Reworking bssl_crypto: x25519

Change-Id: Ib9fc874e1c5d540dda91a454681dad809e8d6d14
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/65167
Reviewed-by: Bob Beck <bbe@google.com>
Reviewed-by: Maurice Lam <yukl@google.com>
Reviewed-by: Nabil Wadih <nwadih@google.com>
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
chromium-stable
Adam Langley 10 months ago committed by Boringssl LUCI CQ
parent af3c895327
commit ec6a405543
  1. 113
      rust/bssl-crypto/src/lib.rs
  2. 232
      rust/bssl-crypto/src/x25519.rs

@ -28,6 +28,8 @@ extern crate alloc;
extern crate core;
use core::ffi::c_void;
/// Authenticated Encryption with Additional Data algorithms.
pub mod aead;
@ -52,7 +54,6 @@ pub mod hmac;
/// Random number generation.
pub mod rand;
/// X25519 elliptic curve operations.
pub mod x25519;
/// Memory-manipulation operations.
@ -68,7 +69,70 @@ pub(crate) mod pkey;
#[cfg(test)]
mod test_helpers;
/// FfiSlice exists to provide `as_ffi_ptr` on slices. Calling `as_ptr` on an
/// empty Rust slice may return the alignment of the type, rather than NULL, as
/// the pointer. When passing pointers into C/C++ code, that is not a valid
/// pointer. Thus this method should be used whenever passing a pointer to a
/// slice into BoringSSL code.
trait FfiSlice {
fn as_ffi_ptr(&self) -> *const u8;
fn as_ffi_void_ptr(&self) -> *const c_void {
self.as_ffi_ptr() as *const c_void
}
}
impl FfiSlice for [u8] {
fn as_ffi_ptr(&self) -> *const u8 {
if self.is_empty() {
core::ptr::null()
} else {
self.as_ptr()
}
}
}
impl<const N: usize> FfiSlice for [u8; N] {
fn as_ffi_ptr(&self) -> *const u8 {
if N == 0 {
core::ptr::null()
} else {
self.as_ptr()
}
}
}
/// See the comment [`FfiSlice`].
trait FfiMutSlice {
fn as_mut_ffi_ptr(&mut self) -> *mut u8;
fn as_ffi_void_ptr(&mut self) -> *mut c_void {
self.as_mut_ffi_ptr() as *mut c_void
}
}
impl FfiMutSlice for [u8] {
fn as_mut_ffi_ptr(&mut self) -> *mut u8 {
if self.is_empty() {
core::ptr::null_mut()
} else {
self.as_mut_ptr()
}
}
}
impl<const N: usize> FfiMutSlice for [u8; N] {
fn as_mut_ffi_ptr(&mut self) -> *mut u8 {
if N == 0 {
core::ptr::null_mut()
} else {
self.as_mut_ptr()
}
}
}
/// This is a helper struct which provides functions for passing slices over FFI.
///
/// Deprecated: use `FfiSlice` which adds less noise and lets one grep for `as_ptr`
/// as a sign of something to check.
struct CSlice<'a>(&'a [u8]);
impl<'a> From<&'a [u8]> for CSlice<'a> {
@ -93,6 +157,9 @@ impl CSlice<'_> {
}
/// This is a helper struct which provides functions for passing mutable slices over FFI.
///
/// Deprecated: use `FfiMutSlice` which adds less noise and lets one grep for
/// `as_ptr` as a sign of something to check.
struct CSliceMut<'a>(&'a mut [u8]);
impl CSliceMut<'_> {
@ -179,3 +246,47 @@ unsafe trait ForeignType {
/// Returns a raw pointer to the wrapped value.
fn as_ptr(&self) -> *mut Self::CType;
}
/// Wrap a closure that initializes an output buffer and return that buffer as
/// an array. Requires that the closure fully initialize the given buffer.
///
/// Safety: the closure must fully initialize the array.
unsafe fn with_output_array<const N: usize, F>(func: F) -> [u8; N]
where
F: FnOnce(*mut u8, usize),
{
let mut out_uninit = core::mem::MaybeUninit::<[u8; N]>::uninit();
let out_ptr = if N != 0 {
out_uninit.as_mut_ptr() as *mut u8
} else {
core::ptr::null_mut()
};
func(out_ptr, N);
// Safety: `func` promises to fill all of `out_uninit`.
unsafe { out_uninit.assume_init() }
}
/// Wrap a closure that initializes an output buffer and return that buffer as
/// an array. The closure returns a [`core::ffi::c_int`] and, if the return value
/// is not one, then the initialization is assumed to have failed and [None] is
/// returned. Otherwise, this function requires that the closure fully
/// initialize the given buffer.
///
/// Safety: the closure must fully initialize the array if it returns one.
unsafe fn with_output_array_fallible<const N: usize, F>(func: F) -> Option<[u8; N]>
where
F: FnOnce(*mut u8, usize) -> core::ffi::c_int,
{
let mut out_uninit = core::mem::MaybeUninit::<[u8; N]>::uninit();
let out_ptr = if N != 0 {
out_uninit.as_mut_ptr() as *mut u8
} else {
core::ptr::null_mut()
};
if func(out_ptr, N) == 1 {
// Safety: `func` promises to fill all of `out_uninit` if it returns one.
unsafe { Some(out_uninit.assume_init()) }
} else {
None
}
}

@ -13,11 +13,40 @@
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//! Diffie-Hellman over curve25519.
//!
//! X25519 is the Diffie-Hellman primitive built from curve25519. It is sometimes referred to as
//! “curve25519”, but “X25519” is a more precise name. See http://cr.yp.to/ecdh.html and
//! https://tools.ietf.org/html/rfc7748.
use alloc::borrow::ToOwned;
//! “curve25519”, but “X25519” is a more precise name. See <http://cr.yp.to/ecdh.html> and
//! <https://tools.ietf.org/html/rfc7748>.
//!
//! ```
//! use bssl_crypto::x25519;
//!
//! // Alice generates her key pair.
//! let (alice_public_key, alice_private_key) = x25519::PrivateKey::generate();
//! // Bob generates his key pair.
//! let (bob_public_key, bob_private_key) = x25519::PrivateKey::generate();
//!
//! // If Alice obtains Bob's public key somehow, she can compute their
//! // shared key:
//! let shared_key = alice_private_key.compute_shared_key(&bob_public_key);
//!
//! // Alice can then derive a key (e.g. by using HKDF), which should include
//! // at least the two public keys. Then shen can send a message to Bob
//! // including her public key and an AEAD-protected blob. Bob can compute the
//! // same shared key given Alice's public key:
//! let shared_key2 = bob_private_key.compute_shared_key(&alice_public_key);
//! assert_eq!(shared_key, shared_key2);
//!
//! // This is an _unauthenticated_ exchange which is vulnerable to an
//! // active attacker. See, for example,
//! // http://www.noiseprotocol.org/noise.html for an example of building
//! // real protocols from a Diffie-Hellman primitive.
//! ```
use crate::with_output_array;
use crate::with_output_array_fallible;
use crate::FfiSlice;
/// Number of bytes in a private key in X25519
pub const PRIVATE_KEY_LEN: usize = bssl_sys::X25519_PRIVATE_KEY_LEN as usize;
@ -26,190 +55,99 @@ pub const PUBLIC_KEY_LEN: usize = bssl_sys::X25519_PUBLIC_VALUE_LEN as usize;
/// Number of bytes in a shared secret derived with X25519
pub const SHARED_KEY_LEN: usize = bssl_sys::X25519_SHARED_KEY_LEN as usize;
/// Error while performing a X25519 Diffie-Hellman key exchange.
#[derive(Debug)]
pub struct DiffieHellmanError;
/// X25519 public keys are simply 32-byte strings.
pub type PublicKey = [u8; PUBLIC_KEY_LEN];
/// An X25519 private key (a 32-byte string).
pub struct PrivateKey(pub [u8; PRIVATE_KEY_LEN]);
/// A struct containing a X25519 key pair.
pub struct PrivateKey {
private_key: [u8; PRIVATE_KEY_LEN],
public_key: [u8; PUBLIC_KEY_LEN],
impl AsRef<[u8]> for PrivateKey {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
impl PrivateKey {
/// Derives a shared secrect from this private key and the given public key.
pub fn diffie_hellman(
&self,
other_public_key: &PublicKey,
) -> Result<SharedSecret, DiffieHellmanError> {
let mut shared_key_uninit = core::mem::MaybeUninit::<[u8; SHARED_KEY_LEN]>::uninit();
// Safety:
// - private_key and other_public_key are Rust 32-byte arrays
// - shared_key_uninit is just initialized above to a 32 byte array
let result = unsafe {
bssl_sys::X25519(
shared_key_uninit.as_mut_ptr() as *mut u8,
self.private_key.as_ptr(),
other_public_key.0.as_ptr(),
)
};
if result == 1 {
// Safety:
// - `shared_key_uninit` is initialized by `X25519` above, and we checked that it
// succeeded
let shared_key = unsafe { shared_key_uninit.assume_init() };
Ok(crate::ecdh::SharedSecret(shared_key))
} else {
Err(DiffieHellmanError)
/// Derive the shared key between this private key and a peer's public key.
/// Don't use the shared key directly, rather use a KDF and also include
/// the two public values as inputs.
///
/// Will fail and produce `None` if the peer's public key is a point of
/// small order. It is safe to react to this in non-constant time.
pub fn compute_shared_key(&self, other_public_key: &PublicKey) -> Option<[u8; SHARED_KEY_LEN]> {
// Safety: `X25519` indeed writes `SHARED_KEY_LEN` bytes.
unsafe {
with_output_array_fallible(|out, _| {
bssl_sys::X25519(out, self.0.as_ffi_ptr(), other_public_key.as_ffi_ptr())
})
}
}
/// Generate a new key pair for use in a Diffie-Hellman key exchange.
pub fn generate() -> Self {
/// Generate a new key pair.
pub fn generate() -> (PublicKey, PrivateKey) {
let mut public_key_uninit = core::mem::MaybeUninit::<[u8; PUBLIC_KEY_LEN]>::uninit();
let mut private_key_uninit = core::mem::MaybeUninit::<[u8; PRIVATE_KEY_LEN]>::uninit();
// Safety:
// - private_key_uninit and public_key_uninit are allocated to 32-bytes
let (public_key, private_key) = unsafe {
// - private_key_uninit and public_key_uninit are the correct length.
unsafe {
bssl_sys::X25519_keypair(
public_key_uninit.as_mut_ptr() as *mut u8,
private_key_uninit.as_mut_ptr() as *mut u8,
);
// Safety: Initialized by `X25519_keypair` above
// Safety: Initialized by `X25519_keypair` just above.
(
public_key_uninit.assume_init(),
private_key_uninit.assume_init(),
PrivateKey(private_key_uninit.assume_init()),
)
};
Self {
private_key,
public_key,
}
}
/// Tries to convert the given bytes into a private key.
pub fn from_private_bytes(private_key_bytes: &[u8; PRIVATE_KEY_LEN]) -> Self {
let mut public_key_uninit = core::mem::MaybeUninit::<[u8; PUBLIC_KEY_LEN]>::uninit();
let private_key: [u8; PRIVATE_KEY_LEN] = private_key_bytes.to_owned();
// Safety:
// - private_key and public_key are Rust 32-byte arrays
let public_key = unsafe {
bssl_sys::X25519_public_from_private(
public_key_uninit.as_mut_ptr() as *mut _,
private_key.as_ptr(),
);
public_key_uninit.assume_init()
};
Self {
private_key,
public_key,
}
}
}
impl<'a> From<&'a PrivateKey> for PublicKey {
fn from(value: &'a PrivateKey) -> Self {
Self(value.public_key)
}
}
/// A public key for X25519 elliptic curve.
#[derive(Debug, PartialEq, Eq)]
pub struct PublicKey([u8; PUBLIC_KEY_LEN]);
impl PublicKey {
/// Converts this public key to its byte representation.
pub fn to_bytes(&self) -> [u8; PUBLIC_KEY_LEN] {
self.0
/// Compute the public key corresponding to this private key.
pub fn to_public(&self) -> PublicKey {
// Safety: `X25519_public_from_private` indeed fills an entire [`PublicKey`].
unsafe {
with_output_array(|out, _| {
bssl_sys::X25519_public_from_private(out, self.0.as_ffi_ptr());
})
}
/// Returns a reference to the byte representation of this public key.
pub fn as_bytes(&self) -> &[u8; PUBLIC_KEY_LEN] {
&self.0
}
}
impl From<&[u8; 32]> for PublicKey {
fn from(value: &[u8; 32]) -> Self {
Self(*value)
}
}
/// Shared secret derived from a Diffie-Hellman key exchange. Don't use the shared key directly,
/// rather use a KDF and also include the two public values as inputs.
type SharedSecret = crate::ecdh::SharedSecret<SHARED_KEY_LEN>;
#[cfg(test)]
#[allow(clippy::unwrap_used)]
mod tests {
use crate::{
test_helpers::decode_hex,
x25519::{PrivateKey, PublicKey},
};
use crate::{test_helpers::decode_hex, x25519::PrivateKey};
#[test]
fn x25519_test_diffie_hellman() {
fn known_vector() {
// wycheproof/testvectors/x25519_test.json tcId 1
let public_key_bytes: [u8; 32] =
let public_key: [u8; 32] =
decode_hex("504a36999f489cd2fdbc08baff3d88fa00569ba986cba22548ffde80f9806829");
let private_key =
decode_hex("c8a9d5a91091ad851c668b0736c1c9a02936c0d3ad62670858088047ba057475");
let private_key = PrivateKey(decode_hex(
"c8a9d5a91091ad851c668b0736c1c9a02936c0d3ad62670858088047ba057475",
));
let expected_shared_secret: [u8; 32] =
decode_hex("436a2c040cf45fea9b29a0cb81b1f41458f863d0d61b453d0a982720d6d61320");
let public_key = PublicKey::from(&public_key_bytes);
let private_key = PrivateKey::from_private_bytes(&private_key);
let shared_secret = private_key.diffie_hellman(&public_key).unwrap();
assert_eq!(expected_shared_secret, shared_secret.to_bytes());
let shared_secret = private_key.compute_shared_key(&public_key).unwrap();
assert_eq!(expected_shared_secret, shared_secret);
}
#[test]
fn x25519_generate_diffie_hellman_matches() {
let private_key_1 = PrivateKey::generate();
let private_key_2 = PrivateKey::generate();
let public_key_1 = PublicKey::from(&private_key_1);
let public_key_2 = PublicKey::from(&private_key_2);
let diffie_hellman_1 = private_key_1.diffie_hellman(&public_key_2).unwrap();
let diffie_hellman_2 = private_key_2.diffie_hellman(&public_key_1).unwrap();
assert_eq!(diffie_hellman_1.to_bytes(), diffie_hellman_2.to_bytes());
fn all_zero_public_key() {
assert!(PrivateKey::generate()
.1
.compute_shared_key(&[0u8; 32])
.is_none());
}
#[test]
fn x25519_test_diffie_hellman_zero_public_key() {
// wycheproof/testvectors/x25519_test.json tcId 32
let public_key_bytes =
decode_hex("0000000000000000000000000000000000000000000000000000000000000000");
let private_key =
decode_hex("88227494038f2bb811d47805bcdf04a2ac585ada7f2f23389bfd4658f9ddd45e");
let public_key = PublicKey::from(&public_key_bytes);
let private_key = PrivateKey::from_private_bytes(&private_key);
let shared_secret = private_key.diffie_hellman(&public_key);
assert!(shared_secret.is_err());
}
#[test]
fn x25519_public_key_byte_conversion() {
let public_key_bytes =
decode_hex("504a36999f489cd2fdbc08baff3d88fa00569ba986cba22548ffde80f9806829");
let public_key = PublicKey::from(&public_key_bytes);
assert_eq!(public_key_bytes, public_key.to_bytes());
}
#[test]
fn x25519_test_public_key_from_private_key() {
fn to_public() {
// Taken from https://www.rfc-editor.org/rfc/rfc7748.html#section-6.1
let public_key_bytes =
decode_hex("8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a");
let private_key_bytes =
decode_hex("77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2a");
let private_key = PrivateKey::from_private_bytes(&private_key_bytes);
assert_eq!(
PublicKey::from(&public_key_bytes),
PublicKey::from(&private_key)
);
let private_key = PrivateKey(decode_hex(
"77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2a",
));
assert_eq!(public_key_bytes, private_key.to_public());
}
}

Loading…
Cancel
Save