For FIPS reasons, one might wish to ensure that a random AES-GCM nonce
was generated entirely within the FIPS module. If so, then these are the
AEADs for you.
Change-Id: Ic2b7864b089f446401f700d7d55bfa6336c61e23
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/43686
Commit-Queue: Adam Langley <alangley@gmail.com>
Reviewed-by: David Benjamin <davidben@google.com>
We use this constant a lot in e_aes.c, but we write it out every time.
Change-Id: Iaa92efb391def6640349940c682d9f70ddaa23d5
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/43685
Reviewed-by: David Benjamin <davidben@google.com>
Sometimes the linker will generate rodata subsections even if we don't
have -fdata-sections enabled. That's ok, so include them in the FIPS
module. The other subsections continue to be discarded to ensure that
unexpected sections don't appear and escape the module.
Bug: b/142971559
Change-Id: Icebcf40bd3d0e63f20456e44f6c2564f4316b561
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/43324
Commit-Queue: Adam Langley <alangley@gmail.com>
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
See b/169780122. This CL should be a no-op (the only other OPENSSL_LINUX
defines are in urandom/getrandom logic, which Trusty doesn't use), but
should be easier to work for future code.
Change-Id: I7676ce234a20ddaf54a881f2da1e1fcd680d1c78
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/43224
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
Trusty doesn't have madvise() or sysconf() and more importantly,
doesn't have fork() (confirmed chatting to ncbray), so the
no-op #if branch in fork_detect.c seems appropriate.
Change-Id: I41b41e79d59919bae6c6ece0e0efd3872105e9b1
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/43204
Commit-Queue: Pete Bentley <prb@google.com>
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
Most asymmetric operations scale superlinearly, which makes them
potential DoS vectors. This (and other problems) are mitigated with
fixed sizes, like RSA-2048, P-256, or curve25519.
In older algorithms like RSA and DSA, these sizes are conventions rather
than well-defined algorithms. "Everyone" uses RSA-2048, but code which
imports an RSA key may see an arbitrary key size, possibly from an
untrusted source. This is commonly a public key, so we bound RSA key
sizes in check_modulus_and_exponent_sizes.
However, some applications import external private keys, and may need
tighter bounds. These typically parse the key then check the result.
However, parsing itself can perform superlinear work (RSA_check_key or
recovering the DSA public key).
This CL does the following:
- Rename check_modulus_and_exponent_sizes to rsa_check_public_key and
additionally call it from RSA_check_key.
- Fix a bug where RSA_check_key, on CRT-less keys, did not bound d, and
bound p and q before multiplying (quadratic).
- Our DSA verifier had stricter checks on q (160-, 224-, and 256-bit
only) than our DSA signer (multiple of 8 bits). Aligner the signer to
the verifier's checks.
- Validate DSA group sizes on parse, as well as priv_key < q, to bound
the running time.
Ideally these invariants would be checked exactly once at construction,
but our RSA and DSA implementations suffer from some OpenSSL's API
mistakes (https://crbug.com/boringssl/316), which means it is hard to
consistently enforce invariants. This CL focuses on the parser, but
later I'd like to better rationalize the freeze_private_key logic.
Performance of parsing RSA and DSA keys, gathered on my laptop.
Did 15130 RSA-2048 parse operations in 5022458us (3012.5 ops/sec)
Did 4888 RSA-4096 parse operations in 5060606us (965.9 ops/sec)
Did 354 RSA-16384 parse operations in 5043565us (70.2 ops/sec)
Did 88 RSA-32768 parse operations in 5038293us (17.5 ops/sec) [rejected by this CL]
Did 35000 DSA-1024/256 parse operations in 5030447us (6957.6 ops/sec)
Did 11316 DSA-2048/256 parse operations in 5094664us (2221.1 ops/sec)
Did 5488 DSA-3072/256 parse operations in 5096032us (1076.9 ops/sec)
Did 3172 DSA-4096/256 parse operations in 5041220us (629.2 ops/sec)
Did 840 DSA-8192/256 parse operations in 5070616us (165.7 ops/sec)
Did 285 DSA-10000/256 parse operations in 5004033us (57.0 ops/sec)
Did 74 DSA-20000/256 parse operations in 5066299us (14.6 ops/sec) [rejected by this CL]
Update-Note: Some invalid or overly large RSA and DSA keys may
previously have been accepted that are now rejected at parse time. For
public keys, this only moves the error from verification to parsing. In
some private key cases, we would previously allow signing with those
keys, but the resulting signatures would not be accepted by BoringSSL
anyway. This CL makes us behave more consistently.
Bug: oss-fuzz:24730
Change-Id: I4ad2003ee61138b693e65d3da4c6aa00bc165251
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/42504
Reviewed-by: Adam Langley <agl@google.com>
This change adds optional support for
- Armv8.3-A Pointer Authentication (PAuth) and
- Armv8.5-A Branch Target Identification (BTI)
features to the perl scripts.
Both features can be enabled with additional compiler flags.
Unless any of these are enabled explicitly there is no code change at
all.
The extensions are briefly described below. Please read the appropriate
chapters of the Arm Architecture Reference Manual for the complete
specification.
Scope
-----
This change only affects generated assembly code.
Armv8.3-A Pointer Authentication
--------------------------------
Pointer Authentication extension supports the authentication of the
contents of registers before they are used for indirect branching
or load.
PAuth provides a probabilistic method to detect corruption of register
values. PAuth signing instructions generate a Pointer Authentication
Code (PAC) based on the value of a register, a seed and a key.
The generated PAC is inserted into the original value in the register.
A PAuth authentication instruction recomputes the PAC, and if it matches
the PAC in the register, restores its original value. In case of a
mismatch, an architecturally unmapped address is generated instead.
With PAuth, mitigation against ROP (Return-oriented Programming) attacks
can be implemented. This is achieved by signing the contents of the
link-register (LR) before it is pushed to stack. Once LR is popped,
it is authenticated. This way a stack corruption which overwrites the
LR on the stack is detectable.
The PAuth extension adds several new instructions, some of which are not
recognized by older hardware. To support a single codebase for both pre
Armv8.3-A targets and newer ones, only NOP-space instructions are added
by this patch. These instructions are treated as NOPs on hardware
which does not support Armv8.3-A. Furthermore, this patch only considers
cases where LR is saved to the stack and then restored before branching
to its content. There are cases in the code where LR is pushed to stack
but it is not used later. We do not address these cases as they are not
affected by PAuth.
There are two keys available to sign an instruction address: A and B.
PACIASP and PACIBSP only differ in the used keys: A and B, respectively.
The keys are typically managed by the operating system.
To enable generating code for PAuth compile with
-mbranch-protection=<mode>:
- standard or pac-ret: add PACIASP and AUTIASP, also enables BTI
(read below)
- pac-ret+b-key: add PACIBSP and AUTIBSP
Armv8.5-A Branch Target Identification
--------------------------------------
Branch Target Identification features some new instructions which
protect the execution of instructions on guarded pages which are not
intended branch targets.
If Armv8.5-A is supported by the hardware, execution of an instruction
changes the value of PSTATE.BTYPE field. If an indirect branch
lands on a guarded page the target instruction must be one of the
BTI <jc> flavors, or in case of a direct call or jump it can be any
other instruction. If the target instruction is not compatible with the
value of PSTATE.BTYPE a Branch Target Exception is generated.
In short, indirect jumps are compatible with BTI <j> and <jc> while
indirect calls are compatible with BTI <c> and <jc>. Please refer to the
specification for the details.
Armv8.3-A PACIASP and PACIBSP are implicit branch target
identification instructions which are equivalent with BTI c or BTI jc
depending on system register configuration.
BTI is used to mitigate JOP (Jump-oriented Programming) attacks by
limiting the set of instructions which can be jumped to.
BTI requires active linker support to mark the pages with BTI-enabled
code as guarded. For ELF64 files BTI compatibility is recorded in the
.note.gnu.property section. For a shared object or static binary it is
required that all linked units support BTI. This means that even a
single assembly file without the required note section turns-off BTI
for the whole binary or shared object.
The new BTI instructions are treated as NOPs on hardware which does
not support Armv8.5-A or on pages which are not guarded.
To insert this new and optional instruction compile with
-mbranch-protection=standard (also enables PAuth) or +bti.
When targeting a guarded page from a non-guarded page, weaker
compatibility restrictions apply to maintain compatibility between
legacy and new code. For detailed rules please refer to the Arm ARM.
Compiler support
----------------
Compiler support requires understanding '-mbranch-protection=<mode>'
and emitting the appropriate feature macros (__ARM_FEATURE_BTI_DEFAULT
and __ARM_FEATURE_PAC_DEFAULT). The current state is the following:
-------------------------------------------------------
| Compiler | -mbranch-protection | Feature macros |
+----------+---------------------+--------------------+
| clang | 9.0.0 | 11.0.0 |
+----------+---------------------+--------------------+
| gcc | 9 | expected in 10.1+ |
-------------------------------------------------------
Available Platforms
------------------
Arm Fast Model and QEMU support both extensions.
https://developer.arm.com/tools-and-software/simulation-models/fast-modelshttps://www.qemu.org/
Implementation Notes
--------------------
This change adds BTI landing pads even to assembly functions which are
likely to be directly called only. In these cases, landing pads might
be superfluous depending on what code the linker generates.
Code size and performance impact for these cases would be negligble.
Interaction with C code
-----------------------
Pointer Authentication is a per-frame protection while Branch Target
Identification can be turned on and off only for all code pages of a
whole shared object or static binary. Because of these properties if
C/C++ code is compiled without any of the above features but assembly
files support any of them unconditionally there is no incompatibility
between the two.
Useful Links
------------
To fully understand the details of both PAuth and BTI it is advised to
read the related chapters of the Arm Architecture Reference Manual
(Arm ARM):
https://developer.arm.com/documentation/ddi0487/latest/
Additional materials:
"Providing protection for complex software"
https://developer.arm.com/architectures/learn-the-architecture/providing-protection-for-complex-software
Arm Compiler Reference Guide Version 6.14: -mbranch-protection
https://developer.arm.com/documentation/101754/0614/armclang-Reference/armclang-Command-line-Options/-mbranch-protection?lang=en
Arm C Language Extensions (ACLE)
https://developer.arm.com/docs/101028/latest
Change-Id: I4335f92e2ccc8e209c7d68a0a79f1acdf3aeb791
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/42084
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: Adam Langley <agl@google.com>
Change-Id: I4d17e1e6f24b623ee39a844def8f265eb5e6c6cc
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/42144
Commit-Queue: Adam Langley <alangley@gmail.com>
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Update-Note: This gets rid of TRUST_TOKEN_experiment_v0. Existing callers
should be updated to call TRUST_TOKEN_experiment_v1.
Change-Id: I8ec9b808cbd35546425690d1548db671ff033e14
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/41524
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: Steven Valdez <svaldez@google.com>