application data traffic // and exporter secrets based on the handshake transcripts and |master_secret|. // It returns true on success and false on error. bool tls13_derive_application_secrets(SSL_HANDSHAKE *hs); // tls13_derive_resumption_secret derives the |resumption_secret|. bool tls13_derive_resumption_secret(SSL_HANDSHAKE *hs); // tls13_export_keying_material provides an exporter interface to use the // |exporter_secret|. bool tls13_export_keying_material(SSL *ssl, Span out, Span secret, Span label, Span context); // tls13_finished_mac calculates the MAC of the handshake transcript to verify // the integrity of the Finished message, and stores the result in |out| and // length in |out_len|. |is_server| is true if this is for the Server Finished // and false for the Client Finished. bool tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, bool is_server); // tls13_derive_session_psk calculates the PSK for this session based on the // resumption master secret and |nonce|. It returns true on success, and false // on failure. bool tls13_derive_session_psk(SSL_SESSION *session, Span nonce); // tls13_write_psk_binder calculates the PSK binder value and replaces the last // bytes of |msg| with the resulting value. It returns true on success, and // false on failure. bool tls13_write_psk_binder(SSL_HANDSHAKE *hs, Span msg); // tls13_verify_psk_binder verifies that the handshake transcript, truncated up // to the binders has a valid signature using the value of |session|'s // resumption secret. It returns true on success, and false on failure. bool tls13_verify_psk_binder(SSL_HANDSHAKE *hs, SSL_SESSION *session, const SSLMessage &msg, CBS *binders); // Handshake functions. enum ssl_hs_wait_t { ssl_hs_error, ssl_hs_ok, ssl_hs_read_server_hello, ssl_hs_read_message, ssl_hs_flush, ssl_hs_certificate_selection_pending, ssl_hs_handoff, ssl_hs_handback, ssl_hs_x509_lookup, ssl_hs_channel_id_lookup, ssl_hs_private_key_operation, ssl_hs_pending_session, ssl_hs_pending_ticket, ssl_hs_early_return, ssl_hs_early_data_rejected, ssl_hs_read_end_of_early_data, ssl_hs_read_change_cipher_spec, ssl_hs_certificate_verify, }; enum ssl_grease_index_t { ssl_grease_cipher = 0, ssl_grease_group, ssl_grease_extension1, ssl_grease_extension2, ssl_grease_version, ssl_grease_ticket_extension, ssl_grease_last_index = ssl_grease_ticket_extension, }; enum tls12_server_hs_state_t { state12_start_accept = 0, state12_read_client_hello, state12_select_certificate, state12_tls13, state12_select_parameters, state12_send_server_hello, state12_send_server_certificate, state12_send_server_key_exchange, state12_send_server_hello_done, state12_read_client_certificate, state12_verify_client_certificate, state12_read_client_key_exchange, state12_read_client_certificate_verify, state12_read_change_cipher_spec, state12_process_change_cipher_spec, state12_read_next_proto, state12_read_channel_id, state12_read_client_finished, state12_send_server_finished, state12_finish_server_handshake, state12_done, }; enum tls13_server_hs_state_t { state13_select_parameters = 0, state13_select_session, state13_send_hello_retry_request, state13_read_second_client_hello, state13_send_server_hello, state13_send_server_certificate_verify, state13_send_server_finished, state13_send_half_rtt_ticket, state13_read_second_client_flight, state13_process_end_of_early_data, state13_read_client_certificate, state13_read_client_certificate_verify, state13_read_channel_id, state13_read_client_finished, state13_send_new_session_ticket, state13_done, }; // handback_t lists the points in the state machine where a handback can occur. // These are the different points at which key material is no longer needed. enum handback_t { handback_after_session_resumption = 0, handback_after_ecdhe = 1, handback_after_handshake = 2, handback_tls13 = 3, handback_max_value = handback_tls13, }; // Delegated credentials. // This structure stores a delegated credential (DC) as defined by // draft-ietf-tls-subcerts-03. struct DC { static constexpr bool kAllowUniquePtr = true; ~DC(); // Dup returns a copy of this DC and takes references to |raw| and |pkey|. UniquePtr Dup(); // Parse parses the delegated credential stored in |in|. If successful it // returns the parsed structure, otherwise it returns |nullptr| and sets // |*out_alert|. static UniquePtr Parse(CRYPTO_BUFFER *in, uint8_t *out_alert); // raw is the delegated credential encoded as specified in draft-ietf-tls- // subcerts-03. UniquePtr raw; // expected_cert_verify_algorithm is the signature scheme of the DC public // key. uint16_t expected_cert_verify_algorithm = 0; // pkey is the public key parsed from |public_key|. UniquePtr pkey; private: friend DC* New(); DC(); }; // ssl_signing_with_dc returns true if the peer has indicated support for // delegated credentials and this host has sent a delegated credential in // response. If this is true then we've committed to using the DC in the // handshake. bool ssl_signing_with_dc(const SSL_HANDSHAKE *hs); struct SSL_HANDSHAKE { explicit SSL_HANDSHAKE(SSL *ssl); ~SSL_HANDSHAKE(); static constexpr bool kAllowUniquePtr = true; // ssl is a non-owning pointer to the parent |SSL| object. SSL *ssl; // config is a non-owning pointer to the handshake configuration. SSL_CONFIG *config; // wait contains the operation the handshake is currently blocking on or // |ssl_hs_ok| if none. enum ssl_hs_wait_t wait = ssl_hs_ok; // state is the internal state for the TLS 1.2 and below handshake. Its // values depend on |do_handshake| but the starting state is always zero. int state = 0; // tls13_state is the internal state for the TLS 1.3 handshake. Its values // depend on |do_handshake| but the starting state is always zero. int tls13_state = 0; // min_version is the minimum accepted protocol version, taking account both // |SSL_OP_NO_*| and |SSL_CTX_set_min_proto_version| APIs. uint16_t min_version = 0; // max_version is the maximum accepted protocol version, taking account both // |SSL_OP_NO_*| and |SSL_CTX_set_max_proto_version| APIs. uint16_t max_version = 0; private: size_t hash_len_ = 0; uint8_t secret_[SSL_MAX_MD_SIZE] = {0}; uint8_t early_traffic_secret_[SSL_MAX_MD_SIZE] = {0}; uint8_t client_handshake_secret_[SSL_MAX_MD_SIZE] = {0}; uint8_t server_handshake_secret_[SSL_MAX_MD_SIZE] = {0}; uint8_t client_traffic_secret_0_[SSL_MAX_MD_SIZE] = {0}; uint8_t server_traffic_secret_0_[SSL_MAX_MD_SIZE] = {0}; uint8_t expected_client_finished_[SSL_MAX_MD_SIZE] = {0}; public: void ResizeSecrets(size_t hash_len); Span secret() { return MakeSpan(secret_, hash_len_); } Span early_traffic_secret() { return MakeSpan(early_traffic_secret_, hash_len_); } Span client_handshake_secret() { return MakeSpan(client_handshake_secret_, hash_len_); } Span server_handshake_secret() { return MakeSpan(server_handshake_secret_, hash_len_); } Span client_traffic_secret_0() { return MakeSpan(client_traffic_secret_0_, hash_len_); } Span server_traffic_secret_0() { return MakeSpan(server_traffic_secret_0_, hash_len_); } Span expected_client_finished() { return MakeSpan(expected_client_finished_, hash_len_); } union { // sent is a bitset where the bits correspond to elements of kExtensions // in t1_lib.c. Each bit is set if that extension was sent in a // ClientHello. It's not used by servers. uint32_t sent = 0; // received is a bitset, like |sent|, but is used by servers to record // which extensions were received from a client. uint32_t received; } extensions; // retry_group is the group ID selected by the server in HelloRetryRequest in // TLS 1.3. uint16_t retry_group = 0; // error, if |wait| is |ssl_hs_error|, is the error the handshake failed on. UniquePtr error; // key_shares are the current key exchange instances. The second is only used // as a client if we believe that we should offer two key shares in a // ClientHello. UniquePtr key_shares[2]; // transcript is the current handshake transcript. SSLTranscript transcript; // cookie is the value of the cookie received from the server, if any. Array cookie; // key_share_bytes is the value of the previously sent KeyShare extension by // the client in TLS 1.3. Array key_share_bytes; // ecdh_public_key, for servers, is the key share to be sent to the client in // TLS 1.3. Array ecdh_public_key; // peer_sigalgs are the signature algorithms that the peer supports. These are // taken from the contents of the signature algorithms extension for a server // or from the CertificateRequest for a client. Array peer_sigalgs; // peer_supported_group_list contains the supported group IDs advertised by // the peer. This is only set on the server's end. The server does not // advertise this extension to the client. Array peer_supported_group_list; // peer_delegated_credential_sigalgs are the signature algorithms the peer // supports with delegated credentials. Array peer_delegated_credential_sigalgs; // peer_key is the peer's ECDH key for a TLS 1.2 client. Array peer_key; // negotiated_token_binding_version is used by a server to store the // on-the-wire encoding of the Token Binding protocol version to advertise in // the ServerHello/EncryptedExtensions if the Token Binding extension is to be // sent. uint16_t negotiated_token_binding_version; // cert_compression_alg_id, for a server, contains the negotiated certificate // compression algorithm for this client. It is only valid if // |cert_compression_negotiated| is true. uint16_t cert_compression_alg_id; // server_params, in a TLS 1.2 server, stores the ServerKeyExchange // parameters. It has client and server randoms prepended for signing // convenience. Array server_params; // peer_psk_identity_hint, on the client, is the psk_identity_hint sent by the // server when using a TLS 1.2 PSK key exchange. UniquePtr peer_psk_identity_hint; // ca_names, on the client, contains the list of CAs received in a // CertificateRequest message. UniquePtr ca_names; // cached_x509_ca_names contains a cache of parsed versions of the elements of // |ca_names|. This pointer is left non-owning so only // |ssl_crypto_x509_method| needs to link against crypto/x509. STACK_OF(X509_NAME) *cached_x509_ca_names = nullptr; // certificate_types, on the client, contains the set of certificate types // received in a CertificateRequest message. Array certificate_types; // local_pubkey is the public key we are authenticating as. UniquePtr local_pubkey; // peer_pubkey is the public key parsed from the peer's leaf certificate. UniquePtr peer_pubkey; // new_session is the new mutable session being established by the current // handshake. It should not be cached. UniquePtr new_session; // early_session is the session corresponding to the current 0-RTT state on // the client if |in_early_data| is true. UniquePtr early_session; // new_cipher is the cipher being negotiated in this handshake. const SSL_CIPHER *new_cipher = nullptr; // key_block is the record-layer key block for TLS 1.2 and earlier. Array key_block; // scts_requested is true if the SCT extension is in the ClientHello. bool scts_requested : 1; // needs_psk_binder is true if the ClientHello has a placeholder PSK binder to // be filled in. bool needs_psk_binder : 1; // handshake_finalized is true once the handshake has completed, at which // point accessors should use the established state. bool handshake_finalized : 1; // accept_psk_mode stores whether the client's PSK mode is compatible with our // preferences. bool accept_psk_mode : 1; // cert_request is true if a client certificate was requested. bool cert_request : 1; // certificate_status_expected is true if OCSP stapling was negotiated and the // server is expected to send a CertificateStatus message. (This is used on // both the client and server sides.) bool certificate_status_expected : 1; // ocsp_stapling_requested is true if a client requested OCSP stapling. bool ocsp_stapling_requested : 1; // delegated_credential_requested is true if the peer indicated support for // the delegated credential extension. bool delegated_credential_requested : 1; // should_ack_sni is used by a server and indicates that the SNI extension // should be echoed in the ServerHello. bool should_ack_sni : 1; // in_false_start is true if there is a pending client handshake in False // Start. The client may write data at this point. bool in_false_start : 1; // in_early_data is true if there is a pending handshake that has progressed // enough to send and receive early data. bool in_early_data : 1; // early_data_offered is true if the client sent the early_data extension. bool early_data_offered : 1; // can_early_read is true if application data may be read at this point in the // handshake. bool can_early_read : 1; // can_early_write is true if application data may be written at this point in // the handshake. bool can_early_write : 1; // next_proto_neg_seen is one of NPN was negotiated. bool next_proto_neg_seen : 1; // ticket_expected is true if a TLS 1.2 NewSessionTicket message is to be sent // or received. bool ticket_expected : 1; // extended_master_secret is true if the extended master secret extension is // negotiated in this handshake. bool extended_master_secret : 1; // pending_private_key_op is true if there is a pending private key operation // in progress. bool pending_private_key_op : 1; // grease_seeded is true if |grease_seed| has been initialized. bool grease_seeded : 1; // handback indicates that a server should pause the handshake after // finishing operations that require private key material, in such a way that // |SSL_get_error| returns |SSL_ERROR_HANDBACK|. It is set by // |SSL_apply_handoff|. bool handback : 1; // cert_compression_negotiated is true iff |cert_compression_alg_id| is valid. bool cert_compression_negotiated : 1; // apply_jdk11_workaround is true if the peer is probably a JDK 11 client // which implemented TLS 1.3 incorrectly. bool apply_jdk11_workaround : 1; // client_version is the value sent or received in the ClientHello version. uint16_t client_version = 0; // early_data_read is the amount of early data that has been read by the // record layer. uint16_t early_data_read = 0; // early_data_written is the amount of early data that has been written by the // record layer. uint16_t early_data_written = 0; // session_id is the session ID in the ClientHello. uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0}; uint8_t session_id_len = 0; // grease_seed is the entropy for GREASE values. It is valid if // |grease_seeded| is true. uint8_t grease_seed[ssl_grease_last_index + 1] = {0}; }; UniquePtr ssl_handshake_new(SSL *ssl); // ssl_check_message_type checks if |msg| has type |type|. If so it returns // one. Otherwise, it sends an alert and returns zero. bool ssl_check_message_type(SSL *ssl, const SSLMessage &msg, int type); // ssl_run_handshake runs the TLS handshake. It returns one on success and <= 0 // on error. It sets |out_early_return| to one if we've completed the handshake // early. int ssl_run_handshake(SSL_HANDSHAKE *hs, bool *out_early_return); // The following are implementations of |do_handshake| for the client and // server. enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs); enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs); enum ssl_hs_wait_t tls13_client_handshake(SSL_HANDSHAKE *hs); enum ssl_hs_wait_t tls13_server_handshake(SSL_HANDSHAKE *hs); // The following functions return human-readable representations of the TLS // handshake states for debugging. const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs); const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs); const char *tls13_client_handshake_state(SSL_HANDSHAKE *hs); const char *tls13_server_handshake_state(SSL_HANDSHAKE *hs); // tls13_add_key_update queues a KeyUpdate message on |ssl|. The // |update_requested| argument must be one of |SSL_KEY_UPDATE_REQUESTED| or // |SSL_KEY_UPDATE_NOT_REQUESTED|. bool tls13_add_key_update(SSL *ssl, int update_requested); // tls13_post_handshake processes a post-handshake message. It returns true on // success and false on failure. bool tls13_post_handshake(SSL *ssl, const SSLMessage &msg); bool tls13_process_certificate(SSL_HANDSHAKE *hs, const SSLMessage &msg, bool allow_anonymous); bool tls13_process_certificate_verify(SSL_HANDSHAKE *hs, const SSLMessage &msg); // tls13_process_finished processes |msg| as a Finished message from the // peer. If |use_saved_value| is true, the verify_data is compared against // |hs->expected_client_finished| rather than computed fresh. bool tls13_process_finished(SSL_HANDSHAKE *hs, const SSLMessage &msg, bool use_saved_value); bool tls13_add_certificate(SSL_HANDSHAKE *hs); // tls13_add_certificate_verify adds a TLS 1.3 CertificateVerify message to the // handshake. If it returns |ssl_private_key_retry|, it should be called again // to retry when the signing operation is completed. enum ssl_private_key_result_t tls13_add_certificate_verify(SSL_HANDSHAKE *hs); bool tls13_add_finished(SSL_HANDSHAKE *hs); bool tls13_process_new_session_ticket(SSL *ssl, const SSLMessage &msg); bssl::UniquePtr tls13_create_session_with_ticket(SSL *ssl, CBS *body); bool ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs, Array *out_secret, uint8_t *out_alert, CBS *contents); bool ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, bool *out_found, Array *out_secret, uint8_t *out_alert, CBS *contents); bool ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out); bool ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents); bool ssl_ext_pre_shared_key_parse_clienthello( SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders, uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert, const SSL_CLIENT_HELLO *client_hello, CBS *contents); bool ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out); // ssl_is_sct_list_valid does a shallow parse of the SCT list in |contents| and // returns whether it's valid. bool ssl_is_sct_list_valid(const CBS *contents); bool ssl_write_client_hello(SSL_HANDSHAKE *hs); enum ssl_cert_verify_context_t { ssl_cert_verify_server, ssl_cert_verify_client, ssl_cert_verify_channel_id, }; // tls13_get_cert_verify_signature_input generates the message to be signed for // TLS 1.3's CertificateVerify message. |cert_verify_context| determines the // type of signature. It sets |*out| to a newly allocated buffer containing the // result. This function returns true on success and false on failure. bool tls13_get_cert_verify_signature_input( SSL_HANDSHAKE *hs, Array *out, enum ssl_cert_verify_context_t cert_verify_context); // ssl_is_alpn_protocol_allowed returns whether |protocol| is a valid server // selection for |hs->ssl|'s client preferences. bool ssl_is_alpn_protocol_allowed(const SSL_HANDSHAKE *hs, Span protocol); // ssl_negotiate_alpn negotiates the ALPN extension, if applicable. It returns // true on successful negotiation or if nothing was negotiated. It returns false // and sets |*out_alert| to an alert on error. bool ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert, const SSL_CLIENT_HELLO *client_hello); struct SSL_EXTENSION_TYPE { uint16_t type; bool *out_present; CBS *out_data; }; // ssl_parse_extensions parses a TLS extensions block out of |cbs| and advances // it. It writes the parsed extensions to pointers denoted by |ext_types|. On // success, it fills in the |out_present| and |out_data| fields and returns one. // Otherwise, it sets |*out_alert| to an alert to send and returns zero. Unknown // extensions are rejected unless |ignore_unknown| is 1. int ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert, const SSL_EXTENSION_TYPE *ext_types, size_t num_ext_types, int ignore_unknown); // ssl_verify_peer_cert verifies the peer certificate for |hs|. enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs); // ssl_reverify_peer_cert verifies the peer certificate for |hs| when resuming a // session. enum ssl_verify_result_t ssl_reverify_peer_cert(SSL_HANDSHAKE *hs, bool send_alert); enum ssl_hs_wait_t ssl_get_finished(SSL_HANDSHAKE *hs); bool ssl_send_finished(SSL_HANDSHAKE *hs); bool ssl_output_cert_chain(SSL_HANDSHAKE *hs); // ssl_handshake_session returns the |SSL_SESSION| corresponding to the current // handshake. Note, in TLS 1.2 resumptions, this session is immutable. const SSL_SESSION *ssl_handshake_session(const SSL_HANDSHAKE *hs); // SSLKEYLOGFILE functions. // ssl_log_secret logs |secret| with label |label|, if logging is enabled for // |ssl|. It returns true on success and false on failure. bool ssl_log_secret(const SSL *ssl, const char *label, Span secret); // ClientHello functions. bool ssl_client_hello_init(const SSL *ssl, SSL_CLIENT_HELLO *out, const SSLMessage &msg); bool ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello, CBS *out, uint16_t extension_type); bool ssl_client_cipher_list_contains_cipher( const SSL_CLIENT_HELLO *client_hello, uint16_t id); // GREASE. // ssl_get_grease_value returns a GREASE value for |hs|. For a given // connection, the values for each index will be deterministic. This allows the // same ClientHello be sent twice for a HelloRetryRequest or the same group be // advertised in both supported_groups and key_shares. uint16_t ssl_get_grease_value(SSL_HANDSHAKE *hs, enum ssl_grease_index_t index); // Signature algorithms. // tls1_parse_peer_sigalgs parses |sigalgs| as the list of peer signature // algorithms and saves them on |hs|. It returns true on success and false on // error. bool tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *sigalgs); // tls1_get_legacy_signature_algorithm sets |*out| to the signature algorithm // that should be used with |pkey| in TLS 1.1 and earlier. It returns true on // success and false if |pkey| may not be used at those versions. bool tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey); // tls1_choose_signature_algorithm sets |*out| to a signature algorithm for use // with |hs|'s private key based on the peer's preferences and the algorithms // supported. It returns true on success and false on error. bool tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs, uint16_t *out); // tls1_get_peer_verify_algorithms returns the signature schemes for which the // peer indicated support. // // NOTE: The related function |SSL_get0_peer_verify_algorithms| only has // well-defined behavior during the callbacks set by |SSL_CTX_set_cert_cb| and // |SSL_CTX_set_client_cert_cb|, or when the handshake is paused because of // them. Span tls1_get_peer_verify_algorithms(const SSL_HANDSHAKE *hs); // tls12_add_verify_sigalgs adds the signature algorithms acceptable for the // peer signature to |out|. It returns true on success and false on error. bool tls12_add_verify_sigalgs(const SSL_HANDSHAKE *hs, CBB *out); // tls12_check_peer_sigalg checks if |sigalg| is acceptable for the peer // signature. It returns true on success and false on error, setting // |*out_alert| to an alert to send. bool tls12_check_peer_sigalg(const SSL_HANDSHAKE *hs, uint8_t *out_alert, uint16_t sigalg); // Underdocumented functions. // // Functions below here haven't been touched up and may be underdocumented. #define TLSEXT_CHANNEL_ID_SIZE 128 // From RFC4492, used in encoding the curve type in ECParameters #define NAMED_CURVE_TYPE 3 struct CERT { static constexpr bool kAllowUniquePtr = true; explicit CERT(const SSL_X509_METHOD *x509_method); ~CERT(); UniquePtr privatekey; // chain contains the certificate chain, with the leaf at the beginning. The // first element of |chain| may be NULL to indicate that the leaf certificate // has not yet been set. // If |chain| != NULL -> len(chain) >= 1 // If |chain[0]| == NULL -> len(chain) >= 2. // |chain[1..]| != NULL UniquePtr chain; // x509_chain may contain a parsed copy of |chain[1..]|. This is only used as // a cache in order to implement “get0” functions that return a non-owning // pointer to the certificate chain. STACK_OF(X509) *x509_chain = nullptr; // x509_leaf may contain a parsed copy of the first element of |chain|. This // is only used as a cache in order to implement “get0” functions that return // a non-owning pointer to the certificate chain. X509 *x509_leaf = nullptr; // x509_stash contains the last |X509| object append to the chain. This is a // workaround for some third-party code that continue to use an |X509| object // even after passing ownership with an “add0” function. X509 *x509_stash = nullptr; // key_method, if non-NULL, is a set of callbacks to call for private key // operations. const SSL_PRIVATE_KEY_METHOD *key_method = nullptr; // x509_method contains pointers to functions that might deal with |X509| // compatibility, or might be a no-op, depending on the application. const SSL_X509_METHOD *x509_method = nullptr; // sigalgs, if non-empty, is the set of signature algorithms supported by // |privatekey| in decreasing order of preference. Array sigalgs; // Certificate setup callback: if set is called whenever a // certificate may be required (client or server). the callback // can then examine any appropriate parameters and setup any // certificates required. This allows advanced applications // to select certificates on the fly: for example based on // supported signature algorithms or curves. int (*cert_cb)(SSL *ssl, void *arg) = nullptr; void *cert_cb_arg = nullptr; // Optional X509_STORE for certificate validation. If NULL the parent SSL_CTX // store is used instead. X509_STORE *verify_store = nullptr; // Signed certificate timestamp list to be sent to the client, if requested UniquePtr signed_cert_timestamp_list; // OCSP response to be sent to the client, if requested. UniquePtr ocsp_response; // sid_ctx partitions the session space within a shared session cache or // ticket key. Only sessions with a matching value will be accepted. uint8_t sid_ctx_length = 0; uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0}; // Delegated credentials. // dc is the delegated credential to send to the peer (if requested). UniquePtr dc = nullptr; // dc_privatekey is used instead of |privatekey| or |key_method| to // authenticate the host if a delegated credential is used in the handshake. UniquePtr dc_privatekey = nullptr; // dc_key_method, if not NULL, is used instead of |dc_privatekey| to // authenticate the host. const SSL_PRIVATE_KEY_METHOD *dc_key_method = nullptr; }; // |SSL_PROTOCOL_METHOD| abstracts between TLS and DTLS. struct SSL_PROTOCOL_METHOD { bool is_dtls; bool (*ssl_new)(SSL *ssl); void (*ssl_free)(SSL *ssl); // get_message sets |*out| to the current handshake message and returns true // if one has been received. It returns false if more input is needed. bool (*get_message)(const SSL *ssl, SSLMessage *out); // next_message is called to release the current handshake message. void (*next_message)(SSL *ssl); // has_unprocessed_handshake_data returns whether there is buffered // handshake data that has not been consumed by |get_message|. bool (*has_unprocessed_handshake_data)(const SSL *ssl); // Use the |ssl_open_handshake| wrapper. ssl_open_record_t (*open_handshake)(SSL *ssl, size_t *out_consumed, uint8_t *out_alert, Span in); // Use the |ssl_open_change_cipher_spec| wrapper. ssl_open_record_t (*open_change_cipher_spec)(SSL *ssl, size_t *out_consumed, uint8_t *out_alert, Span in); // Use the |ssl_open_app_data| wrapper. ssl_open_record_t (*open_app_data)(SSL *ssl, Span *out, size_t *out_consumed, uint8_t *out_alert, Span in); int (*write_app_data)(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf, int len); int (*dispatch_alert)(SSL *ssl); // init_message begins a new handshake message of type |type|. |cbb| is the // root CBB to be passed into |finish_message|. |*body| is set to a child CBB // the caller should write to. It returns true on success and false on error. bool (*init_message)(SSL *ssl, CBB *cbb, CBB *body, uint8_t type); // finish_message finishes a handshake message. It sets |*out_msg| to the // serialized message. It returns true on success and false on error. bool (*finish_message)(SSL *ssl, CBB *cbb, bssl::Array *out_msg); // add_message adds a handshake message to the pending flight. It returns // true on success and false on error. bool (*add_message)(SSL *ssl, bssl::Array msg); // add_change_cipher_spec adds a ChangeCipherSpec record to the pending // flight. It returns true on success and false on error. bool (*add_change_cipher_spec)(SSL *ssl); // flush_flight flushes the pending flight to the transport. It returns one on // success and <= 0 on error. int (*flush_flight)(SSL *ssl); // on_handshake_complete is called when the handshake is complete. void (*on_handshake_complete)(SSL *ssl); // set_read_state sets |ssl|'s read cipher state and level to |aead_ctx| and // |level|. In QUIC, |aead_ctx| is a placeholder object and |secret_for_quic| // is the original secret. This function returns true on success and false on // error. bool (*set_read_state)(SSL *ssl, ssl_encryption_level_t level, UniquePtr aead_ctx, Span secret_for_quic); // set_write_state sets |ssl|'s write cipher state and level to |aead_ctx| and // |level|. In QUIC, |aead_ctx| is a placeholder object and |secret_for_quic| // is the original secret. This function returns true on success and false on // error. bool (*set_write_state)(SSL *ssl, ssl_encryption_level_t level, UniquePtr aead_ctx, Span secret_for_quic); }; // The following wrappers call |open_*| but handle |read_shutdown| correctly. // ssl_open_handshake processes a record from |in| for reading a handshake // message. ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed, uint8_t *out_alert, Span in); // ssl_open_change_cipher_spec processes a record from |in| for reading a // ChangeCipherSpec. ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, uint8_t *out_alert, Span in); // ssl_open_app_data processes a record from |in| for reading application data. // On success, it returns |ssl_open_record_success| and sets |*out| to the // input. If it encounters a post-handshake message, it returns // |ssl_open_record_discard|. The caller should then retry, after processing any // messages received with |get_message|. ssl_open_record_t ssl_open_app_data(SSL *ssl, Span *out, size_t *out_consumed, uint8_t *out_alert, Span in); struct SSL_X509_METHOD { // check_client_CA_list returns one if |names| is a good list of X.509 // distinguished names and zero otherwise. This is used to ensure that we can // reject unparsable values at handshake time when using crypto/x509. bool (*check_client_CA_list)(STACK_OF(CRYPTO_BUFFER) *names); // cert_clear frees and NULLs all X509 certificate-related state. void (*cert_clear)(CERT *cert); // cert_free frees all X509-related state. void (*cert_free)(CERT *cert); // cert_flush_cached_chain drops any cached |X509|-based certificate chain // from |cert|. // cert_dup duplicates any needed fields from |cert| to |new_cert|. void (*cert_dup)(CERT *new_cert, const CERT *cert); void (*cert_flush_cached_chain)(CERT *cert); // cert_flush_cached_chain drops any cached |X509|-based leaf certificate // from |cert|. void (*cert_flush_cached_leaf)(CERT *cert); // session_cache_objects fills out |sess->x509_peer| and |sess->x509_chain| // from |sess->certs| and erases |sess->x509_chain_without_leaf|. It returns // true on success or false on error. bool (*session_cache_objects)(SSL_SESSION *session); // session_dup duplicates any needed fields from |session| to |new_session|. // It returns true on success or false on error. bool (*session_dup)(SSL_SESSION *new_session, const SSL_SESSION *session); // session_clear frees any X509-related state from |session|. void (*session_clear)(SSL_SESSION *session); // session_verify_cert_chain verifies the certificate chain in |session|, // sets |session->verify_result| and returns true on success or false on // error. bool (*session_verify_cert_chain)(SSL_SESSION *session, SSL_HANDSHAKE *ssl, uint8_t *out_alert); // hs_flush_cached_ca_names drops any cached |X509_NAME|s from |hs|. void (*hs_flush_cached_ca_names)(SSL_HANDSHAKE *hs); // ssl_new does any necessary initialisation of |hs|. It returns true on // success or false on error. bool (*ssl_new)(SSL_HANDSHAKE *hs); // ssl_free frees anything created by |ssl_new|. void (*ssl_config_free)(SSL_CONFIG *cfg); // ssl_flush_cached_client_CA drops any cached |X509_NAME|s from |ssl|. void (*ssl_flush_cached_client_CA)(SSL_CONFIG *cfg); // ssl_auto_chain_if_needed runs the deprecated auto-chaining logic if // necessary. On success, it updates |ssl|'s certificate configuration as // needed and returns true. Otherwise, it returns false. bool (*ssl_auto_chain_if_needed)(SSL_HANDSHAKE *hs); // ssl_ctx_new does any necessary initialisation of |ctx|. It returns true on // success or false on error. bool (*ssl_ctx_new)(SSL_CTX *ctx); // ssl_ctx_free frees anything created by |ssl_ctx_new|. void (*ssl_ctx_free)(SSL_CTX *ctx); // ssl_ctx_flush_cached_client_CA drops any cached |X509_NAME|s from |ctx|. void (*ssl_ctx_flush_cached_client_CA)(SSL_CTX *ssl); }; // ssl_crypto_x509_method provides the |SSL_X509_METHOD| functions using // crypto/x509. extern const SSL_X509_METHOD ssl_crypto_x509_method; // ssl_noop_x509_method provides the |SSL_X509_METHOD| functions that avoid // crypto/x509. extern const SSL_X509_METHOD ssl_noop_x509_method; struct TicketKey { static constexpr bool kAllowUniquePtr = true; uint8_t name[SSL_TICKET_KEY_NAME_LEN] = {0}; uint8_t hmac_key[16] = {0}; uint8_t aes_key[16] = {0}; // next_rotation_tv_sec is the time (in seconds from the epoch) when the // current key should be superseded by a new key, or the time when a previous // key should be dropped. If zero, then the key should not be automatically // rotated. uint64_t next_rotation_tv_sec = 0; }; struct CertCompressionAlg { static constexpr bool kAllowUniquePtr = true; ssl_cert_compression_func_t compress = nullptr; ssl_cert_decompression_func_t decompress = nullptr; uint16_t alg_id = 0; }; BSSL_NAMESPACE_END DEFINE_LHASH_OF(SSL_SESSION) BSSL_NAMESPACE_BEGIN // An ssl_shutdown_t describes the shutdown state of one end of the connection, // whether it is alive or has been shutdown via close_notify or fatal alert. enum ssl_shutdown_t { ssl_shutdown_none = 0, ssl_shutdown_close_notify = 1, ssl_shutdown_error = 2, }; struct SSL3_STATE { static constexpr bool kAllowUniquePtr = true; SSL3_STATE(); ~SSL3_STATE(); uint8_t read_sequence[8] = {0}; uint8_t write_sequence[8] = {0}; uint8_t server_random[SSL3_RANDOM_SIZE] = {0}; uint8_t client_random[SSL3_RANDOM_SIZE] = {0}; // read_buffer holds data from the transport to be processed. SSLBuffer read_buffer; // write_buffer holds data to be written to the transport. SSLBuffer write_buffer; // pending_app_data is the unconsumed application data. It points into // |read_buffer|. Span pending_app_data; // partial write - check the numbers match unsigned int wnum = 0; // number of bytes sent so far int wpend_tot = 0; // number bytes written int wpend_type = 0; int wpend_ret = 0; // number of bytes submitted const uint8_t *wpend_buf = nullptr; // read_shutdown is the shutdown state for the read half of the connection. enum ssl_shutdown_t read_shutdown = ssl_shutdown_none; // write_shutdown is the shutdown state for the write half of the connection. enum ssl_shutdown_t write_shutdown = ssl_shutdown_none; // read_error, if |read_shutdown| is |ssl_shutdown_error|, is the error for // the receive half of the connection. UniquePtr read_error; int total_renegotiations = 0; // This holds a variable that indicates what we were doing when a 0 or -1 is // returned. This is needed for non-blocking IO so we know what request // needs re-doing when in SSL_accept or SSL_connect int rwstate = SSL_ERROR_NONE; enum ssl_encryption_level_t read_level = ssl_encryption_initial; enum ssl_encryption_level_t write_level = ssl_encryption_initial; // early_data_skipped is the amount of early data that has been skipped by the // record layer. uint16_t early_data_skipped = 0; // empty_record_count is the number of consecutive empty records received. uint8_t empty_record_count = 0; // warning_alert_count is the number of consecutive warning alerts // received. uint8_t warning_alert_count = 0; // key_update_count is the number of consecutive KeyUpdates received. uint8_t key_update_count = 0; // The negotiated Token Binding key parameter. Only valid if // |token_binding_negotiated| is set. uint8_t negotiated_token_binding_param = 0; // skip_early_data instructs the record layer to skip unexpected early data // messages when 0RTT is rejected. bool skip_early_data : 1; // have_version is true if the connection's final version is known. Otherwise // the version has not been negotiated yet. bool have_version : 1; // v2_hello_done is true if the peer's V2ClientHello, if any, has been handled // and future messages should use the record layer. bool v2_hello_done : 1; // is_v2_hello is true if the current handshake message was derived from a // V2ClientHello rather than received from the peer directly. bool is_v2_hello : 1; // has_message is true if the current handshake message has been returned // at least once by |get_message| and false otherwise. bool has_message : 1; // initial_handshake_complete is true if the initial handshake has // completed. bool initial_handshake_complete : 1; // session_reused indicates whether a session was resumed. bool session_reused : 1; // delegated_credential_used is whether we presented a delegated credential to // the peer. bool delegated_credential_used : 1; bool send_connection_binding : 1; // In a client, this means that the server supported Channel ID and that a // Channel ID was sent. In a server it means that we echoed support for // Channel IDs and that |channel_id| will be valid after the handshake. bool channel_id_valid : 1; // key_update_pending is true if we have a KeyUpdate acknowledgment // outstanding. bool key_update_pending : 1; // wpend_pending is true if we have a pending write outstanding. bool wpend_pending : 1; // early_data_accepted is true if early data was accepted by the server. bool early_data_accepted : 1; // tls13_downgrade is whether the TLS 1.3 anti-downgrade logic fired. bool tls13_downgrade : 1; // token_binding_negotiated is set if Token Binding was negotiated. bool token_binding_negotiated : 1; // alert_dispatch is true there is an alert in |send_alert| to be sent. bool alert_dispatch : 1; // renegotiate_pending is whether the read half of the channel is blocked on a // HelloRequest. bool renegotiate_pending : 1; // used_hello_retry_request is whether the handshake used a TLS 1.3 // HelloRetryRequest message. bool used_hello_retry_request : 1; // hs_buf is the buffer of handshake data to process. UniquePtr hs_buf; // pending_hs_data contains the pending handshake data that has not yet // been encrypted to |pending_flight|. This allows packing the handshake into // fewer records. UniquePtr pending_hs_data; // pending_flight is the pending outgoing flight. This is used to flush each // handshake flight in a single write. |write_buffer| must be written out // before this data. UniquePtr pending_flight; // pending_flight_offset is the number of bytes of |pending_flight| which have // been successfully written. uint32_t pending_flight_offset = 0; // ticket_age_skew is the difference, in seconds, between the client-sent // ticket age and the server-computed value in TLS 1.3 server connections // which resumed a session. int32_t ticket_age_skew = 0; // ssl_early_data_reason stores details on why 0-RTT was accepted or rejected. enum ssl_early_data_reason_t early_data_reason = ssl_early_data_unknown; // aead_read_ctx is the current read cipher state. UniquePtr aead_read_ctx; // aead_write_ctx is the current write cipher state. UniquePtr aead_write_ctx; // hs is the handshake state for the current handshake or NULL if there isn't // one. UniquePtr hs; uint8_t write_traffic_secret[SSL_MAX_MD_SIZE] = {0}; uint8_t read_traffic_secret[SSL_MAX_MD_SIZE] = {0}; uint8_t exporter_secret[SSL_MAX_MD_SIZE] = {0}; uint8_t write_traffic_secret_len = 0; uint8_t read_traffic_secret_len = 0; uint8_t exporter_secret_len = 0; // Connection binding to prevent renegotiation attacks uint8_t previous_client_finished[12] = {0}; uint8_t previous_client_finished_len = 0; uint8_t previous_server_finished_len = 0; uint8_t previous_server_finished[12] = {0}; uint8_t send_alert[2] = {0}; // established_session is the session established by the connection. This // session is only filled upon the completion of the handshake and is // immutable. UniquePtr established_session; // Next protocol negotiation. For the client, this is the protocol that we // sent in NextProtocol and is set when handling ServerHello extensions. // // For a server, this is the client's selected_protocol from NextProtocol and // is set when handling the NextProtocol message, before the Finished // message. Array next_proto_negotiated; // ALPN information // (we are in the process of transitioning from NPN to ALPN.) // In a server these point to the selected ALPN protocol after the // ClientHello has been processed. In a client these contain the protocol // that the server selected once the ServerHello has been processed. Array alpn_selected; // hostname, on the server, is the value of the SNI extension. UniquePtr hostname; // For a server: // If |channel_id_valid| is true, then this contains the // verified Channel ID from the client: a P256 point, (x,y), where // each are big-endian values. uint8_t channel_id[64] = {0}; // Contains the QUIC transport params received by the peer. Array peer_quic_transport_params; // srtp_profile is the selected SRTP protection profile for // DTLS-SRTP. const SRTP_PROTECTION_PROFILE *srtp_profile = nullptr; }; // lengths of messages #define DTLS1_COOKIE_LENGTH 256 #define DTLS1_RT_HEADER_LENGTH 13 #define DTLS1_HM_HEADER_LENGTH 12 #define DTLS1_CCS_HEADER_LENGTH 1 #define DTLS1_AL_HEADER_LENGTH 2 struct hm_header_st { uint8_t type; uint32_t msg_len; uint16_t seq; uint32_t frag_off; uint32_t frag_len; }; // An hm_fragment is an incoming DTLS message, possibly not yet assembled. struct hm_fragment { static constexpr bool kAllowUniquePtr = true; hm_fragment() {} hm_fragment(const hm_fragment &) = delete; hm_fragment &operator=(const hm_fragment &) = delete; ~hm_fragment(); // type is the type of the message. uint8_t type = 0; // seq is the sequence number of this message. uint16_t seq = 0; // msg_len is the length of the message body. uint32_t msg_len = 0; // data is a pointer to the message, including message header. It has length // |DTLS1_HM_HEADER_LENGTH| + |msg_len|. uint8_t *data = nullptr; // reassembly is a bitmask of |msg_len| bits corresponding to which parts of // the message have been received. It is NULL if the message is complete. uint8_t *reassembly = nullptr; }; struct OPENSSL_timeval { uint64_t tv_sec; uint32_t tv_usec; }; struct DTLS1_STATE { static constexpr bool kAllowUniquePtr = true; DTLS1_STATE(); ~DTLS1_STATE(); // has_change_cipher_spec is true if we have received a ChangeCipherSpec from // the peer in this epoch. bool has_change_cipher_spec : 1; // outgoing_messages_complete is true if |outgoing_messages| has been // completed by an attempt to flush it. Future calls to |add_message| and // |add_change_cipher_spec| will start a new flight. bool outgoing_messages_complete : 1; // flight_has_reply is true if the current outgoing flight is complete and has // processed at least one message. This is used to detect whether we or the // peer sent the final flight. bool flight_has_reply : 1; uint8_t cookie[DTLS1_COOKIE_LENGTH] = {0}; size_t cookie_len = 0; // The current data and handshake epoch. This is initially undefined, and // starts at zero once the initial handshake is completed. uint16_t r_epoch = 0; uint16_t w_epoch = 0; // records being received in the current epoch DTLS1_BITMAP bitmap; uint16_t handshake_write_seq = 0; uint16_t handshake_read_seq = 0; // save last sequence number for retransmissions uint8_t last_write_sequence[8] = {0}; UniquePtr last_aead_write_ctx; // incoming_messages is a ring buffer of incoming handshake messages that have // yet to be processed. The front of the ring buffer is message number // |handshake_read_seq|, at position |handshake_read_seq| % // |SSL_MAX_HANDSHAKE_FLIGHT|. UniquePtr incoming_messages[SSL_MAX_HANDSHAKE_FLIGHT]; // outgoing_messages is the queue of outgoing messages from the last handshake // flight. DTLS_OUTGOING_MESSAGE outgoing_messages[SSL_MAX_HANDSHAKE_FLIGHT]; uint8_t outgoing_messages_len = 0; // outgoing_written is the number of outgoing messages that have been // written. uint8_t outgoing_written = 0; // outgoing_offset is the number of bytes of the next outgoing message have // been written. uint32_t outgoing_offset = 0; unsigned mtu = 0; // max DTLS packet size // num_timeouts is the number of times the retransmit timer has fired since // the last time it was reset. unsigned num_timeouts = 0; // Indicates when the last handshake msg or heartbeat sent will // timeout. struct OPENSSL_timeval next_timeout = {0, 0}; // timeout_duration_ms is the timeout duration in milliseconds. unsigned timeout_duration_ms = 0; }; // SSL_CONFIG contains configuration bits that can be shed after the handshake // completes. Objects of this type are not shared; they are unique to a // particular |SSL|. // // See SSL_shed_handshake_config() for more about the conditions under which // configuration can be shed. struct SSL_CONFIG { static constexpr bool kAllowUniquePtr = true; explicit SSL_CONFIG(SSL *ssl_arg); ~SSL_CONFIG(); // ssl is a non-owning pointer to the parent |SSL| object. SSL *const ssl = nullptr; // conf_max_version is the maximum acceptable version configured by // |SSL_set_max_proto_version|. Note this version is not normalized in DTLS // and is further constrained by |SSL_OP_NO_*|. uint16_t conf_max_version = 0; // conf_min_version is the minimum acceptable version configured by // |SSL_set_min_proto_version|. Note this version is not normalized in DTLS // and is further constrained by |SSL_OP_NO_*|. uint16_t conf_min_version = 0; X509_VERIFY_PARAM *param = nullptr; // crypto UniquePtr cipher_list; // This is used to hold the local certificate used (i.e. the server // certificate for a server or the client certificate for a client). UniquePtr cert; int (*verify_callback)(int ok, X509_STORE_CTX *ctx) = nullptr; // fail if callback returns 0 enum ssl_verify_result_t (*custom_verify_callback)( SSL *ssl, uint8_t *out_alert) = nullptr; // Server-only: psk_identity_hint is the identity hint to send in // PSK-based key exchanges. UniquePtr psk_identity_hint; unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity, unsigned max_identity_len, uint8_t *psk, unsigned max_psk_len) = nullptr; unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk, unsigned max_psk_len) = nullptr; // for server side, keep the list of CA_dn we can use UniquePtr client_CA; // cached_x509_client_CA is a cache of parsed versions of the elements of // |client_CA|. STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr; Array supported_group_list; // our list // The client's Channel ID private key. UniquePtr channel_id_private; // For a client, this contains the list of supported protocols in wire // format. Array alpn_client_proto_list; // Contains a list of supported Token Binding key parameters. Array token_binding_params; // Contains the QUIC transport params that this endpoint will send. Array quic_transport_params; // Contains the context used to decide whether to accept early data in QUIC. Array quic_early_data_context; // verify_sigalgs, if not empty, is the set of signature algorithms // accepted from the peer in decreasing order of preference. Array verify_sigalgs; // srtp_profiles is the list of configured SRTP protection profiles for // DTLS-SRTP. UniquePtr srtp_profiles; // verify_mode is a bitmask of |SSL_VERIFY_*| values. uint8_t verify_mode = SSL_VERIFY_NONE; // Enable signed certificate time stamps. Currently client only. bool signed_cert_timestamps_enabled : 1; // ocsp_stapling_enabled is only used by client connections and indicates // whether OCSP stapling will be requested. bool ocsp_stapling_enabled : 1; // channel_id_enabled is copied from the |SSL_CTX|. For a server, means that // we'll accept Channel IDs from clients. For a client, means that we'll // advertise support. bool channel_id_enabled : 1; // If enforce_rsa_key_usage is true, the handshake will fail if the // keyUsage extension is present and incompatible with the TLS usage. // This field is not read until after certificate verification. bool enforce_rsa_key_usage : 1; // retain_only_sha256_of_client_certs is true if we should compute the SHA256 // hash of the peer's certificate and then discard it to save memory and // session space. Only effective on the server side. bool retain_only_sha256_of_client_certs : 1; // handoff indicates that a server should stop after receiving the // ClientHello and pause the handshake in such a way that |SSL_get_error| // returns |SSL_ERROR_HANDOFF|. This is copied in |SSL_new| from the |SSL_CTX| // element of the same name and may be cleared if the handoff is declined. bool handoff : 1; // shed_handshake_config indicates that the handshake config (this object!) // should be freed after the handshake completes. bool shed_handshake_config : 1; // ignore_tls13_downgrade is whether the connection should continue when the // server random signals a downgrade. bool ignore_tls13_downgrade : 1; // jdk11_workaround is whether to disable TLS 1.3 for JDK 11 clients, as a // workaround for https://bugs.openjdk.java.net/browse/JDK-8211806. bool jdk11_workaround : 1; }; // From RFC 8446, used in determining PSK modes. #define SSL_PSK_DHE_KE 0x1 // kMaxEarlyDataAccepted is the advertised number of plaintext bytes of early // data that will be accepted. This value should be slightly below // kMaxEarlyDataSkipped in tls_record.c, which is measured in ciphertext. static const size_t kMaxEarlyDataAccepted = 14336; UniquePtr ssl_cert_dup(CERT *cert); void ssl_cert_clear_certs(CERT *cert); bool ssl_set_cert(CERT *cert, UniquePtr buffer); bool ssl_is_key_type_supported(int key_type); // ssl_compare_public_and_private_key returns true if |pubkey| is the public // counterpart to |privkey|. Otherwise it returns false and pushes a helpful // message on the error queue. bool ssl_compare_public_and_private_key(const EVP_PKEY *pubkey, const EVP_PKEY *privkey); bool ssl_cert_check_private_key(const CERT *cert, const EVP_PKEY *privkey); int ssl_get_new_session(SSL_HANDSHAKE *hs, int is_server); int ssl_encrypt_ticket(SSL_HANDSHAKE *hs, CBB *out, const SSL_SESSION *session); int ssl_ctx_rotate_ticket_encryption_key(SSL_CTX *ctx); // ssl_session_new returns a newly-allocated blank |SSL_SESSION| or nullptr on // error. UniquePtr ssl_session_new(const SSL_X509_METHOD *x509_method); // ssl_hash_session_id returns a hash of |session_id|, suitable for a hash table // keyed on session IDs. uint32_t ssl_hash_session_id(Span session_id); // SSL_SESSION_parse parses an |SSL_SESSION| from |cbs| and advances |cbs| over // the parsed data. OPENSSL_EXPORT UniquePtr SSL_SESSION_parse( CBS *cbs, const SSL_X509_METHOD *x509_method, CRYPTO_BUFFER_POOL *pool); // ssl_session_serialize writes |in| to |cbb| as if it were serialising a // session for Session-ID resumption. It returns one on success and zero on // error. OPENSSL_EXPORT int ssl_session_serialize(const SSL_SESSION *in, CBB *cbb); // ssl_session_is_context_valid returns one if |session|'s session ID context // matches the one set on |hs| and zero otherwise. int ssl_session_is_context_valid(const SSL_HANDSHAKE *hs, const SSL_SESSION *session); // ssl_session_is_time_valid returns one if |session| is still valid and zero if // it has expired. int ssl_session_is_time_valid(const SSL *ssl, const SSL_SESSION *session); // ssl_session_is_resumable returns one if |session| is resumable for |hs| and // zero otherwise. int ssl_session_is_resumable(const SSL_HANDSHAKE *hs, const SSL_SESSION *session); // ssl_session_protocol_version returns the protocol version associated with // |session|. Note that despite the name, this is not the same as // |SSL_SESSION_get_protocol_version|. The latter is based on upstream's name. uint16_t ssl_session_protocol_version(const SSL_SESSION *session); // ssl_session_get_digest returns the digest used in |session|. const EVP_MD *ssl_session_get_digest(const SSL_SESSION *session); void ssl_set_session(SSL *ssl, SSL_SESSION *session); // ssl_get_prev_session looks up the previous session based on |client_hello|. // On success, it sets |*out_session| to the session or nullptr if none was // found. If the session could not be looked up synchronously, it returns // |ssl_hs_pending_session| and should be called again. If a ticket could not be // decrypted immediately it returns |ssl_hs_pending_ticket| and should also // be called again. Otherwise, it returns |ssl_hs_error|. enum ssl_hs_wait_t ssl_get_prev_session(SSL_HANDSHAKE *hs, UniquePtr *out_session, bool *out_tickets_supported, bool *out_renew_ticket, const SSL_CLIENT_HELLO *client_hello); // The following flags determine which parts of the session are duplicated. #define SSL_SESSION_DUP_AUTH_ONLY 0x0 #define SSL_SESSION_INCLUDE_TICKET 0x1 #define SSL_SESSION_INCLUDE_NONAUTH 0x2 #define SSL_SESSION_DUP_ALL \ (SSL_SESSION_INCLUDE_TICKET | SSL_SESSION_INCLUDE_NONAUTH) // SSL_SESSION_dup returns a newly-allocated |SSL_SESSION| with a copy of the // fields in |session| or nullptr on error. The new session is non-resumable and // must be explicitly marked resumable once it has been filled in. OPENSSL_EXPORT UniquePtr SSL_SESSION_dup(SSL_SESSION *session, int dup_flags); // ssl_session_rebase_time updates |session|'s start time to the current time, // adjusting the timeout so the expiration time is unchanged. void ssl_session_rebase_time(SSL *ssl, SSL_SESSION *session); // ssl_session_renew_timeout calls |ssl_session_rebase_time| and renews // |session|'s timeout to |timeout| (measured from the current time). The // renewal is clamped to the session's auth_timeout. void ssl_session_renew_timeout(SSL *ssl, SSL_SESSION *session, uint32_t timeout); void ssl_update_cache(SSL_HANDSHAKE *hs, int mode); void ssl_send_alert(SSL *ssl, int level, int desc); int ssl_send_alert_impl(SSL *ssl, int level, int desc); bool tls_get_message(const SSL *ssl, SSLMessage *out); ssl_open_record_t tls_open_handshake(SSL *ssl, size_t *out_consumed, uint8_t *out_alert, Span in); void tls_next_message(SSL *ssl); int tls_dispatch_alert(SSL *ssl); ssl_open_record_t tls_open_app_data(SSL *ssl, Span *out, size_t *out_consumed, uint8_t *out_alert, Span in); ssl_open_record_t tls_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, uint8_t *out_alert, Span in); int tls_write_app_data(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf, int len); bool tls_new(SSL *ssl); void tls_free(SSL *ssl); bool tls_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type); bool tls_finish_message(SSL *ssl, CBB *cbb, Array *out_msg); bool tls_add_message(SSL *ssl, Array msg); bool tls_add_change_cipher_spec(SSL *ssl); int tls_flush_flight(SSL *ssl); bool dtls1_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type); bool dtls1_finish_message(SSL *ssl, CBB *cbb, Array *out_msg); bool dtls1_add_message(SSL *ssl, Array msg); bool dtls1_add_change_cipher_spec(SSL *ssl); int dtls1_flush_flight(SSL *ssl); // ssl_add_message_cbb finishes the handshake message in |cbb| and adds it to // the pending flight. It returns true on success and false on error. bool ssl_add_message_cbb(SSL *ssl, CBB *cbb); // ssl_hash_message incorporates |msg| into the handshake hash. It returns true // on success and false on allocation failure. bool ssl_hash_message(SSL_HANDSHAKE *hs, const SSLMessage &msg); ssl_open_record_t dtls1_open_app_data(SSL *ssl, Span *out, size_t *out_consumed, uint8_t *out_alert, Span in); ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, uint8_t *out_alert, Span in); int dtls1_write_app_data(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf, int len); // dtls1_write_record sends a record. It returns one on success and <= 0 on // error. int dtls1_write_record(SSL *ssl, int type, const uint8_t *buf, size_t len, enum dtls1_use_epoch_t use_epoch); int dtls1_retransmit_outgoing_messages(SSL *ssl); bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr, CBS *out_body); bool dtls1_check_timeout_num(SSL *ssl); void dtls1_start_timer(SSL *ssl); void dtls1_stop_timer(SSL *ssl); bool dtls1_is_timer_expired(SSL *ssl); unsigned int dtls1_min_mtu(void); bool dtls1_new(SSL *ssl); void dtls1_free(SSL *ssl); bool dtls1_get_message(const SSL *ssl, SSLMessage *out); ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed, uint8_t *out_alert, Span in); void dtls1_next_message(SSL *ssl); int dtls1_dispatch_alert(SSL *ssl); // tls1_configure_aead configures either the read or write direction AEAD (as // determined by |direction|) using the keys generated by the TLS KDF. The // |key_block_cache| argument is used to store the generated key block, if // empty. Otherwise it's assumed that the key block is already contained within // it. It returns true on success or false on error. bool tls1_configure_aead(SSL *ssl, evp_aead_direction_t direction, Array *key_block_cache, const SSL_SESSION *session, Span iv_override); bool tls1_change_cipher_state(SSL_HANDSHAKE *hs, evp_aead_direction_t direction); int tls1_generate_master_secret(SSL_HANDSHAKE *hs, uint8_t *out, Span premaster); // tls1_get_grouplist returns the locally-configured group preference list. Span tls1_get_grouplist(const SSL_HANDSHAKE *ssl); // tls1_check_group_id returns whether |group_id| is consistent with locally- // configured group preferences. bool tls1_check_group_id(const SSL_HANDSHAKE *ssl, uint16_t group_id); // tls1_get_shared_group sets |*out_group_id| to the first preferred shared // group between client and server preferences and returns true. If none may be // found, it returns false. bool tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id); // tls1_set_curves converts the array of NIDs in |curves| into a newly allocated // array of TLS group IDs. On success, the function returns true and writes the // array to |*out_group_ids|. Otherwise, it returns false. bool tls1_set_curves(Array *out_group_ids, Span curves); // tls1_set_curves_list converts the string of curves pointed to by |curves| // into a newly allocated array of TLS group IDs. On success, the function // returns true and writes the array to |*out_group_ids|. Otherwise, it returns // false. bool tls1_set_curves_list(Array *out_group_ids, const char *curves); // ssl_add_clienthello_tlsext writes ClientHello extensions to |out|. It returns // true on success and false on failure. The |header_len| argument is the length // of the ClientHello written so far and is used to compute the padding length. // (It does not include the record header.) bool ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, size_t header_len); bool ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out); bool ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs, const SSL_CLIENT_HELLO *client_hello); bool ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, CBS *cbs); #define tlsext_tick_md EVP_sha256 // ssl_process_ticket processes a session ticket from the client. It returns // one of: // |ssl_ticket_aead_success|: |*out_session| is set to the parsed session and // |*out_renew_ticket| is set to whether the ticket should be renewed. // |ssl_ticket_aead_ignore_ticket|: |*out_renew_ticket| is set to whether a // fresh ticket should be sent, but the given ticket cannot be used. // |ssl_ticket_aead_retry|: the ticket could not be immediately decrypted. // Retry later. // |ssl_ticket_aead_error|: an error occured that is fatal to the connection. enum ssl_ticket_aead_result_t ssl_process_ticket( SSL_HANDSHAKE *hs, UniquePtr *out_session, bool *out_renew_ticket, Span ticket, Span session_id); // tls1_verify_channel_id processes |msg| as a Channel ID message, and verifies // the signature. If the key is valid, it saves the Channel ID and returns true. // Otherwise, it returns false. bool tls1_verify_channel_id(SSL_HANDSHAKE *hs, const SSLMessage &msg); // tls1_write_channel_id generates a Channel ID message and puts the output in // |cbb|. |ssl->channel_id_private| must already be set before calling. This // function returns true on success and false on error. bool tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb); // tls1_channel_id_hash computes the hash to be signed by Channel ID and writes // it to |out|, which must contain at least |EVP_MAX_MD_SIZE| bytes. It returns // true on success and false on failure. bool tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len); // tls1_record_handshake_hashes_for_channel_id records the current handshake // hashes in |hs->new_session| so that Channel ID resumptions can sign that // data. bool tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs); // ssl_do_channel_id_callback checks runs |hs->ssl->ctx->channel_id_cb| if // necessary. It returns true on success and false on fatal error. Note that, on // success, |hs->ssl->channel_id_private| may be unset, in which case the // operation should be retried later. bool ssl_do_channel_id_callback(SSL_HANDSHAKE *hs); // ssl_can_write returns whether |ssl| is allowed to write. bool ssl_can_write(const SSL *ssl); // ssl_can_read returns wheter |ssl| is allowed to read. bool ssl_can_read(const SSL *ssl); void ssl_get_current_time(const SSL *ssl, struct OPENSSL_timeval *out_clock); void ssl_ctx_get_current_time(const SSL_CTX *ctx, struct OPENSSL_timeval *out_clock); // ssl_reset_error_state resets state for |SSL_get_error|. void ssl_reset_error_state(SSL *ssl); // ssl_set_read_error sets |ssl|'s read half into an error state, saving the // current state of the error queue. void ssl_set_read_error(SSL *ssl); BSSL_NAMESPACE_END // Opaque C types. // // The following types are exported to C code as public typedefs, so they must // be defined outside of the namespace. // ssl_method_st backs the public |SSL_METHOD| type. It is a compatibility // structure to support the legacy version-locked methods. struct ssl_method_st { // version, if non-zero, is the only protocol version acceptable to an // SSL_CTX initialized from this method. uint16_t version; // method is the underlying SSL_PROTOCOL_METHOD that initializes the // SSL_CTX. const bssl::SSL_PROTOCOL_METHOD *method; // x509_method contains pointers to functions that might deal with |X509| // compatibility, or might be a no-op, depending on the application. const bssl::SSL_X509_METHOD *x509_method; }; struct ssl_ctx_st { explicit ssl_ctx_st(const SSL_METHOD *ssl_method); ssl_ctx_st(const ssl_ctx_st &) = delete; ssl_ctx_st &operator=(const ssl_ctx_st &) = delete; const bssl::SSL_PROTOCOL_METHOD *method = nullptr; const bssl::SSL_X509_METHOD *x509_method = nullptr; // lock is used to protect various operations on this object. CRYPTO_MUTEX lock; // conf_max_version is the maximum acceptable protocol version configured by // |SSL_CTX_set_max_proto_version|. Note this version is normalized in DTLS // and is further constrainted by |SSL_OP_NO_*|. uint16_t conf_max_version = 0; // conf_min_version is the minimum acceptable protocol version configured by // |SSL_CTX_set_min_proto_version|. Note this version is normalized in DTLS // and is further constrainted by |SSL_OP_NO_*|. uint16_t conf_min_version = 0; // quic_method is the method table corresponding to the QUIC hooks. const SSL_QUIC_METHOD *quic_method = nullptr; bssl::UniquePtr cipher_list; X509_STORE *cert_store = nullptr; LHASH_OF(SSL_SESSION) *sessions = nullptr; // Most session-ids that will be cached, default is // SSL_SESSION_CACHE_MAX_SIZE_DEFAULT. 0 is unlimited. unsigned long session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT; SSL_SESSION *session_cache_head = nullptr; SSL_SESSION *session_cache_tail = nullptr; // handshakes_since_cache_flush is the number of successful handshakes since // the last cache flush. int handshakes_since_cache_flush = 0; // This can have one of 2 values, ored together, // SSL_SESS_CACHE_CLIENT, // SSL_SESS_CACHE_SERVER, // Default is SSL_SESSION_CACHE_SERVER, which means only // SSL_accept which cache SSL_SESSIONS. int session_cache_mode = SSL_SESS_CACHE_SERVER; // session_timeout is the default lifetime for new sessions in TLS 1.2 and // earlier, in seconds. uint32_t session_timeout = SSL_DEFAULT_SESSION_TIMEOUT; // session_psk_dhe_timeout is the default lifetime for new sessions in TLS // 1.3, in seconds. uint32_t session_psk_dhe_timeout = SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT; // If this callback is not null, it will be called each time a session id is // added to the cache. If this function returns 1, it means that the // callback will do a SSL_SESSION_free() when it has finished using it. // Otherwise, on 0, it means the callback has finished with it. If // remove_session_cb is not null, it will be called when a session-id is // removed from the cache. After the call, OpenSSL will SSL_SESSION_free() // it. int (*new_session_cb)(SSL *ssl, SSL_SESSION *sess) = nullptr; void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *sess) = nullptr; SSL_SESSION *(*get_session_cb)(SSL *ssl, const uint8_t *data, int len, int *copy) = nullptr; CRYPTO_refcount_t references = 1; // if defined, these override the X509_verify_cert() calls int (*app_verify_callback)(X509_STORE_CTX *store_ctx, void *arg) = nullptr; void *app_verify_arg = nullptr; ssl_verify_result_t (*custom_verify_callback)(SSL *ssl, uint8_t *out_alert) = nullptr; // Default password callback. pem_password_cb *default_passwd_callback = nullptr; // Default password callback user data. void *default_passwd_callback_userdata = nullptr; // get client cert callback int (*client_cert_cb)(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey) = nullptr; // get channel id callback void (*channel_id_cb)(SSL *ssl, EVP_PKEY **out_pkey) = nullptr; CRYPTO_EX_DATA ex_data; // Default values used when no per-SSL value is defined follow void (*info_callback)(const SSL *ssl, int type, int value) = nullptr; // what we put in client cert requests bssl::UniquePtr client_CA; // cached_x509_client_CA is a cache of parsed versions of the elements of // |client_CA|. STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr; // Default values to use in SSL structures follow (these are copied by // SSL_new) uint32_t options = 0; // Disable the auto-chaining feature by default. wpa_supplicant relies on this // feature, but require callers opt into it. uint32_t mode = SSL_MODE_NO_AUTO_CHAIN; uint32_t max_cert_list = SSL_MAX_CERT_LIST_DEFAULT; bssl::UniquePtr cert; // callback that allows applications to peek at protocol messages void (*msg_callback)(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg) = nullptr; void *msg_callback_arg = nullptr; int verify_mode = SSL_VERIFY_NONE; int (*default_verify_callback)(int ok, X509_STORE_CTX *ctx) = nullptr; // called 'verify_callback' in the SSL X509_VERIFY_PARAM *param = nullptr; // select_certificate_cb is called before most ClientHello processing and // before the decision whether to resume a session is made. See // |ssl_select_cert_result_t| for details of the return values. ssl_select_cert_result_t (*select_certificate_cb)(const SSL_CLIENT_HELLO *) = nullptr; // dos_protection_cb is called once the resumption decision for a ClientHello // has been made. It returns one to continue the handshake or zero to // abort. int (*dos_protection_cb)(const SSL_CLIENT_HELLO *) = nullptr; // Controls whether to verify certificates when resuming connections. They // were already verified when the connection was first made, so the default is // false. For now, this is only respected on clients, not servers. bool reverify_on_resume = false; // Maximum amount of data to send in one fragment. actual record size can be // more than this due to padding and MAC overheads. uint16_t max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; // TLS extensions servername callback int (*servername_callback)(SSL *, int *, void *) = nullptr; void *servername_arg = nullptr; // RFC 4507 session ticket keys. |ticket_key_current| may be NULL before the // first handshake and |ticket_key_prev| may be NULL at any time. // Automatically generated ticket keys are rotated as needed at handshake // time. Hence, all access must be synchronized through |lock|. bssl::UniquePtr ticket_key_current; bssl::UniquePtr ticket_key_prev; // Callback to support customisation of ticket key setting int (*ticket_key_cb)(SSL *ssl, uint8_t *name, uint8_t *iv, EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc) = nullptr; // Server-only: psk_identity_hint is the default identity hint to send in // PSK-based key exchanges. bssl::UniquePtr psk_identity_hint; unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity, unsigned max_identity_len, uint8_t *psk, unsigned max_psk_len) = nullptr; unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk, unsigned max_psk_len) = nullptr; // Next protocol negotiation information // (for experimental NPN extension). // For a server, this contains a callback function by which the set of // advertised protocols can be provided. int (*next_protos_advertised_cb)(SSL *ssl, const uint8_t **out, unsigned *out_len, void *arg) = nullptr; void *next_protos_advertised_cb_arg = nullptr; // For a client, this contains a callback function that selects the // next protocol from the list provided by the server. int (*next_proto_select_cb)(SSL *ssl, uint8_t **out, uint8_t *out_len, const uint8_t *in, unsigned in_len, void *arg) = nullptr; void *next_proto_select_cb_arg = nullptr; // ALPN information // (we are in the process of transitioning from NPN to ALPN.) // For a server, this contains a callback function that allows the // server to select the protocol for the connection. // out: on successful return, this must point to the raw protocol // name (without the length prefix). // outlen: on successful return, this contains the length of |*out|. // in: points to the client's list of supported protocols in // wire-format. // inlen: the length of |in|. int (*alpn_select_cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in, unsigned in_len, void *arg) = nullptr; void *alpn_select_cb_arg = nullptr; // For a client, this contains the list of supported protocols in wire // format. bssl::Array alpn_client_proto_list; // SRTP profiles we are willing to do from RFC 5764 bssl::UniquePtr srtp_profiles; // Defined compression algorithms for certificates. bssl::GrowableArray cert_compression_algs; // Supported group values inherited by SSL structure bssl::Array supported_group_list; // The client's Channel ID private key. bssl::UniquePtr channel_id_private; // keylog_callback, if not NULL, is the key logging callback. See // |SSL_CTX_set_keylog_callback|. void (*keylog_callback)(const SSL *ssl, const char *line) = nullptr; // current_time_cb, if not NULL, is the function to use to get the current // time. It sets |*out_clock| to the current time. The |ssl| argument is // always NULL. See |SSL_CTX_set_current_time_cb|. void (*current_time_cb)(const SSL *ssl, struct timeval *out_clock) = nullptr; // pool is used for all |CRYPTO_BUFFER|s in case we wish to share certificate // memory. CRYPTO_BUFFER_POOL *pool = nullptr; // ticket_aead_method contains function pointers for opening and sealing // session tickets. const SSL_TICKET_AEAD_METHOD *ticket_aead_method = nullptr; // legacy_ocsp_callback implements an OCSP-related callback for OpenSSL // compatibility. int (*legacy_ocsp_callback)(SSL *ssl, void *arg) = nullptr; void *legacy_ocsp_callback_arg = nullptr; // verify_sigalgs, if not empty, is the set of signature algorithms // accepted from the peer in decreasing order of preference. bssl::Array verify_sigalgs; // retain_only_sha256_of_client_certs is true if we should compute the SHA256 // hash of the peer's certificate and then discard it to save memory and // session space. Only effective on the server side. bool retain_only_sha256_of_client_certs : 1; // quiet_shutdown is true if the connection should not send a close_notify on // shutdown. bool quiet_shutdown : 1; // ocsp_stapling_enabled is only used by client connections and indicates // whether OCSP stapling will be requested. bool ocsp_stapling_enabled : 1; // If true, a client will request certificate timestamps. bool signed_cert_timestamps_enabled : 1; // channel_id_enabled is whether Channel ID is enabled. For a server, means // that we'll accept Channel IDs from clients. For a client, means that we'll // advertise support. bool channel_id_enabled : 1; // grease_enabled is whether draft-davidben-tls-grease-01 is enabled. bool grease_enabled : 1; // allow_unknown_alpn_protos is whether the client allows unsolicited ALPN // protocols from the peer. bool allow_unknown_alpn_protos : 1; // false_start_allowed_without_alpn is whether False Start (if // |SSL_MODE_ENABLE_FALSE_START| is enabled) is allowed without ALPN. bool false_start_allowed_without_alpn : 1; // ignore_tls13_downgrade is whether a connection should continue when the // server random signals a downgrade. bool ignore_tls13_downgrade:1; // handoff indicates that a server should stop after receiving the // ClientHello and pause the handshake in such a way that |SSL_get_error| // returns |SSL_ERROR_HANDOFF|. bool handoff : 1; // If enable_early_data is true, early data can be sent and accepted. bool enable_early_data : 1; private: ~ssl_ctx_st(); friend void SSL_CTX_free(SSL_CTX *); }; struct ssl_st { explicit ssl_st(SSL_CTX *ctx_arg); ssl_st(const ssl_st &) = delete; ssl_st &operator=(const ssl_st &) = delete; ~ssl_st(); // method is the method table corresponding to the current protocol (DTLS or // TLS). const bssl::SSL_PROTOCOL_METHOD *method = nullptr; // config is a container for handshake configuration. Accesses to this field // should check for nullptr, since configuration may be shed after the // handshake completes. (If you have the |SSL_HANDSHAKE| object at hand, use // that instead, and skip the null check.) bssl::UniquePtr config; // version is the protocol version. uint16_t version = 0; uint16_t max_send_fragment = 0; // There are 2 BIO's even though they are normally both the same. This is so // data can be read and written to different handlers bssl::UniquePtr rbio; // used by SSL_read bssl::UniquePtr wbio; // used by SSL_write // do_handshake runs the handshake. On completion, it returns |ssl_hs_ok|. // Otherwise, it returns a value corresponding to what operation is needed to // progress. bssl::ssl_hs_wait_t (*do_handshake)(bssl::SSL_HANDSHAKE *hs) = nullptr; bssl::SSL3_STATE *s3 = nullptr; // TLS variables bssl::DTLS1_STATE *d1 = nullptr; // DTLS variables // callback that allows applications to peek at protocol messages void (*msg_callback)(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg) = nullptr; void *msg_callback_arg = nullptr; // session info // initial_timeout_duration_ms is the default DTLS timeout duration in // milliseconds. It's used to initialize the timer any time it's restarted. // // RFC 6347 states that implementations SHOULD use an initial timer value of 1 // second. unsigned initial_timeout_duration_ms = 1000; // session is the configured session to be offered by the client. This session // is immutable. bssl::UniquePtr session; void (*info_callback)(const SSL *ssl, int type, int value) = nullptr; bssl::UniquePtr ctx; // session_ctx is the |SSL_CTX| used for the session cache and related // settings. bssl::UniquePtr session_ctx; // extra application data CRYPTO_EX_DATA ex_data; uint32_t options = 0; // protocol behaviour uint32_t mode = 0; // API behaviour uint32_t max_cert_list = 0; bssl::UniquePtr hostname; // quic_method is the method table corresponding to the QUIC hooks. const SSL_QUIC_METHOD *quic_method = nullptr; // renegotiate_mode controls how peer renegotiation attempts are handled. ssl_renegotiate_mode_t renegotiate_mode = ssl_renegotiate_never; // server is true iff the this SSL* is the server half. Note: before the SSL* // is initialized by either SSL_set_accept_state or SSL_set_connect_state, // the side is not determined. In this state, server is always false. bool server : 1; // quiet_shutdown is true if the connection should not send a close_notify on // shutdown. bool quiet_shutdown : 1; // If enable_early_data is true, early data can be sent and accepted. bool enable_early_data : 1; }; struct ssl_session_st { explicit ssl_session_st(const bssl::SSL_X509_METHOD *method); ssl_session_st(const ssl_session_st &) = delete; ssl_session_st &operator=(const ssl_session_st &) = delete; CRYPTO_refcount_t references = 1; // ssl_version is the (D)TLS version that established the session. uint16_t ssl_version = 0; // group_id is the ID of the ECDH group used to establish this session or zero // if not applicable or unknown. uint16_t group_id = 0; // peer_signature_algorithm is the signature algorithm used to authenticate // the peer, or zero if not applicable or unknown. uint16_t peer_signature_algorithm = 0; // master_key, in TLS 1.2 and below, is the master secret associated with the // session. In TLS 1.3 and up, it is the resumption secret. int master_key_length = 0; uint8_t master_key[SSL_MAX_MASTER_KEY_LENGTH] = {0}; // session_id - valid? unsigned session_id_length = 0; uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0}; // this is used to determine whether the session is being reused in // the appropriate context. It is up to the application to set this, // via SSL_new uint8_t sid_ctx_length = 0; uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0}; bssl::UniquePtr psk_identity; // certs contains the certificate chain from the peer, starting with the leaf // certificate. bssl::UniquePtr certs; const bssl::SSL_X509_METHOD *x509_method = nullptr; // x509_peer is the peer's certificate. X509 *x509_peer = nullptr; // x509_chain is the certificate chain sent by the peer. NOTE: for historical // reasons, when a client (so the peer is a server), the chain includes // |peer|, but when a server it does not. STACK_OF(X509) *x509_chain = nullptr; // x509_chain_without_leaf is a lazily constructed copy of |x509_chain| that // omits the leaf certificate. This exists because OpenSSL, historically, // didn't include the leaf certificate in the chain for a server, but did for // a client. The |x509_chain| always includes it and, if an API call requires // a chain without, it is stored here. STACK_OF(X509) *x509_chain_without_leaf = nullptr; // verify_result is the result of certificate verification in the case of // non-fatal certificate errors. long verify_result = X509_V_ERR_INVALID_CALL; // timeout is the lifetime of the session in seconds, measured from |time|. // This is renewable up to |auth_timeout|. uint32_t timeout = SSL_DEFAULT_SESSION_TIMEOUT; // auth_timeout is the non-renewable lifetime of the session in seconds, // measured from |time|. uint32_t auth_timeout = SSL_DEFAULT_SESSION_TIMEOUT; // time is the time the session was issued, measured in seconds from the UNIX // epoch. uint64_t time = 0; const SSL_CIPHER *cipher = nullptr; CRYPTO_EX_DATA ex_data; // application specific data // These are used to make removal of session-ids more efficient and to // implement a maximum cache size. SSL_SESSION *prev = nullptr, *next = nullptr; bssl::Array ticket; bssl::UniquePtr signed_cert_timestamp_list; // The OCSP response that came with the session. bssl::UniquePtr ocsp_response; // peer_sha256 contains the SHA-256 hash of the peer's certificate if // |peer_sha256_valid| is true. uint8_t peer_sha256[SHA256_DIGEST_LENGTH] = {0}; // original_handshake_hash contains the handshake hash (either SHA-1+MD5 or // SHA-2, depending on TLS version) for the original, full handshake that // created a session. This is used by Channel IDs during resumption. uint8_t original_handshake_hash[EVP_MAX_MD_SIZE] = {0}; uint8_t original_handshake_hash_len = 0; uint32_t ticket_lifetime_hint = 0; // Session lifetime hint in seconds uint32_t ticket_age_add = 0; // ticket_max_early_data is the maximum amount of data allowed to be sent as // early data. If zero, 0-RTT is disallowed. uint32_t ticket_max_early_data = 0; // early_alpn is the ALPN protocol from the initial handshake. This is only // stored for TLS 1.3 and above in order to enforce ALPN matching for 0-RTT // resumptions. bssl::Array early_alpn; // extended_master_secret is whether the master secret in this session was // generated using EMS and thus isn't vulnerable to the Triple Handshake // attack. bool extended_master_secret : 1; // peer_sha256_valid is whether |peer_sha256| is valid. bool peer_sha256_valid : 1; // Non-zero if peer_sha256 is valid // not_resumable is used to indicate that session resumption is disallowed. bool not_resumable : 1; // ticket_age_add_valid is whether |ticket_age_add| is valid. bool ticket_age_add_valid : 1; // is_server is whether this session was created by a server. bool is_server : 1; // is_quic indicates whether this session was created using QUIC. bool is_quic : 1; // quic_early_data_context is used to determine whether early data must be // rejected when performing a QUIC handshake. bssl::Array quic_early_data_context; private: ~ssl_session_st(); friend void SSL_SESSION_free(SSL_SESSION *); }; #endif // OPENSSL_HEADER_SSL_INTERNAL_H