Simpler square-root computation for Ed25519

Description:
Mark Wooden and Franck Rondepierre noted that the square-root-mod-p
operations used in the EdDSA RFC (RFC 8032) can be simplified.  For
Ed25519, instead of computing u*v^3 * (u * v^7)^((p-5)/8), we can
compute u * (u*v)^((p-5)/8).  This saves 3 multiplications and 2
squarings.  For more details (including a proof), see the following
message from the CFRG mailing list:

  https://mailarchive.ietf.org/arch/msg/cfrg/qlKpMBqxXZYmDpXXIx6LO3Oznv4/

Testing:
Build and run the Ed25519 tests:

  mkdir build
  cd build
  cmake -GNinja ..
  ninja && ./crypto/crypto_test --gtest_filter="Ed25519Test*"

Numerical testing of the square-root computation can be done using the
following sage script:

  def legendre(x,p):
      return kronecker(x,p)

  # Ed25519
  p = 2**255-19
  # -1 is a square
  if legendre(-1,p)==1:
      print("-1 is a square")
  # 2 is a non-square
  if legendre(2,p)==-1:
      print("2 is a non-square")

  # 2 is a generator
  # this can be checked by factoring p-1
  # and then showing 2**((p-1)/q) != 1 (mod p)
  # for all primes q dividing p-1.

  # suppose u/v is a square.
  # to compute one of its square roots, find x such that
  #    x**4 == (u/v)**2 .
  # this implies
  #    x**2 ==  u/v, or
  #    x**2 == -(u/v) ,
  # which implies either x or i*x is a square-root of u/v (where i is a square root of -1).
  # we can take x equal to u * (u*v)**((p-5)/8).

  g = 2
  s = p>>2  # s = (p-1)/4
  i = power_mod(g, s, p)

  t = p>>3  # t = (p-5)/8
  COUNT = 1<<18
  while COUNT > 0:
      COUNT -= 1

      r = randint(0,p-1)   # r = u/v
      v = randint(1,p-1)
      u = mod(r*v,p)

      # compute x = u * (u*v)**((p-5)/8)
      w = mod(u*v,p)
      x = mod(u*power_mod(w, t, p), p)

      # check that x**2 == r, or (i*x)**2 == r, or r is not a square
      rr = power_mod(x, 2, p)
      if rr==r:
          continue

      rr = power_mod(mod(i*x,p), 2, p)
      if rr==r:
          continue

      if legendre(r,p) != 1:
          continue

      print("failure!")
      exit()

  print("passed!")

Change-Id: Iaa284d3365dd8c9fa18a4584121013f05a3f4cc6
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/50965
Reviewed-by: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: Adam Langley <agl@google.com>
fips-20220613
James Muir 3 years ago committed by Boringssl LUCI CQ
parent 0f4454c075
commit 0fc57bef18
  1. 20
      crypto/curve25519/curve25519.c

@ -502,27 +502,21 @@ static void ge_p3_tobytes(uint8_t s[32], const ge_p3 *h) {
int x25519_ge_frombytes_vartime(ge_p3 *h, const uint8_t s[32]) {
fe u;
fe_loose v;
fe v3;
fe w;
fe vxx;
fe_loose check;
fe_frombytes(&h->Y, s);
fe_1(&h->Z);
fe_sq_tt(&v3, &h->Y);
fe_mul_ttt(&vxx, &v3, &d);
fe_sub(&v, &v3, &h->Z); // u = y^2-1
fe_sq_tt(&w, &h->Y);
fe_mul_ttt(&vxx, &w, &d);
fe_sub(&v, &w, &h->Z); // u = y^2-1
fe_carry(&u, &v);
fe_add(&v, &vxx, &h->Z); // v = dy^2+1
fe_sq_tl(&v3, &v);
fe_mul_ttl(&v3, &v3, &v); // v3 = v^3
fe_sq_tt(&h->X, &v3);
fe_mul_ttl(&h->X, &h->X, &v);
fe_mul_ttt(&h->X, &h->X, &u); // x = uv^7
fe_pow22523(&h->X, &h->X); // x = (uv^7)^((q-5)/8)
fe_mul_ttt(&h->X, &h->X, &v3);
fe_mul_ttt(&h->X, &h->X, &u); // x = uv^3(uv^7)^((q-5)/8)
fe_mul_ttl(&w, &u, &v); // w = u*v
fe_pow22523(&h->X, &w); // x = w^((q-5)/8)
fe_mul_ttt(&h->X, &h->X, &u); // x = u*w^((q-5)/8)
fe_sq_tt(&vxx, &h->X);
fe_mul_ttl(&vxx, &vxx, &v);

Loading…
Cancel
Save