/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * ECC cipher suite support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include #include #include #include #include #include #include #include #include "internal.h" #include "../crypto/internal.h" BSSL_NAMESPACE_BEGIN static constexpr SSL_CIPHER kCiphers[] = { // The RSA ciphers // Cipher 02 { SSL3_TXT_RSA_NULL_SHA, "TLS_RSA_WITH_NULL_SHA", SSL3_CK_RSA_NULL_SHA, SSL_kRSA, SSL_aRSA, SSL_eNULL, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, // Cipher 0A { SSL3_TXT_RSA_DES_192_CBC3_SHA, "TLS_RSA_WITH_3DES_EDE_CBC_SHA", SSL3_CK_RSA_DES_192_CBC3_SHA, SSL_kRSA, SSL_aRSA, SSL_3DES, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, // New AES ciphersuites // Cipher 2F { TLS1_TXT_RSA_WITH_AES_128_SHA, "TLS_RSA_WITH_AES_128_CBC_SHA", TLS1_CK_RSA_WITH_AES_128_SHA, SSL_kRSA, SSL_aRSA, SSL_AES128, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, // Cipher 35 { TLS1_TXT_RSA_WITH_AES_256_SHA, "TLS_RSA_WITH_AES_256_CBC_SHA", TLS1_CK_RSA_WITH_AES_256_SHA, SSL_kRSA, SSL_aRSA, SSL_AES256, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, // PSK cipher suites. // Cipher 8C { TLS1_TXT_PSK_WITH_AES_128_CBC_SHA, "TLS_PSK_WITH_AES_128_CBC_SHA", TLS1_CK_PSK_WITH_AES_128_CBC_SHA, SSL_kPSK, SSL_aPSK, SSL_AES128, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, // Cipher 8D { TLS1_TXT_PSK_WITH_AES_256_CBC_SHA, "TLS_PSK_WITH_AES_256_CBC_SHA", TLS1_CK_PSK_WITH_AES_256_CBC_SHA, SSL_kPSK, SSL_aPSK, SSL_AES256, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, // GCM ciphersuites from RFC 5288 // Cipher 9C { TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256, "TLS_RSA_WITH_AES_128_GCM_SHA256", TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, SSL_kRSA, SSL_aRSA, SSL_AES128GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, // Cipher 9D { TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384, "TLS_RSA_WITH_AES_256_GCM_SHA384", TLS1_CK_RSA_WITH_AES_256_GCM_SHA384, SSL_kRSA, SSL_aRSA, SSL_AES256GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA384, }, // TLS 1.3 suites. // Cipher 1301 { TLS1_3_RFC_AES_128_GCM_SHA256, "TLS_AES_128_GCM_SHA256", TLS1_3_CK_AES_128_GCM_SHA256, SSL_kGENERIC, SSL_aGENERIC, SSL_AES128GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, // Cipher 1302 { TLS1_3_RFC_AES_256_GCM_SHA384, "TLS_AES_256_GCM_SHA384", TLS1_3_CK_AES_256_GCM_SHA384, SSL_kGENERIC, SSL_aGENERIC, SSL_AES256GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA384, }, // Cipher 1303 { TLS1_3_RFC_CHACHA20_POLY1305_SHA256, "TLS_CHACHA20_POLY1305_SHA256", TLS1_3_CK_CHACHA20_POLY1305_SHA256, SSL_kGENERIC, SSL_aGENERIC, SSL_CHACHA20POLY1305, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, // Cipher C009 { TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA", TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, SSL_kECDHE, SSL_aECDSA, SSL_AES128, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, // Cipher C00A { TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA", TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, SSL_kECDHE, SSL_aECDSA, SSL_AES256, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, // Cipher C013 { TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA, "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA", TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, SSL_kECDHE, SSL_aRSA, SSL_AES128, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, // Cipher C014 { TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA, "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA", TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, SSL_kECDHE, SSL_aRSA, SSL_AES256, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, // GCM based TLS v1.2 ciphersuites from RFC 5289 // Cipher C02B { TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256", TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, SSL_kECDHE, SSL_aECDSA, SSL_AES128GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, // Cipher C02C { TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384", TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, SSL_kECDHE, SSL_aECDSA, SSL_AES256GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA384, }, // Cipher C02F { TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256, "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256", TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, SSL_kECDHE, SSL_aRSA, SSL_AES128GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, // Cipher C030 { TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384, "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384", TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, SSL_kECDHE, SSL_aRSA, SSL_AES256GCM, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA384, }, // ECDHE-PSK cipher suites. // Cipher C035 { TLS1_TXT_ECDHE_PSK_WITH_AES_128_CBC_SHA, "TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA", TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA, SSL_kECDHE, SSL_aPSK, SSL_AES128, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, // Cipher C036 { TLS1_TXT_ECDHE_PSK_WITH_AES_256_CBC_SHA, "TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA", TLS1_CK_ECDHE_PSK_WITH_AES_256_CBC_SHA, SSL_kECDHE, SSL_aPSK, SSL_AES256, SSL_SHA1, SSL_HANDSHAKE_MAC_DEFAULT, }, // ChaCha20-Poly1305 cipher suites. // Cipher CCA8 { TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256", TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, SSL_kECDHE, SSL_aRSA, SSL_CHACHA20POLY1305, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, // Cipher CCA9 { TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, "TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256", TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, SSL_kECDHE, SSL_aECDSA, SSL_CHACHA20POLY1305, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, // Cipher CCAB { TLS1_TXT_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256, "TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256", TLS1_CK_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256, SSL_kECDHE, SSL_aPSK, SSL_CHACHA20POLY1305, SSL_AEAD, SSL_HANDSHAKE_MAC_SHA256, }, }; Span AllCiphers() { return MakeConstSpan(kCiphers, OPENSSL_ARRAY_SIZE(kCiphers)); } #define CIPHER_ADD 1 #define CIPHER_KILL 2 #define CIPHER_DEL 3 #define CIPHER_ORD 4 #define CIPHER_SPECIAL 5 typedef struct cipher_order_st { const SSL_CIPHER *cipher; bool active; bool in_group; struct cipher_order_st *next, *prev; } CIPHER_ORDER; typedef struct cipher_alias_st { // name is the name of the cipher alias. const char *name; // The following fields are bitmasks for the corresponding fields on // |SSL_CIPHER|. A cipher matches a cipher alias iff, for each bitmask, the // bit corresponding to the cipher's value is set to 1. If any bitmask is // all zeroes, the alias matches nothing. Use |~0u| for the default value. uint32_t algorithm_mkey; uint32_t algorithm_auth; uint32_t algorithm_enc; uint32_t algorithm_mac; // min_version, if non-zero, matches all ciphers which were added in that // particular protocol version. uint16_t min_version; } CIPHER_ALIAS; static const CIPHER_ALIAS kCipherAliases[] = { // "ALL" doesn't include eNULL. It must be explicitly enabled. {"ALL", ~0u, ~0u, ~0u, ~0u, 0}, // The "COMPLEMENTOFDEFAULT" rule is omitted. It matches nothing. // key exchange aliases // (some of those using only a single bit here combine // multiple key exchange algs according to the RFCs. {"kRSA", SSL_kRSA, ~0u, ~0u, ~0u, 0}, {"kECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, {"kEECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, {"ECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, {"kPSK", SSL_kPSK, ~0u, ~0u, ~0u, 0}, // server authentication aliases {"aRSA", ~0u, SSL_aRSA, ~0u, ~0u, 0}, {"aECDSA", ~0u, SSL_aECDSA, ~0u, ~0u, 0}, {"ECDSA", ~0u, SSL_aECDSA, ~0u, ~0u, 0}, {"aPSK", ~0u, SSL_aPSK, ~0u, ~0u, 0}, // aliases combining key exchange and server authentication {"ECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, {"EECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, {"RSA", SSL_kRSA, SSL_aRSA, ~0u, ~0u, 0}, {"PSK", SSL_kPSK, SSL_aPSK, ~0u, ~0u, 0}, // symmetric encryption aliases {"3DES", ~0u, ~0u, SSL_3DES, ~0u, 0}, {"AES128", ~0u, ~0u, SSL_AES128 | SSL_AES128GCM, ~0u, 0}, {"AES256", ~0u, ~0u, SSL_AES256 | SSL_AES256GCM, ~0u, 0}, {"AES", ~0u, ~0u, SSL_AES, ~0u, 0}, {"AESGCM", ~0u, ~0u, SSL_AES128GCM | SSL_AES256GCM, ~0u, 0}, {"CHACHA20", ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0}, // MAC aliases {"SHA1", ~0u, ~0u, ~0u, SSL_SHA1, 0}, {"SHA", ~0u, ~0u, ~0u, SSL_SHA1, 0}, // Legacy protocol minimum version aliases. "TLSv1" is intentionally the // same as "SSLv3". {"SSLv3", ~0u, ~0u, ~0u, ~0u, SSL3_VERSION}, {"TLSv1", ~0u, ~0u, ~0u, ~0u, SSL3_VERSION}, {"TLSv1.2", ~0u, ~0u, ~0u, ~0u, TLS1_2_VERSION}, // Legacy strength classes. {"HIGH", ~0u, ~0u, ~0u, ~0u, 0}, {"FIPS", ~0u, ~0u, ~0u, ~0u, 0}, // Temporary no-op aliases corresponding to removed SHA-2 legacy CBC // ciphers. These should be removed after 2018-05-14. {"SHA256", 0, 0, 0, 0, 0}, {"SHA384", 0, 0, 0, 0, 0}, }; static const size_t kCipherAliasesLen = OPENSSL_ARRAY_SIZE(kCipherAliases); bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead, size_t *out_mac_secret_len, size_t *out_fixed_iv_len, const SSL_CIPHER *cipher, uint16_t version, bool is_dtls) { *out_aead = NULL; *out_mac_secret_len = 0; *out_fixed_iv_len = 0; const bool is_tls12 = version == TLS1_2_VERSION && !is_dtls; const bool is_tls13 = version == TLS1_3_VERSION && !is_dtls; if (cipher->algorithm_mac == SSL_AEAD) { if (cipher->algorithm_enc == SSL_AES128GCM) { if (is_tls12) { *out_aead = EVP_aead_aes_128_gcm_tls12(); } else if (is_tls13) { *out_aead = EVP_aead_aes_128_gcm_tls13(); } else { *out_aead = EVP_aead_aes_128_gcm(); } *out_fixed_iv_len = 4; } else if (cipher->algorithm_enc == SSL_AES256GCM) { if (is_tls12) { *out_aead = EVP_aead_aes_256_gcm_tls12(); } else if (is_tls13) { *out_aead = EVP_aead_aes_256_gcm_tls13(); } else { *out_aead = EVP_aead_aes_256_gcm(); } *out_fixed_iv_len = 4; } else if (cipher->algorithm_enc == SSL_CHACHA20POLY1305) { *out_aead = EVP_aead_chacha20_poly1305(); *out_fixed_iv_len = 12; } else { return false; } // In TLS 1.3, the iv_len is equal to the AEAD nonce length whereas the code // above computes the TLS 1.2 construction. if (version >= TLS1_3_VERSION) { *out_fixed_iv_len = EVP_AEAD_nonce_length(*out_aead); } } else if (cipher->algorithm_mac == SSL_SHA1) { if (cipher->algorithm_enc == SSL_eNULL) { *out_aead = EVP_aead_null_sha1_tls(); } else if (cipher->algorithm_enc == SSL_3DES) { if (version == TLS1_VERSION) { *out_aead = EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(); *out_fixed_iv_len = 8; } else { *out_aead = EVP_aead_des_ede3_cbc_sha1_tls(); } } else if (cipher->algorithm_enc == SSL_AES128) { if (version == TLS1_VERSION) { *out_aead = EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(); *out_fixed_iv_len = 16; } else { *out_aead = EVP_aead_aes_128_cbc_sha1_tls(); } } else if (cipher->algorithm_enc == SSL_AES256) { if (version == TLS1_VERSION) { *out_aead = EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(); *out_fixed_iv_len = 16; } else { *out_aead = EVP_aead_aes_256_cbc_sha1_tls(); } } else { return false; } *out_mac_secret_len = SHA_DIGEST_LENGTH; } else { return false; } return true; } const EVP_MD *ssl_get_handshake_digest(uint16_t version, const SSL_CIPHER *cipher) { switch (cipher->algorithm_prf) { case SSL_HANDSHAKE_MAC_DEFAULT: return version >= TLS1_2_VERSION ? EVP_sha256() : EVP_md5_sha1(); case SSL_HANDSHAKE_MAC_SHA256: return EVP_sha256(); case SSL_HANDSHAKE_MAC_SHA384: return EVP_sha384(); default: assert(0); return NULL; } } static bool is_cipher_list_separator(char c, bool is_strict) { if (c == ':') { return true; } return !is_strict && (c == ' ' || c == ';' || c == ','); } // rule_equals returns whether the NUL-terminated string |rule| is equal to the // |buf_len| bytes at |buf|. static bool rule_equals(const char *rule, const char *buf, size_t buf_len) { // |strncmp| alone only checks that |buf| is a prefix of |rule|. return strncmp(rule, buf, buf_len) == 0 && rule[buf_len] == '\0'; } static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr, CIPHER_ORDER **tail) { if (curr == *tail) { return; } if (curr == *head) { *head = curr->next; } if (curr->prev != NULL) { curr->prev->next = curr->next; } if (curr->next != NULL) { curr->next->prev = curr->prev; } (*tail)->next = curr; curr->prev = *tail; curr->next = NULL; *tail = curr; } static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr, CIPHER_ORDER **tail) { if (curr == *head) { return; } if (curr == *tail) { *tail = curr->prev; } if (curr->next != NULL) { curr->next->prev = curr->prev; } if (curr->prev != NULL) { curr->prev->next = curr->next; } (*head)->prev = curr; curr->next = *head; curr->prev = NULL; *head = curr; } static bool ssl_cipher_collect_ciphers(Array *out_co_list, CIPHER_ORDER **out_head, CIPHER_ORDER **out_tail) { Array co_list; if (!co_list.Init(OPENSSL_ARRAY_SIZE(kCiphers))) { return false; } size_t co_list_num = 0; for (const SSL_CIPHER &cipher : kCiphers) { // TLS 1.3 ciphers do not participate in this mechanism. if (cipher.algorithm_mkey != SSL_kGENERIC) { co_list[co_list_num].cipher = &cipher; co_list[co_list_num].next = NULL; co_list[co_list_num].prev = NULL; co_list[co_list_num].active = false; co_list[co_list_num].in_group = false; co_list_num++; } } // Prepare linked list from list entries. if (co_list_num > 0) { co_list[0].prev = NULL; if (co_list_num > 1) { co_list[0].next = &co_list[1]; for (size_t i = 1; i < co_list_num - 1; i++) { co_list[i].prev = &co_list[i - 1]; co_list[i].next = &co_list[i + 1]; } co_list[co_list_num - 1].prev = &co_list[co_list_num - 2]; } co_list[co_list_num - 1].next = NULL; *out_head = &co_list[0]; *out_tail = &co_list[co_list_num - 1]; } else { *out_head = nullptr; *out_tail = nullptr; } *out_co_list = std::move(co_list); return true; } SSLCipherPreferenceList::~SSLCipherPreferenceList() { OPENSSL_free(in_group_flags); } bool SSLCipherPreferenceList::Init(UniquePtr ciphers_arg, Span in_group_flags_arg) { if (sk_SSL_CIPHER_num(ciphers_arg.get()) != in_group_flags_arg.size()) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } Array copy; if (!copy.CopyFrom(in_group_flags_arg)) { return false; } ciphers = std::move(ciphers_arg); size_t unused_len; copy.Release(&in_group_flags, &unused_len); return true; } bool SSLCipherPreferenceList::Init(const SSLCipherPreferenceList& other) { size_t size = sk_SSL_CIPHER_num(other.ciphers.get()); Span other_flags(other.in_group_flags, size); UniquePtr other_ciphers(sk_SSL_CIPHER_dup( other.ciphers.get())); if (!other_ciphers) { return false; } return Init(std::move(other_ciphers), other_flags); } void SSLCipherPreferenceList::Remove(const SSL_CIPHER *cipher) { size_t index; if (!sk_SSL_CIPHER_find(ciphers.get(), &index, cipher)) { return; } if (!in_group_flags[index] /* last element of group */ && index > 0) { in_group_flags[index-1] = false; } for (size_t i = index; i < sk_SSL_CIPHER_num(ciphers.get()) - 1; ++i) { in_group_flags[i] = in_group_flags[i+1]; } sk_SSL_CIPHER_delete(ciphers.get(), index); } // ssl_cipher_apply_rule applies the rule type |rule| to ciphers matching its // parameters in the linked list from |*head_p| to |*tail_p|. It writes the new // head and tail of the list to |*head_p| and |*tail_p|, respectively. // // - If |cipher_id| is non-zero, only that cipher is selected. // - Otherwise, if |strength_bits| is non-negative, it selects ciphers // of that strength. // - Otherwise, it selects ciphers that match each bitmasks in |alg_*| and // |min_version|. static void ssl_cipher_apply_rule( uint32_t cipher_id, uint32_t alg_mkey, uint32_t alg_auth, uint32_t alg_enc, uint32_t alg_mac, uint16_t min_version, int rule, int strength_bits, bool in_group, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { CIPHER_ORDER *head, *tail, *curr, *next, *last; const SSL_CIPHER *cp; bool reverse = false; if (cipher_id == 0 && strength_bits == -1 && min_version == 0 && (alg_mkey == 0 || alg_auth == 0 || alg_enc == 0 || alg_mac == 0)) { // The rule matches nothing, so bail early. return; } if (rule == CIPHER_DEL) { // needed to maintain sorting between currently deleted ciphers reverse = true; } head = *head_p; tail = *tail_p; if (reverse) { next = tail; last = head; } else { next = head; last = tail; } curr = NULL; for (;;) { if (curr == last) { break; } curr = next; if (curr == NULL) { break; } next = reverse ? curr->prev : curr->next; cp = curr->cipher; // Selection criteria is either a specific cipher, the value of // |strength_bits|, or the algorithms used. if (cipher_id != 0) { if (cipher_id != cp->id) { continue; } } else if (strength_bits >= 0) { if (strength_bits != SSL_CIPHER_get_bits(cp, NULL)) { continue; } } else { if (!(alg_mkey & cp->algorithm_mkey) || !(alg_auth & cp->algorithm_auth) || !(alg_enc & cp->algorithm_enc) || !(alg_mac & cp->algorithm_mac) || (min_version != 0 && SSL_CIPHER_get_min_version(cp) != min_version) || // The NULL cipher must be selected explicitly. cp->algorithm_enc == SSL_eNULL) { continue; } } // add the cipher if it has not been added yet. if (rule == CIPHER_ADD) { // reverse == false if (!curr->active) { ll_append_tail(&head, curr, &tail); curr->active = true; curr->in_group = in_group; } } // Move the added cipher to this location else if (rule == CIPHER_ORD) { // reverse == false if (curr->active) { ll_append_tail(&head, curr, &tail); curr->in_group = false; } } else if (rule == CIPHER_DEL) { // reverse == true if (curr->active) { // most recently deleted ciphersuites get best positions // for any future CIPHER_ADD (note that the CIPHER_DEL loop // works in reverse to maintain the order) ll_append_head(&head, curr, &tail); curr->active = false; curr->in_group = false; } } else if (rule == CIPHER_KILL) { // reverse == false if (head == curr) { head = curr->next; } else { curr->prev->next = curr->next; } if (tail == curr) { tail = curr->prev; } curr->active = false; if (curr->next != NULL) { curr->next->prev = curr->prev; } if (curr->prev != NULL) { curr->prev->next = curr->next; } curr->next = NULL; curr->prev = NULL; } } *head_p = head; *tail_p = tail; } static bool ssl_cipher_strength_sort(CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { // This routine sorts the ciphers with descending strength. The sorting must // keep the pre-sorted sequence, so we apply the normal sorting routine as // '+' movement to the end of the list. int max_strength_bits = 0; CIPHER_ORDER *curr = *head_p; while (curr != NULL) { if (curr->active && SSL_CIPHER_get_bits(curr->cipher, NULL) > max_strength_bits) { max_strength_bits = SSL_CIPHER_get_bits(curr->cipher, NULL); } curr = curr->next; } Array number_uses; if (!number_uses.Init(max_strength_bits + 1)) { return false; } OPENSSL_memset(number_uses.data(), 0, (max_strength_bits + 1) * sizeof(int)); // Now find the strength_bits values actually used. curr = *head_p; while (curr != NULL) { if (curr->active) { number_uses[SSL_CIPHER_get_bits(curr->cipher, NULL)]++; } curr = curr->next; } // Go through the list of used strength_bits values in descending order. for (int i = max_strength_bits; i >= 0; i--) { if (number_uses[i] > 0) { ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, CIPHER_ORD, i, false, head_p, tail_p); } } return true; } static bool ssl_cipher_process_rulestr(const char *rule_str, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p, bool strict) { uint32_t alg_mkey, alg_auth, alg_enc, alg_mac; uint16_t min_version; const char *l, *buf; int rule; bool multi, skip_rule, in_group = false, has_group = false; size_t j, buf_len; uint32_t cipher_id; char ch; l = rule_str; for (;;) { ch = *l; if (ch == '\0') { break; // done } if (in_group) { if (ch == ']') { if (*tail_p) { (*tail_p)->in_group = false; } in_group = false; l++; continue; } if (ch == '|') { rule = CIPHER_ADD; l++; continue; } else if (!(ch >= 'a' && ch <= 'z') && !(ch >= 'A' && ch <= 'Z') && !(ch >= '0' && ch <= '9')) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_OPERATOR_IN_GROUP); return false; } else { rule = CIPHER_ADD; } } else if (ch == '-') { rule = CIPHER_DEL; l++; } else if (ch == '+') { rule = CIPHER_ORD; l++; } else if (ch == '!') { rule = CIPHER_KILL; l++; } else if (ch == '@') { rule = CIPHER_SPECIAL; l++; } else if (ch == '[') { assert(!in_group); in_group = true; has_group = true; l++; continue; } else { rule = CIPHER_ADD; } // If preference groups are enabled, the only legal operator is +. // Otherwise the in_group bits will get mixed up. if (has_group && rule != CIPHER_ADD) { OPENSSL_PUT_ERROR(SSL, SSL_R_MIXED_SPECIAL_OPERATOR_WITH_GROUPS); return false; } if (is_cipher_list_separator(ch, strict)) { l++; continue; } multi = false; cipher_id = 0; alg_mkey = ~0u; alg_auth = ~0u; alg_enc = ~0u; alg_mac = ~0u; min_version = 0; skip_rule = false; for (;;) { ch = *l; buf = l; buf_len = 0; while ((ch >= 'A' && ch <= 'Z') || (ch >= '0' && ch <= '9') || (ch >= 'a' && ch <= 'z') || ch == '-' || ch == '.' || ch == '_') { ch = *(++l); buf_len++; } if (buf_len == 0) { // We hit something we cannot deal with, it is no command or separator // nor alphanumeric, so we call this an error. OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND); return false; } if (rule == CIPHER_SPECIAL) { break; } // Look for a matching exact cipher. These aren't allowed in multipart // rules. if (!multi && ch != '+') { for (j = 0; j < OPENSSL_ARRAY_SIZE(kCiphers); j++) { const SSL_CIPHER *cipher = &kCiphers[j]; if (rule_equals(cipher->name, buf, buf_len) || rule_equals(cipher->standard_name, buf, buf_len)) { cipher_id = cipher->id; break; } } } if (cipher_id == 0) { // If not an exact cipher, look for a matching cipher alias. for (j = 0; j < kCipherAliasesLen; j++) { if (rule_equals(kCipherAliases[j].name, buf, buf_len)) { alg_mkey &= kCipherAliases[j].algorithm_mkey; alg_auth &= kCipherAliases[j].algorithm_auth; alg_enc &= kCipherAliases[j].algorithm_enc; alg_mac &= kCipherAliases[j].algorithm_mac; if (min_version != 0 && min_version != kCipherAliases[j].min_version) { skip_rule = true; } else { min_version = kCipherAliases[j].min_version; } break; } } if (j == kCipherAliasesLen) { skip_rule = true; if (strict) { OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND); return false; } } } // Check for a multipart rule. if (ch != '+') { break; } l++; multi = true; } // Ok, we have the rule, now apply it. if (rule == CIPHER_SPECIAL) { if (buf_len != 8 || strncmp(buf, "STRENGTH", 8) != 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND); return false; } if (!ssl_cipher_strength_sort(head_p, tail_p)) { return false; } // We do not support any "multi" options together with "@", so throw away // the rest of the command, if any left, until end or ':' is found. while (*l != '\0' && !is_cipher_list_separator(*l, strict)) { l++; } } else if (!skip_rule) { ssl_cipher_apply_rule(cipher_id, alg_mkey, alg_auth, alg_enc, alg_mac, min_version, rule, -1, in_group, head_p, tail_p); } } if (in_group) { OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND); return false; } return true; } bool ssl_create_cipher_list(UniquePtr *out_cipher_list, const char *rule_str, bool strict) { // Return with error if nothing to do. if (rule_str == NULL || out_cipher_list == NULL) { return false; } // Now we have to collect the available ciphers from the compiled in ciphers. // We cannot get more than the number compiled in, so it is used for // allocation. Array co_list; CIPHER_ORDER *head = nullptr, *tail = nullptr; if (!ssl_cipher_collect_ciphers(&co_list, &head, &tail)) { return false; } // Now arrange all ciphers by preference: // TODO(davidben): Compute this order once and copy it. // Everything else being equal, prefer ECDHE_ECDSA and ECDHE_RSA over other // key exchange mechanisms ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, ~0u, ~0u, 0, CIPHER_ADD, -1, false, &head, &tail); ssl_cipher_apply_rule(0, SSL_kECDHE, ~0u, ~0u, ~0u, 0, CIPHER_ADD, -1, false, &head, &tail); ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_DEL, -1, false, &head, &tail); // Order the bulk ciphers. First the preferred AEAD ciphers. We prefer // CHACHA20 unless there is hardware support for fast and constant-time // AES_GCM. Of the two CHACHA20 variants, the new one is preferred over the // old one. if (EVP_has_aes_hardware()) { ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, 0, CIPHER_ADD, -1, false, &head, &tail); ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, 0, CIPHER_ADD, -1, false, &head, &tail); ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0, CIPHER_ADD, -1, false, &head, &tail); } else { ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0, CIPHER_ADD, -1, false, &head, &tail); ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, 0, CIPHER_ADD, -1, false, &head, &tail); ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, 0, CIPHER_ADD, -1, false, &head, &tail); } // Then the legacy non-AEAD ciphers: AES_128_CBC, AES_256_CBC, // 3DES_EDE_CBC_SHA. ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128, ~0u, 0, CIPHER_ADD, -1, false, &head, &tail); ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256, ~0u, 0, CIPHER_ADD, -1, false, &head, &tail); ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_3DES, ~0u, 0, CIPHER_ADD, -1, false, &head, &tail); // Temporarily enable everything else for sorting ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_ADD, -1, false, &head, &tail); // Move ciphers without forward secrecy to the end. ssl_cipher_apply_rule(0, (SSL_kRSA | SSL_kPSK), ~0u, ~0u, ~0u, 0, CIPHER_ORD, -1, false, &head, &tail); // Now disable everything (maintaining the ordering!) ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_DEL, -1, false, &head, &tail); // If the rule_string begins with DEFAULT, apply the default rule before // using the (possibly available) additional rules. const char *rule_p = rule_str; if (strncmp(rule_str, "DEFAULT", 7) == 0) { if (!ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST, &head, &tail, strict)) { return false; } rule_p += 7; if (*rule_p == ':') { rule_p++; } } if (*rule_p != '\0' && !ssl_cipher_process_rulestr(rule_p, &head, &tail, strict)) { return false; } // Allocate new "cipherstack" for the result, return with error // if we cannot get one. UniquePtr cipherstack(sk_SSL_CIPHER_new_null()); Array in_group_flags; if (cipherstack == nullptr || !in_group_flags.Init(OPENSSL_ARRAY_SIZE(kCiphers))) { return false; } // The cipher selection for the list is done. The ciphers are added // to the resulting precedence to the STACK_OF(SSL_CIPHER). size_t num_in_group_flags = 0; for (CIPHER_ORDER *curr = head; curr != NULL; curr = curr->next) { if (curr->active) { if (!sk_SSL_CIPHER_push(cipherstack.get(), curr->cipher)) { return false; } in_group_flags[num_in_group_flags++] = curr->in_group; } } UniquePtr pref_list = MakeUnique(); if (!pref_list || !pref_list->Init( std::move(cipherstack), MakeConstSpan(in_group_flags).subspan(0, num_in_group_flags))) { return false; } *out_cipher_list = std::move(pref_list); // Configuring an empty cipher list is an error but still updates the // output. if (sk_SSL_CIPHER_num((*out_cipher_list)->ciphers.get()) == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH); return false; } return true; } uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key) { switch (EVP_PKEY_id(key)) { case EVP_PKEY_RSA: return SSL_aRSA; case EVP_PKEY_EC: case EVP_PKEY_ED25519: // Ed25519 keys in TLS 1.2 repurpose the ECDSA ciphers. return SSL_aECDSA; default: return 0; } } bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher) { return (cipher->algorithm_auth & SSL_aCERT) != 0; } bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher) { // Ephemeral Diffie-Hellman key exchanges require a ServerKeyExchange. It is // optional or omitted in all others. return (cipher->algorithm_mkey & SSL_kECDHE) != 0; } size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher) { size_t block_size; switch (cipher->algorithm_enc) { case SSL_3DES: block_size = 8; break; case SSL_AES128: case SSL_AES256: block_size = 16; break; default: return 0; } // All supported TLS 1.0 ciphers use SHA-1. assert(cipher->algorithm_mac == SSL_SHA1); size_t ret = 1 + SHA_DIGEST_LENGTH; ret += block_size - (ret % block_size); return ret; } BSSL_NAMESPACE_END using namespace bssl; static constexpr int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b) { if (a->id > b->id) { return 1; } if (a->id < b->id) { return -1; } return 0; } static int ssl_cipher_id_cmp_void(const void *in_a, const void *in_b) { return ssl_cipher_id_cmp(reinterpret_cast(in_a), reinterpret_cast(in_b)); } template static constexpr bool ssl_ciphers_sorted(const SSL_CIPHER (&ciphers)[N]) { for (size_t i = 1; i < N; i++) { if (ssl_cipher_id_cmp(&ciphers[i - 1], &ciphers[i]) >= 0) { return false; } } return true; } static_assert(ssl_ciphers_sorted(kCiphers), "Ciphers are not sorted, bsearch won't work"); const SSL_CIPHER *SSL_get_cipher_by_value(uint16_t value) { SSL_CIPHER c; c.id = 0x03000000L | value; return reinterpret_cast(bsearch( &c, kCiphers, OPENSSL_ARRAY_SIZE(kCiphers), sizeof(SSL_CIPHER), ssl_cipher_id_cmp_void)); } uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *cipher) { return cipher->id; } uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *cipher) { // All OpenSSL cipher IDs are prefaced with 0x03. Historically this referred // to SSLv2 vs SSLv3. assert((cipher->id & 0xff000000) == 0x03000000); return static_cast(cipher->id); } uint16_t SSL_CIPHER_get_value(const SSL_CIPHER *cipher) { return SSL_CIPHER_get_protocol_id(cipher); } int SSL_CIPHER_is_aead(const SSL_CIPHER *cipher) { return (cipher->algorithm_mac & SSL_AEAD) != 0; } int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *cipher) { switch (cipher->algorithm_enc) { case SSL_eNULL: return NID_undef; case SSL_3DES: return NID_des_ede3_cbc; case SSL_AES128: return NID_aes_128_cbc; case SSL_AES256: return NID_aes_256_cbc; case SSL_AES128GCM: return NID_aes_128_gcm; case SSL_AES256GCM: return NID_aes_256_gcm; case SSL_CHACHA20POLY1305: return NID_chacha20_poly1305; } assert(0); return NID_undef; } int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *cipher) { switch (cipher->algorithm_mac) { case SSL_AEAD: return NID_undef; case SSL_SHA1: return NID_sha1; } assert(0); return NID_undef; } int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *cipher) { switch (cipher->algorithm_mkey) { case SSL_kRSA: return NID_kx_rsa; case SSL_kECDHE: return NID_kx_ecdhe; case SSL_kPSK: return NID_kx_psk; case SSL_kGENERIC: return NID_kx_any; } assert(0); return NID_undef; } int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *cipher) { switch (cipher->algorithm_auth) { case SSL_aRSA: return NID_auth_rsa; case SSL_aECDSA: return NID_auth_ecdsa; case SSL_aPSK: return NID_auth_psk; case SSL_aGENERIC: return NID_auth_any; } assert(0); return NID_undef; } int SSL_CIPHER_get_prf_nid(const SSL_CIPHER *cipher) { switch (cipher->algorithm_prf) { case SSL_HANDSHAKE_MAC_DEFAULT: return NID_md5_sha1; case SSL_HANDSHAKE_MAC_SHA256: return NID_sha256; case SSL_HANDSHAKE_MAC_SHA384: return NID_sha384; } assert(0); return NID_undef; } int SSL_CIPHER_is_block_cipher(const SSL_CIPHER *cipher) { return (cipher->algorithm_enc & SSL_eNULL) == 0 && cipher->algorithm_mac != SSL_AEAD; } uint16_t SSL_CIPHER_get_min_version(const SSL_CIPHER *cipher) { if (cipher->algorithm_mkey == SSL_kGENERIC || cipher->algorithm_auth == SSL_aGENERIC) { return TLS1_3_VERSION; } if (cipher->algorithm_prf != SSL_HANDSHAKE_MAC_DEFAULT) { // Cipher suites before TLS 1.2 use the default PRF, while all those added // afterwards specify a particular hash. return TLS1_2_VERSION; } return SSL3_VERSION; } uint16_t SSL_CIPHER_get_max_version(const SSL_CIPHER *cipher) { if (cipher->algorithm_mkey == SSL_kGENERIC || cipher->algorithm_auth == SSL_aGENERIC) { return TLS1_3_VERSION; } return TLS1_2_VERSION; } // return the actual cipher being used const char *SSL_CIPHER_get_name(const SSL_CIPHER *cipher) { if (cipher != NULL) { return cipher->name; } return "(NONE)"; } const char *SSL_CIPHER_standard_name(const SSL_CIPHER *cipher) { return cipher->standard_name; } const char *SSL_CIPHER_get_kx_name(const SSL_CIPHER *cipher) { if (cipher == NULL) { return ""; } switch (cipher->algorithm_mkey) { case SSL_kRSA: return "RSA"; case SSL_kECDHE: switch (cipher->algorithm_auth) { case SSL_aECDSA: return "ECDHE_ECDSA"; case SSL_aRSA: return "ECDHE_RSA"; case SSL_aPSK: return "ECDHE_PSK"; default: assert(0); return "UNKNOWN"; } case SSL_kPSK: assert(cipher->algorithm_auth == SSL_aPSK); return "PSK"; case SSL_kGENERIC: assert(cipher->algorithm_auth == SSL_aGENERIC); return "GENERIC"; default: assert(0); return "UNKNOWN"; } } char *SSL_CIPHER_get_rfc_name(const SSL_CIPHER *cipher) { if (cipher == NULL) { return NULL; } return OPENSSL_strdup(SSL_CIPHER_standard_name(cipher)); } int SSL_CIPHER_get_bits(const SSL_CIPHER *cipher, int *out_alg_bits) { if (cipher == NULL) { return 0; } int alg_bits, strength_bits; switch (cipher->algorithm_enc) { case SSL_AES128: case SSL_AES128GCM: alg_bits = 128; strength_bits = 128; break; case SSL_AES256: case SSL_AES256GCM: case SSL_CHACHA20POLY1305: alg_bits = 256; strength_bits = 256; break; case SSL_3DES: alg_bits = 168; strength_bits = 112; break; case SSL_eNULL: alg_bits = 0; strength_bits = 0; break; default: assert(0); alg_bits = 0; strength_bits = 0; } if (out_alg_bits != NULL) { *out_alg_bits = alg_bits; } return strength_bits; } const char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len) { const char *kx, *au, *enc, *mac; uint32_t alg_mkey, alg_auth, alg_enc, alg_mac; alg_mkey = cipher->algorithm_mkey; alg_auth = cipher->algorithm_auth; alg_enc = cipher->algorithm_enc; alg_mac = cipher->algorithm_mac; switch (alg_mkey) { case SSL_kRSA: kx = "RSA"; break; case SSL_kECDHE: kx = "ECDH"; break; case SSL_kPSK: kx = "PSK"; break; case SSL_kGENERIC: kx = "GENERIC"; break; default: kx = "unknown"; } switch (alg_auth) { case SSL_aRSA: au = "RSA"; break; case SSL_aECDSA: au = "ECDSA"; break; case SSL_aPSK: au = "PSK"; break; case SSL_aGENERIC: au = "GENERIC"; break; default: au = "unknown"; break; } switch (alg_enc) { case SSL_3DES: enc = "3DES(168)"; break; case SSL_AES128: enc = "AES(128)"; break; case SSL_AES256: enc = "AES(256)"; break; case SSL_AES128GCM: enc = "AESGCM(128)"; break; case SSL_AES256GCM: enc = "AESGCM(256)"; break; case SSL_CHACHA20POLY1305: enc = "ChaCha20-Poly1305"; break; case SSL_eNULL: enc="None"; break; default: enc = "unknown"; break; } switch (alg_mac) { case SSL_SHA1: mac = "SHA1"; break; case SSL_AEAD: mac = "AEAD"; break; default: mac = "unknown"; break; } if (buf == NULL) { len = 128; buf = (char *)OPENSSL_malloc(len); if (buf == NULL) { return NULL; } } else if (len < 128) { return "Buffer too small"; } BIO_snprintf(buf, len, "%-23s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n", cipher->name, kx, au, enc, mac); return buf; } const char *SSL_CIPHER_get_version(const SSL_CIPHER *cipher) { return "TLSv1/SSLv3"; } STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) { return NULL; } int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) { return 1; } const char *SSL_COMP_get_name(const COMP_METHOD *comp) { return NULL; } const char *SSL_COMP_get0_name(const SSL_COMP *comp) { return comp->name; } int SSL_COMP_get_id(const SSL_COMP *comp) { return comp->id; } void SSL_COMP_free_compression_methods(void) {}