/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include "../internal.h" void CBB_zero(CBB *cbb) { OPENSSL_memset(cbb, 0, sizeof(CBB)); } static void cbb_init(CBB *cbb, uint8_t *buf, size_t cap, int can_resize) { cbb->is_child = 0; cbb->child = NULL; cbb->u.base.buf = buf; cbb->u.base.len = 0; cbb->u.base.cap = cap; cbb->u.base.can_resize = can_resize; cbb->u.base.error = 0; } int CBB_init(CBB *cbb, size_t initial_capacity) { CBB_zero(cbb); uint8_t *buf = OPENSSL_malloc(initial_capacity); if (initial_capacity > 0 && buf == NULL) { return 0; } cbb_init(cbb, buf, initial_capacity, /*can_resize=*/1); return 1; } int CBB_init_fixed(CBB *cbb, uint8_t *buf, size_t len) { CBB_zero(cbb); cbb_init(cbb, buf, len, /*can_resize=*/0); return 1; } void CBB_cleanup(CBB *cbb) { // Child |CBB|s are non-owning. They are implicitly discarded and should not // be used with |CBB_cleanup| or |ScopedCBB|. assert(!cbb->is_child); if (cbb->is_child) { return; } if (cbb->u.base.can_resize) { OPENSSL_free(cbb->u.base.buf); } } static int cbb_buffer_reserve(struct cbb_buffer_st *base, uint8_t **out, size_t len) { if (base == NULL) { return 0; } size_t newlen = base->len + len; if (newlen < base->len) { // Overflow OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); goto err; } if (newlen > base->cap) { if (!base->can_resize) { OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); goto err; } size_t newcap = base->cap * 2; if (newcap < base->cap || newcap < newlen) { newcap = newlen; } uint8_t *newbuf = OPENSSL_realloc(base->buf, newcap); if (newbuf == NULL) { goto err; } base->buf = newbuf; base->cap = newcap; } if (out) { *out = base->buf + base->len; } return 1; err: base->error = 1; return 0; } static int cbb_buffer_add(struct cbb_buffer_st *base, uint8_t **out, size_t len) { if (!cbb_buffer_reserve(base, out, len)) { return 0; } // This will not overflow or |cbb_buffer_reserve| would have failed. base->len += len; return 1; } int CBB_finish(CBB *cbb, uint8_t **out_data, size_t *out_len) { if (cbb->is_child) { OPENSSL_PUT_ERROR(CRYPTO, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!CBB_flush(cbb)) { return 0; } if (cbb->u.base.can_resize && (out_data == NULL || out_len == NULL)) { // |out_data| and |out_len| can only be NULL if the CBB is fixed. return 0; } if (out_data != NULL) { *out_data = cbb->u.base.buf; } if (out_len != NULL) { *out_len = cbb->u.base.len; } cbb->u.base.buf = NULL; CBB_cleanup(cbb); return 1; } static struct cbb_buffer_st *cbb_get_base(CBB *cbb) { if (cbb->is_child) { return cbb->u.child.base; } return &cbb->u.base; } // CBB_flush recurses and then writes out any pending length prefix. The // current length of the underlying base is taken to be the length of the // length-prefixed data. int CBB_flush(CBB *cbb) { // If |base| has hit an error, the buffer is in an undefined state, so // fail all following calls. In particular, |cbb->child| may point to invalid // memory. struct cbb_buffer_st *base = cbb_get_base(cbb); if (base == NULL || base->error) { return 0; } if (cbb->child == NULL) { // Nothing to flush. return 1; } assert(cbb->child->is_child); struct cbb_child_st *child = &cbb->child->u.child; assert(child->base == base); size_t child_start = child->offset + child->pending_len_len; if (!CBB_flush(cbb->child) || child_start < child->offset || base->len < child_start) { goto err; } size_t len = base->len - child_start; if (child->pending_is_asn1) { // For ASN.1 we assume that we'll only need a single byte for the length. // If that turned out to be incorrect, we have to move the contents along // in order to make space. uint8_t len_len; uint8_t initial_length_byte; assert (child->pending_len_len == 1); if (len > 0xfffffffe) { OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); // Too large. goto err; } else if (len > 0xffffff) { len_len = 5; initial_length_byte = 0x80 | 4; } else if (len > 0xffff) { len_len = 4; initial_length_byte = 0x80 | 3; } else if (len > 0xff) { len_len = 3; initial_length_byte = 0x80 | 2; } else if (len > 0x7f) { len_len = 2; initial_length_byte = 0x80 | 1; } else { len_len = 1; initial_length_byte = (uint8_t)len; len = 0; } if (len_len != 1) { // We need to move the contents along in order to make space. size_t extra_bytes = len_len - 1; if (!cbb_buffer_add(base, NULL, extra_bytes)) { goto err; } OPENSSL_memmove(base->buf + child_start + extra_bytes, base->buf + child_start, len); } base->buf[child->offset++] = initial_length_byte; child->pending_len_len = len_len - 1; } for (size_t i = child->pending_len_len - 1; i < child->pending_len_len; i--) { base->buf[child->offset + i] = (uint8_t)len; len >>= 8; } if (len != 0) { OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); goto err; } child->base = NULL; cbb->child = NULL; return 1; err: base->error = 1; return 0; } const uint8_t *CBB_data(const CBB *cbb) { assert(cbb->child == NULL); if (cbb->is_child) { return cbb->u.child.base->buf + cbb->u.child.offset + cbb->u.child.pending_len_len; } return cbb->u.base.buf; } size_t CBB_len(const CBB *cbb) { assert(cbb->child == NULL); if (cbb->is_child) { assert(cbb->u.child.offset + cbb->u.child.pending_len_len <= cbb->u.child.base->len); return cbb->u.child.base->len - cbb->u.child.offset - cbb->u.child.pending_len_len; } return cbb->u.base.len; } static int cbb_add_child(CBB *cbb, CBB *out_child, uint8_t len_len, int is_asn1) { assert(cbb->child == NULL); assert(!is_asn1 || len_len == 1); struct cbb_buffer_st *base = cbb_get_base(cbb); size_t offset = base->len; // Reserve space for the length prefix. uint8_t *prefix_bytes; if (!cbb_buffer_add(base, &prefix_bytes, len_len)) { return 0; } OPENSSL_memset(prefix_bytes, 0, len_len); CBB_zero(out_child); out_child->is_child = 1; out_child->u.child.base = base; out_child->u.child.offset = offset; out_child->u.child.pending_len_len = len_len; out_child->u.child.pending_is_asn1 = is_asn1; cbb->child = out_child; return 1; } static int cbb_add_length_prefixed(CBB *cbb, CBB *out_contents, uint8_t len_len) { if (!CBB_flush(cbb)) { return 0; } return cbb_add_child(cbb, out_contents, len_len, /*is_asn1=*/0); } int CBB_add_u8_length_prefixed(CBB *cbb, CBB *out_contents) { return cbb_add_length_prefixed(cbb, out_contents, 1); } int CBB_add_u16_length_prefixed(CBB *cbb, CBB *out_contents) { return cbb_add_length_prefixed(cbb, out_contents, 2); } int CBB_add_u24_length_prefixed(CBB *cbb, CBB *out_contents) { return cbb_add_length_prefixed(cbb, out_contents, 3); } // add_base128_integer encodes |v| as a big-endian base-128 integer where the // high bit of each byte indicates where there is more data. This is the // encoding used in DER for both high tag number form and OID components. static int add_base128_integer(CBB *cbb, uint64_t v) { unsigned len_len = 0; uint64_t copy = v; while (copy > 0) { len_len++; copy >>= 7; } if (len_len == 0) { len_len = 1; // Zero is encoded with one byte. } for (unsigned i = len_len - 1; i < len_len; i--) { uint8_t byte = (v >> (7 * i)) & 0x7f; if (i != 0) { // The high bit denotes whether there is more data. byte |= 0x80; } if (!CBB_add_u8(cbb, byte)) { return 0; } } return 1; } int CBB_add_asn1(CBB *cbb, CBB *out_contents, CBS_ASN1_TAG tag) { if (!CBB_flush(cbb)) { return 0; } // Split the tag into leading bits and tag number. uint8_t tag_bits = (tag >> CBS_ASN1_TAG_SHIFT) & 0xe0; CBS_ASN1_TAG tag_number = tag & CBS_ASN1_TAG_NUMBER_MASK; if (tag_number >= 0x1f) { // Set all the bits in the tag number to signal high tag number form. if (!CBB_add_u8(cbb, tag_bits | 0x1f) || !add_base128_integer(cbb, tag_number)) { return 0; } } else if (!CBB_add_u8(cbb, tag_bits | tag_number)) { return 0; } // Reserve one byte of length prefix. |CBB_flush| will finish it later. return cbb_add_child(cbb, out_contents, /*len_len=*/1, /*is_asn1=*/1); } int CBB_add_bytes(CBB *cbb, const uint8_t *data, size_t len) { uint8_t *out; if (!CBB_add_space(cbb, &out, len)) { return 0; } OPENSSL_memcpy(out, data, len); return 1; } int CBB_add_zeros(CBB *cbb, size_t len) { uint8_t *out; if (!CBB_add_space(cbb, &out, len)) { return 0; } OPENSSL_memset(out, 0, len); return 1; } int CBB_add_space(CBB *cbb, uint8_t **out_data, size_t len) { if (!CBB_flush(cbb) || !cbb_buffer_add(cbb_get_base(cbb), out_data, len)) { return 0; } return 1; } int CBB_reserve(CBB *cbb, uint8_t **out_data, size_t len) { if (!CBB_flush(cbb) || !cbb_buffer_reserve(cbb_get_base(cbb), out_data, len)) { return 0; } return 1; } int CBB_did_write(CBB *cbb, size_t len) { struct cbb_buffer_st *base = cbb_get_base(cbb); size_t newlen = base->len + len; if (cbb->child != NULL || newlen < base->len || newlen > base->cap) { return 0; } base->len = newlen; return 1; } static int cbb_add_u(CBB *cbb, uint64_t v, size_t len_len) { uint8_t *buf; if (!CBB_add_space(cbb, &buf, len_len)) { return 0; } for (size_t i = len_len - 1; i < len_len; i--) { buf[i] = v; v >>= 8; } // |v| must fit in |len_len| bytes. if (v != 0) { cbb_get_base(cbb)->error = 1; return 0; } return 1; } int CBB_add_u8(CBB *cbb, uint8_t value) { return cbb_add_u(cbb, value, 1); } int CBB_add_u16(CBB *cbb, uint16_t value) { return cbb_add_u(cbb, value, 2); } int CBB_add_u16le(CBB *cbb, uint16_t value) { return CBB_add_u16(cbb, CRYPTO_bswap2(value)); } int CBB_add_u24(CBB *cbb, uint32_t value) { return cbb_add_u(cbb, value, 3); } int CBB_add_u32(CBB *cbb, uint32_t value) { return cbb_add_u(cbb, value, 4); } int CBB_add_u32le(CBB *cbb, uint32_t value) { return CBB_add_u32(cbb, CRYPTO_bswap4(value)); } int CBB_add_u64(CBB *cbb, uint64_t value) { return cbb_add_u(cbb, value, 8); } int CBB_add_u64le(CBB *cbb, uint64_t value) { return CBB_add_u64(cbb, CRYPTO_bswap8(value)); } void CBB_discard_child(CBB *cbb) { if (cbb->child == NULL) { return; } struct cbb_buffer_st *base = cbb_get_base(cbb); assert(cbb->child->is_child); base->len = cbb->child->u.child.offset; cbb->child->u.child.base = NULL; cbb->child = NULL; } int CBB_add_asn1_uint64(CBB *cbb, uint64_t value) { return CBB_add_asn1_uint64_with_tag(cbb, value, CBS_ASN1_INTEGER); } int CBB_add_asn1_uint64_with_tag(CBB *cbb, uint64_t value, CBS_ASN1_TAG tag) { CBB child; if (!CBB_add_asn1(cbb, &child, tag)) { return 0; } int started = 0; for (size_t i = 0; i < 8; i++) { uint8_t byte = (value >> 8*(7-i)) & 0xff; if (!started) { if (byte == 0) { // Don't encode leading zeros. continue; } // If the high bit is set, add a padding byte to make it // unsigned. if ((byte & 0x80) && !CBB_add_u8(&child, 0)) { return 0; } started = 1; } if (!CBB_add_u8(&child, byte)) { return 0; } } // 0 is encoded as a single 0, not the empty string. if (!started && !CBB_add_u8(&child, 0)) { return 0; } return CBB_flush(cbb); } int CBB_add_asn1_int64(CBB *cbb, int64_t value) { return CBB_add_asn1_int64_with_tag(cbb, value, CBS_ASN1_INTEGER); } int CBB_add_asn1_int64_with_tag(CBB *cbb, int64_t value, CBS_ASN1_TAG tag) { if (value >= 0) { return CBB_add_asn1_uint64_with_tag(cbb, (uint64_t)value, tag); } uint8_t bytes[sizeof(int64_t)]; memcpy(bytes, &value, sizeof(value)); int start = 7; // Skip leading sign-extension bytes unless they are necessary. while (start > 0 && (bytes[start] == 0xff && (bytes[start - 1] & 0x80))) { start--; } CBB child; if (!CBB_add_asn1(cbb, &child, tag)) { return 0; } for (int i = start; i >= 0; i--) { if (!CBB_add_u8(&child, bytes[i])) { return 0; } } return CBB_flush(cbb); } int CBB_add_asn1_octet_string(CBB *cbb, const uint8_t *data, size_t data_len) { CBB child; if (!CBB_add_asn1(cbb, &child, CBS_ASN1_OCTETSTRING) || !CBB_add_bytes(&child, data, data_len) || !CBB_flush(cbb)) { return 0; } return 1; } int CBB_add_asn1_bool(CBB *cbb, int value) { CBB child; if (!CBB_add_asn1(cbb, &child, CBS_ASN1_BOOLEAN) || !CBB_add_u8(&child, value != 0 ? 0xff : 0) || !CBB_flush(cbb)) { return 0; } return 1; } // parse_dotted_decimal parses one decimal component from |cbs|, where |cbs| is // an OID literal, e.g., "1.2.840.113554.4.1.72585". It consumes both the // component and the dot, so |cbs| may be passed into the function again for the // next value. static int parse_dotted_decimal(CBS *cbs, uint64_t *out) { if (!CBS_get_u64_decimal(cbs, out)) { return 0; } // The integer must have either ended at the end of the string, or a // non-terminal dot, which should be consumed. If the string ends with a dot, // this is not a valid OID string. uint8_t dot; return !CBS_get_u8(cbs, &dot) || (dot == '.' && CBS_len(cbs) > 0); } int CBB_add_asn1_oid_from_text(CBB *cbb, const char *text, size_t len) { if (!CBB_flush(cbb)) { return 0; } CBS cbs; CBS_init(&cbs, (const uint8_t *)text, len); // OIDs must have at least two components. uint64_t a, b; if (!parse_dotted_decimal(&cbs, &a) || !parse_dotted_decimal(&cbs, &b)) { return 0; } // The first component is encoded as 40 * |a| + |b|. This assumes that |a| is // 0, 1, or 2 and that, when it is 0 or 1, |b| is at most 39. if (a > 2 || (a < 2 && b > 39) || b > UINT64_MAX - 80 || !add_base128_integer(cbb, 40u * a + b)) { return 0; } // The remaining components are encoded unmodified. while (CBS_len(&cbs) > 0) { if (!parse_dotted_decimal(&cbs, &a) || !add_base128_integer(cbb, a)) { return 0; } } return 1; } static int compare_set_of_element(const void *a_ptr, const void *b_ptr) { // See X.690, section 11.6 for the ordering. They are sorted in ascending // order by their DER encoding. const CBS *a = a_ptr, *b = b_ptr; size_t a_len = CBS_len(a), b_len = CBS_len(b); size_t min_len = a_len < b_len ? a_len : b_len; int ret = OPENSSL_memcmp(CBS_data(a), CBS_data(b), min_len); if (ret != 0) { return ret; } if (a_len == b_len) { return 0; } // If one is a prefix of the other, the shorter one sorts first. (This is not // actually reachable. No DER encoding is a prefix of another DER encoding.) return a_len < b_len ? -1 : 1; } int CBB_flush_asn1_set_of(CBB *cbb) { if (!CBB_flush(cbb)) { return 0; } CBS cbs; size_t num_children = 0; CBS_init(&cbs, CBB_data(cbb), CBB_len(cbb)); while (CBS_len(&cbs) != 0) { if (!CBS_get_any_asn1_element(&cbs, NULL, NULL, NULL)) { OPENSSL_PUT_ERROR(CRYPTO, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } num_children++; } if (num_children < 2) { return 1; // Nothing to do. This is the common case for X.509. } if (num_children > ((size_t)-1) / sizeof(CBS)) { return 0; // Overflow. } // Parse out the children and sort. We alias them into a copy of so they // remain valid as we rewrite |cbb|. int ret = 0; size_t buf_len = CBB_len(cbb); uint8_t *buf = OPENSSL_memdup(CBB_data(cbb), buf_len); CBS *children = OPENSSL_malloc(num_children * sizeof(CBS)); if (buf == NULL || children == NULL) { goto err; } CBS_init(&cbs, buf, buf_len); for (size_t i = 0; i < num_children; i++) { if (!CBS_get_any_asn1_element(&cbs, &children[i], NULL, NULL)) { goto err; } } qsort(children, num_children, sizeof(CBS), compare_set_of_element); // Write the contents back in the new order. uint8_t *out = (uint8_t *)CBB_data(cbb); size_t offset = 0; for (size_t i = 0; i < num_children; i++) { OPENSSL_memcpy(out + offset, CBS_data(&children[i]), CBS_len(&children[i])); offset += CBS_len(&children[i]); } assert(offset == buf_len); ret = 1; err: OPENSSL_free(buf); OPENSSL_free(children); return ret; }