/* v3_utl.c */ /* * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL * project. */ /* ==================================================================== * Copyright (c) 1999-2003 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* X509 v3 extension utilities */ #include #include #include #include #include #include #include #include #include #include #include "../conf/internal.h" #include "../internal.h" #include "internal.h" static char *strip_spaces(char *name); static int sk_strcmp(const char **a, const char **b); static STACK_OF(OPENSSL_STRING) *get_email(X509_NAME *name, GENERAL_NAMES *gens); static void str_free(OPENSSL_STRING str); static int append_ia5(STACK_OF(OPENSSL_STRING) **sk, ASN1_IA5STRING *email); static int ipv4_from_asc(unsigned char v4[4], const char *in); static int ipv6_from_asc(unsigned char v6[16], const char *in); static int ipv6_cb(const char *elem, int len, void *usr); static int ipv6_hex(unsigned char *out, const char *in, int inlen); // Add a CONF_VALUE name value pair to stack static int x509V3_add_len_value(const char *name, const char *value, size_t value_len, int omit_value, STACK_OF(CONF_VALUE) **extlist) { CONF_VALUE *vtmp = NULL; char *tname = NULL, *tvalue = NULL; int extlist_was_null = *extlist == NULL; if (name && !(tname = OPENSSL_strdup(name))) { goto malloc_err; } if (!omit_value) { // |CONF_VALUE| cannot represent strings with NULs. if (OPENSSL_memchr(value, 0, value_len)) { OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_VALUE); goto err; } tvalue = OPENSSL_strndup(value, value_len); if (tvalue == NULL) { goto malloc_err; } } if (!(vtmp = CONF_VALUE_new())) { goto malloc_err; } if (!*extlist && !(*extlist = sk_CONF_VALUE_new_null())) { goto malloc_err; } vtmp->section = NULL; vtmp->name = tname; vtmp->value = tvalue; if (!sk_CONF_VALUE_push(*extlist, vtmp)) { goto malloc_err; } return 1; malloc_err: OPENSSL_PUT_ERROR(X509V3, ERR_R_MALLOC_FAILURE); err: if (extlist_was_null) { sk_CONF_VALUE_free(*extlist); *extlist = NULL; } OPENSSL_free(vtmp); OPENSSL_free(tname); OPENSSL_free(tvalue); return 0; } int X509V3_add_value(const char *name, const char *value, STACK_OF(CONF_VALUE) **extlist) { return x509V3_add_len_value(name, value, value != NULL ? strlen(value) : 0, /*omit_value=*/value == NULL, extlist); } int X509V3_add_value_uchar(const char *name, const unsigned char *value, STACK_OF(CONF_VALUE) **extlist) { return X509V3_add_value(name, (const char *)value, extlist); } int x509V3_add_value_asn1_string(const char *name, const ASN1_STRING *value, STACK_OF(CONF_VALUE) **extlist) { return x509V3_add_len_value(name, (const char *)value->data, value->length, /*omit_value=*/0, extlist); } // Free function for STACK_OF(CONF_VALUE) void X509V3_conf_free(CONF_VALUE *conf) { if (!conf) { return; } OPENSSL_free(conf->name); OPENSSL_free(conf->value); OPENSSL_free(conf->section); OPENSSL_free(conf); } int X509V3_add_value_bool(const char *name, int asn1_bool, STACK_OF(CONF_VALUE) **extlist) { if (asn1_bool) { return X509V3_add_value(name, "TRUE", extlist); } return X509V3_add_value(name, "FALSE", extlist); } int X509V3_add_value_bool_nf(const char *name, int asn1_bool, STACK_OF(CONF_VALUE) **extlist) { if (asn1_bool) { return X509V3_add_value(name, "TRUE", extlist); } return 1; } static char *bignum_to_string(const BIGNUM *bn) { char *tmp, *ret; size_t len; // Display large numbers in hex and small numbers in decimal. Converting to // decimal takes quadratic time and is no more useful than hex for large // numbers. if (BN_num_bits(bn) < 32) { return BN_bn2dec(bn); } tmp = BN_bn2hex(bn); if (tmp == NULL) { return NULL; } len = strlen(tmp) + 3; ret = OPENSSL_malloc(len); if (ret == NULL) { OPENSSL_PUT_ERROR(X509V3, ERR_R_MALLOC_FAILURE); OPENSSL_free(tmp); return NULL; } // Prepend "0x", but place it after the "-" if negative. if (tmp[0] == '-') { OPENSSL_strlcpy(ret, "-0x", len); OPENSSL_strlcat(ret, tmp + 1, len); } else { OPENSSL_strlcpy(ret, "0x", len); OPENSSL_strlcat(ret, tmp, len); } OPENSSL_free(tmp); return ret; } char *i2s_ASN1_ENUMERATED(const X509V3_EXT_METHOD *method, const ASN1_ENUMERATED *a) { BIGNUM *bntmp = NULL; char *strtmp = NULL; if (!a) { return NULL; } if (!(bntmp = ASN1_ENUMERATED_to_BN(a, NULL)) || !(strtmp = bignum_to_string(bntmp))) { OPENSSL_PUT_ERROR(X509V3, ERR_R_MALLOC_FAILURE); } BN_free(bntmp); return strtmp; } char *i2s_ASN1_INTEGER(const X509V3_EXT_METHOD *method, const ASN1_INTEGER *a) { BIGNUM *bntmp = NULL; char *strtmp = NULL; if (!a) { return NULL; } if (!(bntmp = ASN1_INTEGER_to_BN(a, NULL)) || !(strtmp = bignum_to_string(bntmp))) { OPENSSL_PUT_ERROR(X509V3, ERR_R_MALLOC_FAILURE); } BN_free(bntmp); return strtmp; } ASN1_INTEGER *s2i_ASN1_INTEGER(const X509V3_EXT_METHOD *method, const char *value) { BIGNUM *bn = NULL; ASN1_INTEGER *aint; int isneg, ishex; int ret; if (!value) { OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_NULL_VALUE); return 0; } bn = BN_new(); if (value[0] == '-') { value++; isneg = 1; } else { isneg = 0; } if (value[0] == '0' && ((value[1] == 'x') || (value[1] == 'X'))) { value += 2; ishex = 1; } else { ishex = 0; } if (ishex) { ret = BN_hex2bn(&bn, value); } else { ret = BN_dec2bn(&bn, value); } if (!ret || value[ret]) { BN_free(bn); OPENSSL_PUT_ERROR(X509V3, X509V3_R_BN_DEC2BN_ERROR); return 0; } if (isneg && BN_is_zero(bn)) { isneg = 0; } aint = BN_to_ASN1_INTEGER(bn, NULL); BN_free(bn); if (!aint) { OPENSSL_PUT_ERROR(X509V3, X509V3_R_BN_TO_ASN1_INTEGER_ERROR); return 0; } if (isneg) { aint->type |= V_ASN1_NEG; } return aint; } int X509V3_add_value_int(const char *name, const ASN1_INTEGER *aint, STACK_OF(CONF_VALUE) **extlist) { char *strtmp; int ret; if (!aint) { return 1; } if (!(strtmp = i2s_ASN1_INTEGER(NULL, aint))) { return 0; } ret = X509V3_add_value(name, strtmp, extlist); OPENSSL_free(strtmp); return ret; } int X509V3_get_value_bool(const CONF_VALUE *value, int *asn1_bool) { char *btmp; if (!(btmp = value->value)) { goto err; } if (!strcmp(btmp, "TRUE") || !strcmp(btmp, "true") || !strcmp(btmp, "Y") || !strcmp(btmp, "y") || !strcmp(btmp, "YES") || !strcmp(btmp, "yes")) { *asn1_bool = 0xff; return 1; } else if (!strcmp(btmp, "FALSE") || !strcmp(btmp, "false") || !strcmp(btmp, "N") || !strcmp(btmp, "n") || !strcmp(btmp, "NO") || !strcmp(btmp, "no")) { *asn1_bool = 0; return 1; } err: OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_BOOLEAN_STRING); X509V3_conf_err(value); return 0; } int X509V3_get_value_int(const CONF_VALUE *value, ASN1_INTEGER **aint) { ASN1_INTEGER *itmp; if (!(itmp = s2i_ASN1_INTEGER(NULL, value->value))) { X509V3_conf_err(value); return 0; } *aint = itmp; return 1; } #define HDR_NAME 1 #define HDR_VALUE 2 // #define DEBUG STACK_OF(CONF_VALUE) *X509V3_parse_list(const char *line) { char *p, *q, c; char *ntmp, *vtmp; STACK_OF(CONF_VALUE) *values = NULL; char *linebuf; int state; // We are going to modify the line so copy it first linebuf = OPENSSL_strdup(line); if (linebuf == NULL) { OPENSSL_PUT_ERROR(X509V3, ERR_R_MALLOC_FAILURE); goto err; } state = HDR_NAME; ntmp = NULL; // Go through all characters for (p = linebuf, q = linebuf; (c = *p) && (c != '\r') && (c != '\n'); p++) { switch (state) { case HDR_NAME: if (c == ':') { state = HDR_VALUE; *p = 0; ntmp = strip_spaces(q); if (!ntmp) { OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_NULL_NAME); goto err; } q = p + 1; } else if (c == ',') { *p = 0; ntmp = strip_spaces(q); q = p + 1; #if 0 printf("%s\n", ntmp); #endif if (!ntmp) { OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_NULL_NAME); goto err; } X509V3_add_value(ntmp, NULL, &values); } break; case HDR_VALUE: if (c == ',') { state = HDR_NAME; *p = 0; vtmp = strip_spaces(q); #if 0 printf("%s\n", ntmp); #endif if (!vtmp) { OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_NULL_VALUE); goto err; } X509V3_add_value(ntmp, vtmp, &values); ntmp = NULL; q = p + 1; } } } if (state == HDR_VALUE) { vtmp = strip_spaces(q); #if 0 printf("%s=%s\n", ntmp, vtmp); #endif if (!vtmp) { OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_NULL_VALUE); goto err; } X509V3_add_value(ntmp, vtmp, &values); } else { ntmp = strip_spaces(q); #if 0 printf("%s\n", ntmp); #endif if (!ntmp) { OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_NULL_NAME); goto err; } X509V3_add_value(ntmp, NULL, &values); } OPENSSL_free(linebuf); return values; err: OPENSSL_free(linebuf); sk_CONF_VALUE_pop_free(values, X509V3_conf_free); return NULL; } // Delete leading and trailing spaces from a string static char *strip_spaces(char *name) { char *p, *q; // Skip over leading spaces p = name; while (*p && isspace((unsigned char)*p)) { p++; } if (!*p) { return NULL; } q = p + strlen(p) - 1; while ((q != p) && isspace((unsigned char)*q)) { q--; } if (p != q) { q[1] = 0; } if (!*p) { return NULL; } return p; } // hex string utilities char *x509v3_bytes_to_hex(const uint8_t *in, size_t len) { CBB cbb; if (!CBB_init(&cbb, len * 3 + 1)) { goto err; } for (size_t i = 0; i < len; i++) { static const char hex[] = "0123456789ABCDEF"; if ((i > 0 && !CBB_add_u8(&cbb, ':')) || !CBB_add_u8(&cbb, hex[in[i] >> 4]) || !CBB_add_u8(&cbb, hex[in[i] & 0xf])) { goto err; } } uint8_t *ret; size_t unused_len; if (!CBB_add_u8(&cbb, 0) || !CBB_finish(&cbb, &ret, &unused_len)) { goto err; } return (char *)ret; err: OPENSSL_PUT_ERROR(X509V3, ERR_R_MALLOC_FAILURE); CBB_cleanup(&cbb); return NULL; } unsigned char *x509v3_hex_to_bytes(const char *str, long *len) { unsigned char *hexbuf, *q; unsigned char ch, cl, *p; if (!str) { OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_NULL_ARGUMENT); return NULL; } if (!(hexbuf = OPENSSL_malloc(strlen(str) >> 1))) { goto err; } for (p = (unsigned char *)str, q = hexbuf; *p;) { ch = *p++; if (ch == ':') { continue; } cl = *p++; if (!cl) { OPENSSL_PUT_ERROR(X509V3, X509V3_R_ODD_NUMBER_OF_DIGITS); OPENSSL_free(hexbuf); return NULL; } if ((ch >= '0') && (ch <= '9')) { ch -= '0'; } else if ((ch >= 'a') && (ch <= 'f')) { ch -= 'a' - 10; } else if ((ch >= 'A') && (ch <= 'F')) { ch -= 'A' - 10; } else { goto badhex; } if ((cl >= '0') && (cl <= '9')) { cl -= '0'; } else if ((cl >= 'a') && (cl <= 'f')) { cl -= 'a' - 10; } else if ((cl >= 'A') && (cl <= 'F')) { cl -= 'A' - 10; } else { goto badhex; } *q++ = (ch << 4) | cl; } if (len) { *len = q - hexbuf; } return hexbuf; err: OPENSSL_free(hexbuf); OPENSSL_PUT_ERROR(X509V3, ERR_R_MALLOC_FAILURE); return NULL; badhex: OPENSSL_free(hexbuf); OPENSSL_PUT_ERROR(X509V3, X509V3_R_ILLEGAL_HEX_DIGIT); return NULL; } int x509v3_name_cmp(const char *name, const char *cmp) { int len, ret; char c; len = strlen(cmp); if ((ret = strncmp(name, cmp, len))) { return ret; } c = name[len]; if (!c || (c == '.')) { return 0; } return 1; } static int sk_strcmp(const char **a, const char **b) { return strcmp(*a, *b); } STACK_OF(OPENSSL_STRING) *X509_get1_email(X509 *x) { GENERAL_NAMES *gens; STACK_OF(OPENSSL_STRING) *ret; gens = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL); ret = get_email(X509_get_subject_name(x), gens); sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free); return ret; } STACK_OF(OPENSSL_STRING) *X509_get1_ocsp(X509 *x) { AUTHORITY_INFO_ACCESS *info; STACK_OF(OPENSSL_STRING) *ret = NULL; size_t i; info = X509_get_ext_d2i(x, NID_info_access, NULL, NULL); if (!info) { return NULL; } for (i = 0; i < sk_ACCESS_DESCRIPTION_num(info); i++) { ACCESS_DESCRIPTION *ad = sk_ACCESS_DESCRIPTION_value(info, i); if (OBJ_obj2nid(ad->method) == NID_ad_OCSP) { if (ad->location->type == GEN_URI) { if (!append_ia5(&ret, ad->location->d.uniformResourceIdentifier)) { break; } } } } AUTHORITY_INFO_ACCESS_free(info); return ret; } STACK_OF(OPENSSL_STRING) *X509_REQ_get1_email(X509_REQ *x) { GENERAL_NAMES *gens; STACK_OF(X509_EXTENSION) *exts; STACK_OF(OPENSSL_STRING) *ret; exts = X509_REQ_get_extensions(x); gens = X509V3_get_d2i(exts, NID_subject_alt_name, NULL, NULL); ret = get_email(X509_REQ_get_subject_name(x), gens); sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free); sk_X509_EXTENSION_pop_free(exts, X509_EXTENSION_free); return ret; } static STACK_OF(OPENSSL_STRING) *get_email(X509_NAME *name, GENERAL_NAMES *gens) { STACK_OF(OPENSSL_STRING) *ret = NULL; X509_NAME_ENTRY *ne; ASN1_IA5STRING *email; GENERAL_NAME *gen; int i; size_t j; // Now add any email address(es) to STACK i = -1; // First supplied X509_NAME while ((i = X509_NAME_get_index_by_NID(name, NID_pkcs9_emailAddress, i)) >= 0) { ne = X509_NAME_get_entry(name, i); email = X509_NAME_ENTRY_get_data(ne); if (!append_ia5(&ret, email)) { return NULL; } } for (j = 0; j < sk_GENERAL_NAME_num(gens); j++) { gen = sk_GENERAL_NAME_value(gens, j); if (gen->type != GEN_EMAIL) { continue; } if (!append_ia5(&ret, gen->d.ia5)) { return NULL; } } return ret; } static void str_free(OPENSSL_STRING str) { OPENSSL_free(str); } static int append_ia5(STACK_OF(OPENSSL_STRING) **sk, ASN1_IA5STRING *email) { // First some sanity checks if (email->type != V_ASN1_IA5STRING) { return 1; } if (email->data == NULL || email->length == 0) { return 1; } // |OPENSSL_STRING| cannot represent strings with embedded NULs. Do not // report them as outputs. if (OPENSSL_memchr(email->data, 0, email->length) != NULL) { return 1; } char *emtmp = NULL; if (!*sk) { *sk = sk_OPENSSL_STRING_new(sk_strcmp); } if (!*sk) { goto err; } emtmp = OPENSSL_strndup((char *)email->data, email->length); if (emtmp == NULL) { goto err; } // Don't add duplicates sk_OPENSSL_STRING_sort(*sk); if (sk_OPENSSL_STRING_find(*sk, NULL, emtmp)) { OPENSSL_free(emtmp); return 1; } if (!sk_OPENSSL_STRING_push(*sk, emtmp)) { goto err; } return 1; err: // TODO(davidben): Fix the error-handling in this file. It currently relies // on |append_ia5| leaving |*sk| at NULL on error. OPENSSL_free(emtmp); X509_email_free(*sk); *sk = NULL; return 0; } void X509_email_free(STACK_OF(OPENSSL_STRING) *sk) { sk_OPENSSL_STRING_pop_free(sk, str_free); } typedef int (*equal_fn)(const unsigned char *pattern, size_t pattern_len, const unsigned char *subject, size_t subject_len, unsigned int flags); // Compare while ASCII ignoring case. static int equal_nocase(const unsigned char *pattern, size_t pattern_len, const unsigned char *subject, size_t subject_len, unsigned int flags) { if (pattern_len != subject_len) { return 0; } while (pattern_len) { unsigned char l = *pattern; unsigned char r = *subject; // The pattern must not contain NUL characters. if (l == 0) { return 0; } if (l != r) { if ('A' <= l && l <= 'Z') { l = (l - 'A') + 'a'; } if ('A' <= r && r <= 'Z') { r = (r - 'A') + 'a'; } if (l != r) { return 0; } } ++pattern; ++subject; --pattern_len; } return 1; } // Compare using OPENSSL_memcmp. static int equal_case(const unsigned char *pattern, size_t pattern_len, const unsigned char *subject, size_t subject_len, unsigned int flags) { if (pattern_len != subject_len) { return 0; } return !OPENSSL_memcmp(pattern, subject, pattern_len); } // RFC 5280, section 7.5, requires that only the domain is compared in a // case-insensitive manner. static int equal_email(const unsigned char *a, size_t a_len, const unsigned char *b, size_t b_len, unsigned int unused_flags) { size_t i = a_len; if (a_len != b_len) { return 0; } // We search backwards for the '@' character, so that we do not have to // deal with quoted local-parts. The domain part is compared in a // case-insensitive manner. while (i > 0) { --i; if (a[i] == '@' || b[i] == '@') { if (!equal_nocase(a + i, a_len - i, b + i, a_len - i, 0)) { return 0; } break; } } if (i == 0) { i = a_len; } return equal_case(a, i, b, i, 0); } // Compare the prefix and suffix with the subject, and check that the // characters in-between are valid. static int wildcard_match(const unsigned char *prefix, size_t prefix_len, const unsigned char *suffix, size_t suffix_len, const unsigned char *subject, size_t subject_len, unsigned int flags) { const unsigned char *wildcard_start; const unsigned char *wildcard_end; const unsigned char *p; int allow_idna = 0; if (subject_len < prefix_len + suffix_len) { return 0; } if (!equal_nocase(prefix, prefix_len, subject, prefix_len, flags)) { return 0; } wildcard_start = subject + prefix_len; wildcard_end = subject + (subject_len - suffix_len); if (!equal_nocase(wildcard_end, suffix_len, suffix, suffix_len, flags)) { return 0; } // If the wildcard makes up the entire first label, it must match at // least one character. if (prefix_len == 0 && *suffix == '.') { if (wildcard_start == wildcard_end) { return 0; } allow_idna = 1; } // IDNA labels cannot match partial wildcards if (!allow_idna && subject_len >= 4 && OPENSSL_strncasecmp((char *)subject, "xn--", 4) == 0) { return 0; } // The wildcard may match a literal '*' if (wildcard_end == wildcard_start + 1 && *wildcard_start == '*') { return 1; } // Check that the part matched by the wildcard contains only // permitted characters and only matches a single label. for (p = wildcard_start; p != wildcard_end; ++p) { if (!(('0' <= *p && *p <= '9') || ('A' <= *p && *p <= 'Z') || ('a' <= *p && *p <= 'z') || *p == '-')) { return 0; } } return 1; } #define LABEL_START (1 << 0) #define LABEL_END (1 << 1) #define LABEL_HYPHEN (1 << 2) #define LABEL_IDNA (1 << 3) static const unsigned char *valid_star(const unsigned char *p, size_t len, unsigned int flags) { const unsigned char *star = 0; size_t i; int state = LABEL_START; int dots = 0; for (i = 0; i < len; ++i) { // Locate first and only legal wildcard, either at the start // or end of a non-IDNA first and not final label. if (p[i] == '*') { int atstart = (state & LABEL_START); int atend = (i == len - 1 || p[i + 1] == '.'); // At most one wildcard per pattern. // No wildcards in IDNA labels. // No wildcards after the first label. if (star != NULL || (state & LABEL_IDNA) != 0 || dots) { return NULL; } // Only full-label '*.example.com' wildcards. if (!atstart || !atend) { return NULL; } star = &p[i]; state &= ~LABEL_START; } else if (('a' <= p[i] && p[i] <= 'z') || ('A' <= p[i] && p[i] <= 'Z') || ('0' <= p[i] && p[i] <= '9')) { if ((state & LABEL_START) != 0 && len - i >= 4 && OPENSSL_strncasecmp((char *)&p[i], "xn--", 4) == 0) { state |= LABEL_IDNA; } state &= ~(LABEL_HYPHEN | LABEL_START); } else if (p[i] == '.') { if ((state & (LABEL_HYPHEN | LABEL_START)) != 0) { return NULL; } state = LABEL_START; ++dots; } else if (p[i] == '-') { // no domain/subdomain starts with '-' if ((state & LABEL_START) != 0) { return NULL; } state |= LABEL_HYPHEN; } else { return NULL; } } // The final label must not end in a hyphen or ".", and // there must be at least two dots after the star. if ((state & (LABEL_START | LABEL_HYPHEN)) != 0 || dots < 2) { return NULL; } return star; } // Compare using wildcards. static int equal_wildcard(const unsigned char *pattern, size_t pattern_len, const unsigned char *subject, size_t subject_len, unsigned int flags) { const unsigned char *star = NULL; // Subject names starting with '.' can only match a wildcard pattern // via a subject sub-domain pattern suffix match. if (!(subject_len > 1 && subject[0] == '.')) { star = valid_star(pattern, pattern_len, flags); } if (star == NULL) { return equal_nocase(pattern, pattern_len, subject, subject_len, flags); } return wildcard_match(pattern, star - pattern, star + 1, (pattern + pattern_len) - star - 1, subject, subject_len, flags); } int x509v3_looks_like_dns_name(const unsigned char *in, size_t len) { // This function is used as a heuristic for whether a common name is a // hostname to be matched, or merely a decorative name to describe the // subject. This heuristic must be applied to both name constraints and the // common name fallback, so it must be loose enough to accept hostname // common names, and tight enough to reject decorative common names. if (len > 0 && in[len - 1] == '.') { len--; } // Wildcards are allowed in front. if (len >= 2 && in[0] == '*' && in[1] == '.') { in += 2; len -= 2; } if (len == 0) { return 0; } size_t label_start = 0; for (size_t i = 0; i < len; i++) { unsigned char c = in[i]; if ((c >= 'a' && c <= 'z') || (c >= '0' && c <= '9') || (c >= 'A' && c <= 'Z') || (c == '-' && i > label_start) || // These are not valid characters in hostnames, but commonly found // in deployments outside the Web PKI. c == '_' || c == ':') { continue; } // Labels must not be empty. if (c == '.' && i > label_start && i < len - 1) { label_start = i + 1; continue; } return 0; } return 1; } // Compare an ASN1_STRING to a supplied string. If they match return 1. If // cmp_type > 0 only compare if string matches the type, otherwise convert it // to UTF8. static int do_check_string(ASN1_STRING *a, int cmp_type, equal_fn equal, unsigned int flags, int check_type, const char *b, size_t blen, char **peername) { int rv = 0; if (!a->data || !a->length) { return 0; } if (cmp_type > 0) { if (cmp_type != a->type) { return 0; } if (cmp_type == V_ASN1_IA5STRING) { rv = equal(a->data, a->length, (unsigned char *)b, blen, flags); } else if (a->length == (int)blen && !OPENSSL_memcmp(a->data, b, blen)) { rv = 1; } if (rv > 0 && peername) { *peername = OPENSSL_strndup((char *)a->data, a->length); } } else { int astrlen; unsigned char *astr; astrlen = ASN1_STRING_to_UTF8(&astr, a); if (astrlen < 0) { return -1; } // We check the common name against DNS name constraints if it passes // |x509v3_looks_like_dns_name|. Thus we must not consider common names // for DNS fallbacks if they fail this check. if (check_type == GEN_DNS && !x509v3_looks_like_dns_name(astr, astrlen)) { rv = 0; } else { rv = equal(astr, astrlen, (unsigned char *)b, blen, flags); } if (rv > 0 && peername) { *peername = OPENSSL_strndup((char *)astr, astrlen); } OPENSSL_free(astr); } return rv; } static int do_x509_check(X509 *x, const char *chk, size_t chklen, unsigned int flags, int check_type, char **peername) { GENERAL_NAMES *gens = NULL; X509_NAME *name = NULL; size_t i; int j; int cnid = NID_undef; int alt_type; int rv = 0; equal_fn equal; if (check_type == GEN_EMAIL) { cnid = NID_pkcs9_emailAddress; alt_type = V_ASN1_IA5STRING; equal = equal_email; } else if (check_type == GEN_DNS) { cnid = NID_commonName; alt_type = V_ASN1_IA5STRING; if (flags & X509_CHECK_FLAG_NO_WILDCARDS) { equal = equal_nocase; } else { equal = equal_wildcard; } } else { alt_type = V_ASN1_OCTET_STRING; equal = equal_case; } gens = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL); if (gens) { for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) { GENERAL_NAME *gen; ASN1_STRING *cstr; gen = sk_GENERAL_NAME_value(gens, i); if (gen->type != check_type) { continue; } if (check_type == GEN_EMAIL) { cstr = gen->d.rfc822Name; } else if (check_type == GEN_DNS) { cstr = gen->d.dNSName; } else { cstr = gen->d.iPAddress; } // Positive on success, negative on error! if ((rv = do_check_string(cstr, alt_type, equal, flags, check_type, chk, chklen, peername)) != 0) { break; } } GENERAL_NAMES_free(gens); return rv; } // We're done if CN-ID is not pertinent if (cnid == NID_undef || (flags & X509_CHECK_FLAG_NEVER_CHECK_SUBJECT)) { return 0; } j = -1; name = X509_get_subject_name(x); while ((j = X509_NAME_get_index_by_NID(name, cnid, j)) >= 0) { X509_NAME_ENTRY *ne; ASN1_STRING *str; ne = X509_NAME_get_entry(name, j); str = X509_NAME_ENTRY_get_data(ne); // Positive on success, negative on error! if ((rv = do_check_string(str, -1, equal, flags, check_type, chk, chklen, peername)) != 0) { return rv; } } return 0; } int X509_check_host(X509 *x, const char *chk, size_t chklen, unsigned int flags, char **peername) { if (chk == NULL) { return -2; } if (OPENSSL_memchr(chk, '\0', chklen)) { return -2; } return do_x509_check(x, chk, chklen, flags, GEN_DNS, peername); } int X509_check_email(X509 *x, const char *chk, size_t chklen, unsigned int flags) { if (chk == NULL) { return -2; } if (OPENSSL_memchr(chk, '\0', chklen)) { return -2; } return do_x509_check(x, chk, chklen, flags, GEN_EMAIL, NULL); } int X509_check_ip(X509 *x, const unsigned char *chk, size_t chklen, unsigned int flags) { if (chk == NULL) { return -2; } return do_x509_check(x, (char *)chk, chklen, flags, GEN_IPADD, NULL); } int X509_check_ip_asc(X509 *x, const char *ipasc, unsigned int flags) { unsigned char ipout[16]; size_t iplen; if (ipasc == NULL) { return -2; } iplen = (size_t)x509v3_a2i_ipadd(ipout, ipasc); if (iplen == 0) { return -2; } return do_x509_check(x, (char *)ipout, iplen, flags, GEN_IPADD, NULL); } // Convert IP addresses both IPv4 and IPv6 into an OCTET STRING compatible // with RFC 3280. ASN1_OCTET_STRING *a2i_IPADDRESS(const char *ipasc) { unsigned char ipout[16]; ASN1_OCTET_STRING *ret; int iplen; iplen = x509v3_a2i_ipadd(ipout, ipasc); if (!iplen) { return NULL; } ret = ASN1_OCTET_STRING_new(); if (!ret) { return NULL; } if (!ASN1_OCTET_STRING_set(ret, ipout, iplen)) { ASN1_OCTET_STRING_free(ret); return NULL; } return ret; } ASN1_OCTET_STRING *a2i_IPADDRESS_NC(const char *ipasc) { ASN1_OCTET_STRING *ret = NULL; unsigned char ipout[32]; char *iptmp = NULL, *p; int iplen1, iplen2; p = strchr(ipasc, '/'); if (!p) { return NULL; } iptmp = OPENSSL_strdup(ipasc); if (!iptmp) { return NULL; } p = iptmp + (p - ipasc); *p++ = 0; iplen1 = x509v3_a2i_ipadd(ipout, iptmp); if (!iplen1) { goto err; } iplen2 = x509v3_a2i_ipadd(ipout + iplen1, p); OPENSSL_free(iptmp); iptmp = NULL; if (!iplen2 || (iplen1 != iplen2)) { goto err; } ret = ASN1_OCTET_STRING_new(); if (!ret) { goto err; } if (!ASN1_OCTET_STRING_set(ret, ipout, iplen1 + iplen2)) { goto err; } return ret; err: if (iptmp) { OPENSSL_free(iptmp); } if (ret) { ASN1_OCTET_STRING_free(ret); } return NULL; } int x509v3_a2i_ipadd(unsigned char ipout[16], const char *ipasc) { // If string contains a ':' assume IPv6 if (strchr(ipasc, ':')) { if (!ipv6_from_asc(ipout, ipasc)) { return 0; } return 16; } else { if (!ipv4_from_asc(ipout, ipasc)) { return 0; } return 4; } } static int ipv4_from_asc(unsigned char v4[4], const char *in) { int a0, a1, a2, a3; if (sscanf(in, "%d.%d.%d.%d", &a0, &a1, &a2, &a3) != 4) { return 0; } if ((a0 < 0) || (a0 > 255) || (a1 < 0) || (a1 > 255) || (a2 < 0) || (a2 > 255) || (a3 < 0) || (a3 > 255)) { return 0; } v4[0] = a0; v4[1] = a1; v4[2] = a2; v4[3] = a3; return 1; } typedef struct { // Temporary store for IPV6 output unsigned char tmp[16]; // Total number of bytes in tmp int total; // The position of a zero (corresponding to '::') int zero_pos; // Number of zeroes int zero_cnt; } IPV6_STAT; static int ipv6_from_asc(unsigned char v6[16], const char *in) { IPV6_STAT v6stat; v6stat.total = 0; v6stat.zero_pos = -1; v6stat.zero_cnt = 0; // Treat the IPv6 representation as a list of values separated by ':'. // The presence of a '::' will parse as one, two or three zero length // elements. if (!CONF_parse_list(in, ':', 0, ipv6_cb, &v6stat)) { return 0; } // Now for some sanity checks if (v6stat.zero_pos == -1) { // If no '::' must have exactly 16 bytes if (v6stat.total != 16) { return 0; } } else { // If '::' must have less than 16 bytes if (v6stat.total == 16) { return 0; } // More than three zeroes is an error if (v6stat.zero_cnt > 3) { return 0; } // Can only have three zeroes if nothing else present else if (v6stat.zero_cnt == 3) { if (v6stat.total > 0) { return 0; } } // Can only have two zeroes if at start or end else if (v6stat.zero_cnt == 2) { if ((v6stat.zero_pos != 0) && (v6stat.zero_pos != v6stat.total)) { return 0; } } else // Can only have one zero if *not* start or end { if ((v6stat.zero_pos == 0) || (v6stat.zero_pos == v6stat.total)) { return 0; } } } // Format result if (v6stat.zero_pos >= 0) { // Copy initial part OPENSSL_memcpy(v6, v6stat.tmp, v6stat.zero_pos); // Zero middle OPENSSL_memset(v6 + v6stat.zero_pos, 0, 16 - v6stat.total); // Copy final part if (v6stat.total != v6stat.zero_pos) { OPENSSL_memcpy(v6 + v6stat.zero_pos + 16 - v6stat.total, v6stat.tmp + v6stat.zero_pos, v6stat.total - v6stat.zero_pos); } } else { OPENSSL_memcpy(v6, v6stat.tmp, 16); } return 1; } static int ipv6_cb(const char *elem, int len, void *usr) { IPV6_STAT *s = usr; // Error if 16 bytes written if (s->total == 16) { return 0; } if (len == 0) { // Zero length element, corresponds to '::' if (s->zero_pos == -1) { s->zero_pos = s->total; } // If we've already got a :: its an error else if (s->zero_pos != s->total) { return 0; } s->zero_cnt++; } else { // If more than 4 characters could be final a.b.c.d form if (len > 4) { // Need at least 4 bytes left if (s->total > 12) { return 0; } // Must be end of string if (elem[len]) { return 0; } if (!ipv4_from_asc(s->tmp + s->total, elem)) { return 0; } s->total += 4; } else { if (!ipv6_hex(s->tmp + s->total, elem, len)) { return 0; } s->total += 2; } } return 1; } // Convert a string of up to 4 hex digits into the corresponding IPv6 form. static int ipv6_hex(unsigned char *out, const char *in, int inlen) { unsigned char c; unsigned int num = 0; if (inlen > 4) { return 0; } while (inlen--) { c = *in++; num <<= 4; if ((c >= '0') && (c <= '9')) { num |= c - '0'; } else if ((c >= 'A') && (c <= 'F')) { num |= c - 'A' + 10; } else if ((c >= 'a') && (c <= 'f')) { num |= c - 'a' + 10; } else { return 0; } } out[0] = num >> 8; out[1] = num & 0xff; return 1; } int X509V3_NAME_from_section(X509_NAME *nm, STACK_OF(CONF_VALUE) *dn_sk, unsigned long chtype) { CONF_VALUE *v; int mval; size_t i; char *p, *type; if (!nm) { return 0; } for (i = 0; i < sk_CONF_VALUE_num(dn_sk); i++) { v = sk_CONF_VALUE_value(dn_sk, i); type = v->name; // Skip past any leading X. X: X, etc to allow for multiple instances for (p = type; *p; p++) { if ((*p == ':') || (*p == ',') || (*p == '.')) { p++; if (*p) { type = p; } break; } } if (*type == '+') { mval = -1; type++; } else { mval = 0; } if (!X509_NAME_add_entry_by_txt(nm, type, chtype, (unsigned char *)v->value, -1, -1, mval)) { return 0; } } return 1; }